Properties

Label 288.2.w.b.35.4
Level $288$
Weight $2$
Character 288.35
Analytic conductor $2.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [288,2,Mod(35,288)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(288, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("288.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 288.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.29969157821\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 35.4
Character \(\chi\) \(=\) 288.35
Dual form 288.2.w.b.107.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.349793 - 1.37027i) q^{2} +(-1.75529 + 0.958624i) q^{4} +(2.97412 - 1.23192i) q^{5} +(0.237717 + 0.237717i) q^{7} +(1.92756 + 2.06990i) q^{8} +(-2.72839 - 3.64443i) q^{10} +(2.12394 - 0.879764i) q^{11} +(0.0390635 - 0.0943077i) q^{13} +(0.242585 - 0.408888i) q^{14} +(2.16208 - 3.36532i) q^{16} +4.16112 q^{17} +(-4.25390 - 1.76202i) q^{19} +(-4.03949 + 5.01343i) q^{20} +(-1.94845 - 2.60264i) q^{22} +(-4.84847 - 4.84847i) q^{23} +(3.79221 - 3.79221i) q^{25} +(-0.142891 - 0.0205395i) q^{26} +(-0.645142 - 0.189381i) q^{28} +(2.90419 - 7.01132i) q^{29} +9.88480i q^{31} +(-5.36769 - 1.78547i) q^{32} +(-1.45553 - 5.70186i) q^{34} +(0.999845 + 0.414149i) q^{35} +(0.175641 + 0.424034i) q^{37} +(-0.926465 + 6.44535i) q^{38} +(8.28275 + 3.78153i) q^{40} +(-7.67919 + 7.67919i) q^{41} +(2.99581 + 7.23252i) q^{43} +(-2.88476 + 3.58030i) q^{44} +(-4.94776 + 8.33968i) q^{46} -6.10937i q^{47} -6.88698i q^{49} +(-6.52284 - 3.86986i) q^{50} +(0.0218378 + 0.202984i) q^{52} +(4.28258 + 10.3391i) q^{53} +(5.23304 - 5.23304i) q^{55} +(-0.0338366 + 0.950265i) q^{56} +(-10.6233 - 1.52701i) q^{58} +(1.19303 + 2.88024i) q^{59} +(6.29246 + 2.60642i) q^{61} +(13.5449 - 3.45764i) q^{62} +(-0.569000 + 7.97974i) q^{64} -0.328605i q^{65} +(-5.66771 + 13.6831i) q^{67} +(-7.30396 + 3.98894i) q^{68} +(0.217758 - 1.51493i) q^{70} +(3.49288 - 3.49288i) q^{71} +(-1.42542 - 1.42542i) q^{73} +(0.519604 - 0.389000i) q^{74} +(9.15595 - 0.985029i) q^{76} +(0.714030 + 0.295761i) q^{77} +1.53778 q^{79} +(2.28447 - 12.6724i) q^{80} +(13.2087 + 7.83645i) q^{82} +(-2.95890 + 7.14340i) q^{83} +(12.3756 - 5.12616i) q^{85} +(8.86261 - 6.63496i) q^{86} +(5.91505 + 2.70055i) q^{88} +(-1.92767 - 1.92767i) q^{89} +(0.0317046 - 0.0131325i) q^{91} +(13.1583 + 3.86261i) q^{92} +(-8.37149 + 2.13702i) q^{94} -14.8223 q^{95} -12.9791 q^{97} +(-9.43704 + 2.40902i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 4 q^{2} + 4 q^{8} + 8 q^{10} + 8 q^{11} - 12 q^{14} + 8 q^{16} - 32 q^{20} + 16 q^{22} + 36 q^{26} + 16 q^{29} + 24 q^{32} - 24 q^{35} - 32 q^{38} - 32 q^{40} - 8 q^{44} - 32 q^{46} - 8 q^{50} - 56 q^{52}+ \cdots + 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.349793 1.37027i −0.247341 0.968928i
\(3\) 0 0
\(4\) −1.75529 + 0.958624i −0.877645 + 0.479312i
\(5\) 2.97412 1.23192i 1.33007 0.550931i 0.399391 0.916781i \(-0.369222\pi\)
0.930674 + 0.365850i \(0.119222\pi\)
\(6\) 0 0
\(7\) 0.237717 + 0.237717i 0.0898485 + 0.0898485i 0.750603 0.660754i \(-0.229763\pi\)
−0.660754 + 0.750603i \(0.729763\pi\)
\(8\) 1.92756 + 2.06990i 0.681497 + 0.731821i
\(9\) 0 0
\(10\) −2.72839 3.64443i −0.862793 1.15247i
\(11\) 2.12394 0.879764i 0.640391 0.265259i −0.0387695 0.999248i \(-0.512344\pi\)
0.679161 + 0.733989i \(0.262344\pi\)
\(12\) 0 0
\(13\) 0.0390635 0.0943077i 0.0108343 0.0261562i −0.918370 0.395723i \(-0.870494\pi\)
0.929204 + 0.369567i \(0.120494\pi\)
\(14\) 0.242585 0.408888i 0.0648335 0.109280i
\(15\) 0 0
\(16\) 2.16208 3.36532i 0.540520 0.841331i
\(17\) 4.16112 1.00922 0.504609 0.863348i \(-0.331636\pi\)
0.504609 + 0.863348i \(0.331636\pi\)
\(18\) 0 0
\(19\) −4.25390 1.76202i −0.975912 0.404236i −0.163002 0.986626i \(-0.552118\pi\)
−0.812910 + 0.582390i \(0.802118\pi\)
\(20\) −4.03949 + 5.01343i −0.903257 + 1.12104i
\(21\) 0 0
\(22\) −1.94845 2.60264i −0.415412 0.554884i
\(23\) −4.84847 4.84847i −1.01098 1.01098i −0.999939 0.0110368i \(-0.996487\pi\)
−0.0110368 0.999939i \(-0.503513\pi\)
\(24\) 0 0
\(25\) 3.79221 3.79221i 0.758441 0.758441i
\(26\) −0.142891 0.0205395i −0.0280233 0.00402812i
\(27\) 0 0
\(28\) −0.645142 0.189381i −0.121920 0.0357896i
\(29\) 2.90419 7.01132i 0.539294 1.30197i −0.385923 0.922531i \(-0.626117\pi\)
0.925217 0.379439i \(-0.123883\pi\)
\(30\) 0 0
\(31\) 9.88480i 1.77536i 0.460459 + 0.887681i \(0.347685\pi\)
−0.460459 + 0.887681i \(0.652315\pi\)
\(32\) −5.36769 1.78547i −0.948882 0.315630i
\(33\) 0 0
\(34\) −1.45553 5.70186i −0.249621 0.977861i
\(35\) 0.999845 + 0.414149i 0.169005 + 0.0700040i
\(36\) 0 0
\(37\) 0.175641 + 0.424034i 0.0288752 + 0.0697108i 0.937659 0.347556i \(-0.112988\pi\)
−0.908784 + 0.417266i \(0.862988\pi\)
\(38\) −0.926465 + 6.44535i −0.150293 + 1.04557i
\(39\) 0 0
\(40\) 8.28275 + 3.78153i 1.30962 + 0.597912i
\(41\) −7.67919 + 7.67919i −1.19929 + 1.19929i −0.224907 + 0.974380i \(0.572208\pi\)
−0.974380 + 0.224907i \(0.927792\pi\)
\(42\) 0 0
\(43\) 2.99581 + 7.23252i 0.456857 + 1.10295i 0.969663 + 0.244445i \(0.0786058\pi\)
−0.512807 + 0.858504i \(0.671394\pi\)
\(44\) −2.88476 + 3.58030i −0.434894 + 0.539750i
\(45\) 0 0
\(46\) −4.94776 + 8.33968i −0.729507 + 1.22962i
\(47\) 6.10937i 0.891143i −0.895246 0.445571i \(-0.853001\pi\)
0.895246 0.445571i \(-0.146999\pi\)
\(48\) 0 0
\(49\) 6.88698i 0.983855i
\(50\) −6.52284 3.86986i −0.922469 0.547282i
\(51\) 0 0
\(52\) 0.0218378 + 0.202984i 0.00302836 + 0.0281489i
\(53\) 4.28258 + 10.3391i 0.588258 + 1.42018i 0.885167 + 0.465274i \(0.154044\pi\)
−0.296909 + 0.954906i \(0.595956\pi\)
\(54\) 0 0
\(55\) 5.23304 5.23304i 0.705623 0.705623i
\(56\) −0.0338366 + 0.950265i −0.00452161 + 0.126984i
\(57\) 0 0
\(58\) −10.6233 1.52701i −1.39491 0.200506i
\(59\) 1.19303 + 2.88024i 0.155320 + 0.374975i 0.982316 0.187233i \(-0.0599519\pi\)
−0.826996 + 0.562208i \(0.809952\pi\)
\(60\) 0 0
\(61\) 6.29246 + 2.60642i 0.805667 + 0.333718i 0.747224 0.664573i \(-0.231386\pi\)
0.0584431 + 0.998291i \(0.481386\pi\)
\(62\) 13.5449 3.45764i 1.72020 0.439120i
\(63\) 0 0
\(64\) −0.569000 + 7.97974i −0.0711250 + 0.997467i
\(65\) 0.328605i 0.0407584i
\(66\) 0 0
\(67\) −5.66771 + 13.6831i −0.692420 + 1.67165i 0.0474259 + 0.998875i \(0.484898\pi\)
−0.739846 + 0.672776i \(0.765102\pi\)
\(68\) −7.30396 + 3.98894i −0.885736 + 0.483731i
\(69\) 0 0
\(70\) 0.217758 1.51493i 0.0260271 0.181068i
\(71\) 3.49288 3.49288i 0.414528 0.414528i −0.468784 0.883313i \(-0.655308\pi\)
0.883313 + 0.468784i \(0.155308\pi\)
\(72\) 0 0
\(73\) −1.42542 1.42542i −0.166833 0.166833i 0.618753 0.785586i \(-0.287638\pi\)
−0.785586 + 0.618753i \(0.787638\pi\)
\(74\) 0.519604 0.389000i 0.0604028 0.0452203i
\(75\) 0 0
\(76\) 9.15595 0.985029i 1.05026 0.112991i
\(77\) 0.714030 + 0.295761i 0.0813713 + 0.0337051i
\(78\) 0 0
\(79\) 1.53778 0.173014 0.0865070 0.996251i \(-0.472430\pi\)
0.0865070 + 0.996251i \(0.472430\pi\)
\(80\) 2.28447 12.6724i 0.255412 1.41681i
\(81\) 0 0
\(82\) 13.2087 + 7.83645i 1.45866 + 0.865391i
\(83\) −2.95890 + 7.14340i −0.324781 + 0.784091i 0.674182 + 0.738565i \(0.264496\pi\)
−0.998963 + 0.0455255i \(0.985504\pi\)
\(84\) 0 0
\(85\) 12.3756 5.12616i 1.34233 0.556010i
\(86\) 8.86261 6.63496i 0.955680 0.715466i
\(87\) 0 0
\(88\) 5.91505 + 2.70055i 0.630547 + 0.287879i
\(89\) −1.92767 1.92767i −0.204333 0.204333i 0.597521 0.801853i \(-0.296153\pi\)
−0.801853 + 0.597521i \(0.796153\pi\)
\(90\) 0 0
\(91\) 0.0317046 0.0131325i 0.00332354 0.00137666i
\(92\) 13.1583 + 3.86261i 1.37185 + 0.402705i
\(93\) 0 0
\(94\) −8.37149 + 2.13702i −0.863454 + 0.220416i
\(95\) −14.8223 −1.52073
\(96\) 0 0
\(97\) −12.9791 −1.31783 −0.658915 0.752218i \(-0.728984\pi\)
−0.658915 + 0.752218i \(0.728984\pi\)
\(98\) −9.43704 + 2.40902i −0.953285 + 0.243348i
\(99\) 0 0
\(100\) −3.02112 + 10.2917i −0.302112 + 1.02917i
\(101\) 10.2765 4.25666i 1.02255 0.423554i 0.192532 0.981291i \(-0.438330\pi\)
0.830018 + 0.557737i \(0.188330\pi\)
\(102\) 0 0
\(103\) −6.66422 6.66422i −0.656645 0.656645i 0.297940 0.954585i \(-0.403701\pi\)
−0.954585 + 0.297940i \(0.903701\pi\)
\(104\) 0.270505 0.100926i 0.0265252 0.00989664i
\(105\) 0 0
\(106\) 12.6693 9.48483i 1.23055 0.921248i
\(107\) −11.1377 + 4.61340i −1.07673 + 0.445994i −0.849359 0.527815i \(-0.823011\pi\)
−0.227366 + 0.973809i \(0.573011\pi\)
\(108\) 0 0
\(109\) −3.68462 + 8.89546i −0.352922 + 0.852030i 0.643334 + 0.765585i \(0.277551\pi\)
−0.996257 + 0.0864447i \(0.972449\pi\)
\(110\) −9.00117 5.34020i −0.858228 0.509169i
\(111\) 0 0
\(112\) 1.31396 0.286031i 0.124157 0.0270274i
\(113\) −7.16123 −0.673672 −0.336836 0.941563i \(-0.609357\pi\)
−0.336836 + 0.941563i \(0.609357\pi\)
\(114\) 0 0
\(115\) −20.3928 8.44699i −1.90164 0.787686i
\(116\) 1.62353 + 15.0909i 0.150741 + 1.40116i
\(117\) 0 0
\(118\) 3.52940 2.64227i 0.324907 0.243241i
\(119\) 0.989167 + 0.989167i 0.0906768 + 0.0906768i
\(120\) 0 0
\(121\) −4.04105 + 4.04105i −0.367368 + 0.367368i
\(122\) 1.37045 9.53409i 0.124074 0.863176i
\(123\) 0 0
\(124\) −9.47580 17.3507i −0.850952 1.55814i
\(125\) 0.447173 1.07957i 0.0399964 0.0965599i
\(126\) 0 0
\(127\) 9.41925i 0.835823i −0.908488 0.417911i \(-0.862762\pi\)
0.908488 0.417911i \(-0.137238\pi\)
\(128\) 11.1334 2.01157i 0.984067 0.177800i
\(129\) 0 0
\(130\) −0.450278 + 0.114944i −0.0394920 + 0.0100812i
\(131\) −3.15026 1.30488i −0.275240 0.114008i 0.240794 0.970576i \(-0.422592\pi\)
−0.516034 + 0.856568i \(0.672592\pi\)
\(132\) 0 0
\(133\) −0.592361 1.43009i −0.0513642 0.124004i
\(134\) 20.7320 + 2.98006i 1.79097 + 0.257438i
\(135\) 0 0
\(136\) 8.02081 + 8.61311i 0.687779 + 0.738568i
\(137\) −8.26376 + 8.26376i −0.706021 + 0.706021i −0.965696 0.259675i \(-0.916384\pi\)
0.259675 + 0.965696i \(0.416384\pi\)
\(138\) 0 0
\(139\) 0.429473 + 1.03684i 0.0364274 + 0.0879436i 0.941046 0.338278i \(-0.109844\pi\)
−0.904619 + 0.426222i \(0.859844\pi\)
\(140\) −2.15203 + 0.231523i −0.181880 + 0.0195673i
\(141\) 0 0
\(142\) −6.00798 3.56441i −0.504178 0.299118i
\(143\) 0.234670i 0.0196241i
\(144\) 0 0
\(145\) 24.4302i 2.02882i
\(146\) −1.45461 + 2.45182i −0.120385 + 0.202914i
\(147\) 0 0
\(148\) −0.714790 0.575930i −0.0587554 0.0473411i
\(149\) 0.253180 + 0.611230i 0.0207413 + 0.0500739i 0.933911 0.357506i \(-0.116373\pi\)
−0.913170 + 0.407580i \(0.866373\pi\)
\(150\) 0 0
\(151\) 11.4878 11.4878i 0.934862 0.934862i −0.0631423 0.998005i \(-0.520112\pi\)
0.998005 + 0.0631423i \(0.0201122\pi\)
\(152\) −4.55245 12.2016i −0.369252 0.989679i
\(153\) 0 0
\(154\) 0.155510 1.08187i 0.0125314 0.0871796i
\(155\) 12.1773 + 29.3985i 0.978102 + 2.36135i
\(156\) 0 0
\(157\) −13.7120 5.67968i −1.09433 0.453288i −0.238818 0.971064i \(-0.576760\pi\)
−0.855516 + 0.517777i \(0.826760\pi\)
\(158\) −0.537906 2.10718i −0.0427935 0.167638i
\(159\) 0 0
\(160\) −18.1637 + 1.30236i −1.43597 + 0.102961i
\(161\) 2.30512i 0.181669i
\(162\) 0 0
\(163\) 2.66632 6.43706i 0.208842 0.504189i −0.784399 0.620256i \(-0.787029\pi\)
0.993241 + 0.116067i \(0.0370287\pi\)
\(164\) 6.11775 20.8406i 0.477716 1.62738i
\(165\) 0 0
\(166\) 10.8234 + 1.55578i 0.840059 + 0.120752i
\(167\) 6.53445 6.53445i 0.505651 0.505651i −0.407538 0.913188i \(-0.633613\pi\)
0.913188 + 0.407538i \(0.133613\pi\)
\(168\) 0 0
\(169\) 9.18502 + 9.18502i 0.706540 + 0.706540i
\(170\) −11.3531 15.1649i −0.870747 1.16309i
\(171\) 0 0
\(172\) −12.1918 9.82332i −0.929614 0.749021i
\(173\) −3.24361 1.34355i −0.246607 0.102148i 0.255956 0.966688i \(-0.417610\pi\)
−0.502563 + 0.864540i \(0.667610\pi\)
\(174\) 0 0
\(175\) 1.80294 0.136290
\(176\) 1.63144 9.04986i 0.122974 0.682159i
\(177\) 0 0
\(178\) −1.96715 + 3.31572i −0.147444 + 0.248524i
\(179\) 9.86789 23.8232i 0.737560 1.78063i 0.122013 0.992528i \(-0.461065\pi\)
0.615547 0.788100i \(-0.288935\pi\)
\(180\) 0 0
\(181\) 12.1863 5.04772i 0.905799 0.375194i 0.119352 0.992852i \(-0.461918\pi\)
0.786447 + 0.617658i \(0.211918\pi\)
\(182\) −0.0290851 0.0388502i −0.00215593 0.00287977i
\(183\) 0 0
\(184\) 0.690132 19.3816i 0.0508772 1.42883i
\(185\) 1.04475 + 1.04475i 0.0768117 + 0.0768117i
\(186\) 0 0
\(187\) 8.83795 3.66080i 0.646295 0.267704i
\(188\) 5.85658 + 10.7237i 0.427135 + 0.782107i
\(189\) 0 0
\(190\) 5.18473 + 20.3105i 0.376140 + 1.47348i
\(191\) −12.7590 −0.923208 −0.461604 0.887086i \(-0.652726\pi\)
−0.461604 + 0.887086i \(0.652726\pi\)
\(192\) 0 0
\(193\) −12.6078 −0.907531 −0.453766 0.891121i \(-0.649920\pi\)
−0.453766 + 0.891121i \(0.649920\pi\)
\(194\) 4.54001 + 17.7849i 0.325953 + 1.27688i
\(195\) 0 0
\(196\) 6.60202 + 12.0886i 0.471573 + 0.863475i
\(197\) −0.666855 + 0.276221i −0.0475115 + 0.0196799i −0.406313 0.913734i \(-0.633186\pi\)
0.358801 + 0.933414i \(0.383186\pi\)
\(198\) 0 0
\(199\) −4.26928 4.26928i −0.302641 0.302641i 0.539405 0.842046i \(-0.318649\pi\)
−0.842046 + 0.539405i \(0.818649\pi\)
\(200\) 15.1592 + 0.539783i 1.07192 + 0.0381684i
\(201\) 0 0
\(202\) −9.42744 12.5926i −0.663312 0.886015i
\(203\) 2.35708 0.976336i 0.165435 0.0685253i
\(204\) 0 0
\(205\) −13.3787 + 32.2989i −0.934406 + 2.25586i
\(206\) −6.80069 + 11.4629i −0.473827 + 0.798658i
\(207\) 0 0
\(208\) −0.232917 0.335362i −0.0161499 0.0232532i
\(209\) −10.5852 −0.732193
\(210\) 0 0
\(211\) 15.6370 + 6.47704i 1.07649 + 0.445898i 0.849278 0.527947i \(-0.177038\pi\)
0.227215 + 0.973845i \(0.427038\pi\)
\(212\) −17.4284 14.0427i −1.19699 0.964454i
\(213\) 0 0
\(214\) 10.2175 + 13.6480i 0.698455 + 0.932957i
\(215\) 17.8198 + 17.8198i 1.21530 + 1.21530i
\(216\) 0 0
\(217\) −2.34978 + 2.34978i −0.159514 + 0.159514i
\(218\) 13.4780 + 1.93736i 0.912849 + 0.131214i
\(219\) 0 0
\(220\) −4.16898 + 14.2020i −0.281073 + 0.957500i
\(221\) 0.162548 0.392425i 0.0109342 0.0263974i
\(222\) 0 0
\(223\) 29.4910i 1.97487i 0.158038 + 0.987433i \(0.449483\pi\)
−0.158038 + 0.987433i \(0.550517\pi\)
\(224\) −0.851553 1.70043i −0.0568968 0.113614i
\(225\) 0 0
\(226\) 2.50495 + 9.81283i 0.166627 + 0.652740i
\(227\) 18.5140 + 7.66873i 1.22881 + 0.508992i 0.900202 0.435473i \(-0.143419\pi\)
0.328613 + 0.944465i \(0.393419\pi\)
\(228\) 0 0
\(229\) 2.09503 + 5.05785i 0.138444 + 0.334232i 0.977861 0.209255i \(-0.0671037\pi\)
−0.839418 + 0.543487i \(0.817104\pi\)
\(230\) −4.44139 + 30.8984i −0.292857 + 2.03738i
\(231\) 0 0
\(232\) 20.1108 7.50339i 1.32034 0.492622i
\(233\) −0.699144 + 0.699144i −0.0458024 + 0.0458024i −0.729637 0.683835i \(-0.760311\pi\)
0.683835 + 0.729637i \(0.260311\pi\)
\(234\) 0 0
\(235\) −7.52625 18.1700i −0.490958 1.18528i
\(236\) −4.85519 3.91199i −0.316046 0.254649i
\(237\) 0 0
\(238\) 1.00942 1.70143i 0.0654312 0.110287i
\(239\) 22.1034i 1.42975i −0.699253 0.714875i \(-0.746484\pi\)
0.699253 0.714875i \(-0.253516\pi\)
\(240\) 0 0
\(241\) 9.09381i 0.585784i 0.956146 + 0.292892i \(0.0946176\pi\)
−0.956146 + 0.292892i \(0.905382\pi\)
\(242\) 6.95086 + 4.12380i 0.446818 + 0.265088i
\(243\) 0 0
\(244\) −13.5437 + 1.45707i −0.867044 + 0.0932797i
\(245\) −8.48420 20.4827i −0.542036 1.30859i
\(246\) 0 0
\(247\) −0.332345 + 0.332345i −0.0211466 + 0.0211466i
\(248\) −20.4606 + 19.0536i −1.29925 + 1.20990i
\(249\) 0 0
\(250\) −1.63573 0.235122i −0.103452 0.0148704i
\(251\) 1.43019 + 3.45279i 0.0902728 + 0.217938i 0.962567 0.271043i \(-0.0873687\pi\)
−0.872294 + 0.488981i \(0.837369\pi\)
\(252\) 0 0
\(253\) −14.5634 6.03234i −0.915591 0.379250i
\(254\) −12.9069 + 3.29479i −0.809853 + 0.206733i
\(255\) 0 0
\(256\) −6.65081 14.5522i −0.415675 0.909513i
\(257\) 3.05245i 0.190406i 0.995458 + 0.0952032i \(0.0303501\pi\)
−0.995458 + 0.0952032i \(0.969650\pi\)
\(258\) 0 0
\(259\) −0.0590473 + 0.142553i −0.00366902 + 0.00885780i
\(260\) 0.315009 + 0.576797i 0.0195360 + 0.0357714i
\(261\) 0 0
\(262\) −0.686102 + 4.77316i −0.0423875 + 0.294887i
\(263\) 2.44480 2.44480i 0.150753 0.150753i −0.627701 0.778454i \(-0.716004\pi\)
0.778454 + 0.627701i \(0.216004\pi\)
\(264\) 0 0
\(265\) 25.4738 + 25.4738i 1.56484 + 1.56484i
\(266\) −1.75240 + 1.31193i −0.107447 + 0.0804396i
\(267\) 0 0
\(268\) −3.16843 29.4509i −0.193543 1.79900i
\(269\) −13.7507 5.69573i −0.838395 0.347275i −0.0781745 0.996940i \(-0.524909\pi\)
−0.760221 + 0.649665i \(0.774909\pi\)
\(270\) 0 0
\(271\) 24.0583 1.46144 0.730720 0.682677i \(-0.239184\pi\)
0.730720 + 0.682677i \(0.239184\pi\)
\(272\) 8.99667 14.0035i 0.545503 0.849087i
\(273\) 0 0
\(274\) 14.2142 + 8.43299i 0.858711 + 0.509455i
\(275\) 4.71816 11.3907i 0.284516 0.686882i
\(276\) 0 0
\(277\) −6.48199 + 2.68493i −0.389465 + 0.161322i −0.568819 0.822463i \(-0.692599\pi\)
0.179354 + 0.983785i \(0.442599\pi\)
\(278\) 1.27053 0.951174i 0.0762010 0.0570476i
\(279\) 0 0
\(280\) 1.07002 + 2.86788i 0.0639456 + 0.171389i
\(281\) −4.59744 4.59744i −0.274260 0.274260i 0.556552 0.830813i \(-0.312124\pi\)
−0.830813 + 0.556552i \(0.812124\pi\)
\(282\) 0 0
\(283\) 17.9590 7.43884i 1.06755 0.442193i 0.221424 0.975178i \(-0.428930\pi\)
0.846125 + 0.532984i \(0.178930\pi\)
\(284\) −2.78266 + 9.47937i −0.165120 + 0.562497i
\(285\) 0 0
\(286\) −0.321562 + 0.0820861i −0.0190144 + 0.00485385i
\(287\) −3.65094 −0.215508
\(288\) 0 0
\(289\) 0.314890 0.0185229
\(290\) −33.4760 + 8.54552i −1.96578 + 0.501810i
\(291\) 0 0
\(292\) 3.86847 + 1.13559i 0.226385 + 0.0664551i
\(293\) −0.0302145 + 0.0125153i −0.00176515 + 0.000731150i −0.383566 0.923514i \(-0.625304\pi\)
0.381801 + 0.924245i \(0.375304\pi\)
\(294\) 0 0
\(295\) 7.09645 + 7.09645i 0.413171 + 0.413171i
\(296\) −0.539152 + 1.18091i −0.0313375 + 0.0686392i
\(297\) 0 0
\(298\) 0.748990 0.560729i 0.0433878 0.0324821i
\(299\) −0.646646 + 0.267850i −0.0373965 + 0.0154901i
\(300\) 0 0
\(301\) −1.00714 + 2.43145i −0.0580504 + 0.140146i
\(302\) −19.7597 11.7230i −1.13704 0.674585i
\(303\) 0 0
\(304\) −15.1271 + 10.5061i −0.867597 + 0.602567i
\(305\) 21.9254 1.25544
\(306\) 0 0
\(307\) −21.7209 8.99707i −1.23967 0.513490i −0.336062 0.941840i \(-0.609095\pi\)
−0.903613 + 0.428350i \(0.859095\pi\)
\(308\) −1.53685 + 0.165340i −0.0875703 + 0.00942112i
\(309\) 0 0
\(310\) 36.0244 26.9696i 2.04605 1.53177i
\(311\) 3.59830 + 3.59830i 0.204041 + 0.204041i 0.801729 0.597688i \(-0.203914\pi\)
−0.597688 + 0.801729i \(0.703914\pi\)
\(312\) 0 0
\(313\) 1.24094 1.24094i 0.0701421 0.0701421i −0.671165 0.741308i \(-0.734206\pi\)
0.741308 + 0.671165i \(0.234206\pi\)
\(314\) −2.98635 + 20.7758i −0.168530 + 1.17245i
\(315\) 0 0
\(316\) −2.69925 + 1.47415i −0.151845 + 0.0829276i
\(317\) 2.92298 7.05670i 0.164171 0.396344i −0.820290 0.571948i \(-0.806188\pi\)
0.984461 + 0.175604i \(0.0561879\pi\)
\(318\) 0 0
\(319\) 17.4466i 0.976823i
\(320\) 8.13812 + 24.4336i 0.454935 + 1.36588i
\(321\) 0 0
\(322\) −3.15865 + 0.806317i −0.176025 + 0.0449343i
\(323\) −17.7010 7.33199i −0.984909 0.407963i
\(324\) 0 0
\(325\) −0.209497 0.505771i −0.0116208 0.0280551i
\(326\) −9.75318 1.40194i −0.540178 0.0776462i
\(327\) 0 0
\(328\) −30.6973 1.09306i −1.69497 0.0603540i
\(329\) 1.45230 1.45230i 0.0800678 0.0800678i
\(330\) 0 0
\(331\) 11.2439 + 27.1453i 0.618023 + 1.49204i 0.853996 + 0.520280i \(0.174172\pi\)
−0.235973 + 0.971760i \(0.575828\pi\)
\(332\) −1.65412 15.3752i −0.0907816 0.843824i
\(333\) 0 0
\(334\) −11.2397 6.66826i −0.615008 0.364871i
\(335\) 47.6771i 2.60488i
\(336\) 0 0
\(337\) 13.3438i 0.726882i 0.931617 + 0.363441i \(0.118398\pi\)
−0.931617 + 0.363441i \(0.881602\pi\)
\(338\) 9.37312 15.7988i 0.509830 0.859343i
\(339\) 0 0
\(340\) −16.8088 + 20.8615i −0.911584 + 1.13137i
\(341\) 8.69629 + 20.9947i 0.470930 + 1.13693i
\(342\) 0 0
\(343\) 3.30117 3.30117i 0.178246 0.178246i
\(344\) −9.19601 + 20.1422i −0.495816 + 1.08599i
\(345\) 0 0
\(346\) −0.706432 + 4.91459i −0.0379780 + 0.264210i
\(347\) −3.38445 8.17078i −0.181687 0.438631i 0.806628 0.591060i \(-0.201290\pi\)
−0.988314 + 0.152429i \(0.951290\pi\)
\(348\) 0 0
\(349\) 17.9607 + 7.43958i 0.961416 + 0.398232i 0.807510 0.589854i \(-0.200815\pi\)
0.153906 + 0.988085i \(0.450815\pi\)
\(350\) −0.630657 2.47052i −0.0337100 0.132055i
\(351\) 0 0
\(352\) −12.9714 + 0.930068i −0.691380 + 0.0495728i
\(353\) 30.1730i 1.60594i −0.596016 0.802972i \(-0.703251\pi\)
0.596016 0.802972i \(-0.296749\pi\)
\(354\) 0 0
\(355\) 6.08528 14.6912i 0.322973 0.779726i
\(356\) 5.23153 + 1.53571i 0.277270 + 0.0813924i
\(357\) 0 0
\(358\) −36.0960 5.18850i −1.90773 0.274221i
\(359\) 5.24818 5.24818i 0.276988 0.276988i −0.554917 0.831905i \(-0.687250\pi\)
0.831905 + 0.554917i \(0.187250\pi\)
\(360\) 0 0
\(361\) 1.55592 + 1.55592i 0.0818907 + 0.0818907i
\(362\) −11.1794 14.9329i −0.587578 0.784853i
\(363\) 0 0
\(364\) −0.0430616 + 0.0534440i −0.00225704 + 0.00280123i
\(365\) −5.99538 2.48337i −0.313812 0.129985i
\(366\) 0 0
\(367\) −31.3373 −1.63580 −0.817898 0.575363i \(-0.804861\pi\)
−0.817898 + 0.575363i \(0.804861\pi\)
\(368\) −26.7995 + 5.83388i −1.39702 + 0.304112i
\(369\) 0 0
\(370\) 1.06615 1.79704i 0.0554264 0.0934237i
\(371\) −1.43973 + 3.47581i −0.0747469 + 0.180455i
\(372\) 0 0
\(373\) 12.2609 5.07863i 0.634845 0.262962i −0.0419649 0.999119i \(-0.513362\pi\)
0.676810 + 0.736158i \(0.263362\pi\)
\(374\) −8.10775 10.8299i −0.419242 0.560000i
\(375\) 0 0
\(376\) 12.6458 11.7762i 0.652157 0.607311i
\(377\) −0.547774 0.547774i −0.0282118 0.0282118i
\(378\) 0 0
\(379\) 23.5487 9.75417i 1.20961 0.501038i 0.315520 0.948919i \(-0.397821\pi\)
0.894093 + 0.447881i \(0.147821\pi\)
\(380\) 26.0174 14.2090i 1.33466 0.728905i
\(381\) 0 0
\(382\) 4.46301 + 17.4833i 0.228347 + 0.894523i
\(383\) 16.6719 0.851896 0.425948 0.904748i \(-0.359941\pi\)
0.425948 + 0.904748i \(0.359941\pi\)
\(384\) 0 0
\(385\) 2.48796 0.126798
\(386\) 4.41013 + 17.2762i 0.224470 + 0.879333i
\(387\) 0 0
\(388\) 22.7821 12.4421i 1.15659 0.631651i
\(389\) −1.38281 + 0.572777i −0.0701110 + 0.0290409i −0.417463 0.908694i \(-0.637081\pi\)
0.347352 + 0.937735i \(0.387081\pi\)
\(390\) 0 0
\(391\) −20.1750 20.1750i −1.02030 1.02030i
\(392\) 14.2554 13.2751i 0.720006 0.670493i
\(393\) 0 0
\(394\) 0.611759 + 0.817153i 0.0308200 + 0.0411676i
\(395\) 4.57354 1.89442i 0.230120 0.0953187i
\(396\) 0 0
\(397\) 4.37989 10.5740i 0.219821 0.530694i −0.775044 0.631907i \(-0.782272\pi\)
0.994865 + 0.101213i \(0.0322724\pi\)
\(398\) −4.35671 + 7.34344i −0.218382 + 0.368093i
\(399\) 0 0
\(400\) −4.56294 20.9611i −0.228147 1.04805i
\(401\) 23.7727 1.18715 0.593576 0.804778i \(-0.297716\pi\)
0.593576 + 0.804778i \(0.297716\pi\)
\(402\) 0 0
\(403\) 0.932212 + 0.386135i 0.0464368 + 0.0192348i
\(404\) −13.9577 + 17.3230i −0.694421 + 0.861850i
\(405\) 0 0
\(406\) −2.16234 2.88833i −0.107315 0.143345i
\(407\) 0.746100 + 0.746100i 0.0369828 + 0.0369828i
\(408\) 0 0
\(409\) −24.1735 + 24.1735i −1.19530 + 1.19530i −0.219743 + 0.975558i \(0.570522\pi\)
−0.975558 + 0.219743i \(0.929478\pi\)
\(410\) 48.9381 + 7.03445i 2.41688 + 0.347406i
\(411\) 0 0
\(412\) 18.0861 + 5.30916i 0.891039 + 0.261563i
\(413\) −0.401077 + 0.968286i −0.0197357 + 0.0476462i
\(414\) 0 0
\(415\) 24.8904i 1.22182i
\(416\) −0.378065 + 0.436468i −0.0185361 + 0.0213996i
\(417\) 0 0
\(418\) 3.70263 + 14.5046i 0.181101 + 0.709442i
\(419\) −6.78167 2.80906i −0.331306 0.137232i 0.210828 0.977523i \(-0.432384\pi\)
−0.542135 + 0.840291i \(0.682384\pi\)
\(420\) 0 0
\(421\) −9.06067 21.8744i −0.441590 1.06609i −0.975391 0.220482i \(-0.929237\pi\)
0.533801 0.845610i \(-0.320763\pi\)
\(422\) 3.40560 23.6925i 0.165782 1.15333i
\(423\) 0 0
\(424\) −13.1459 + 28.7937i −0.638422 + 1.39835i
\(425\) 15.7798 15.7798i 0.765433 0.765433i
\(426\) 0 0
\(427\) 0.876233 + 2.11541i 0.0424039 + 0.102372i
\(428\) 15.1274 18.7748i 0.731212 0.907512i
\(429\) 0 0
\(430\) 18.1847 30.6512i 0.876943 1.47813i
\(431\) 22.9164i 1.10384i −0.833896 0.551922i \(-0.813895\pi\)
0.833896 0.551922i \(-0.186105\pi\)
\(432\) 0 0
\(433\) 17.6486i 0.848139i −0.905630 0.424070i \(-0.860601\pi\)
0.905630 0.424070i \(-0.139399\pi\)
\(434\) 4.04178 + 2.39790i 0.194011 + 0.115103i
\(435\) 0 0
\(436\) −2.05982 19.1463i −0.0986476 0.916940i
\(437\) 12.0818 + 29.1680i 0.577951 + 1.39530i
\(438\) 0 0
\(439\) 11.5122 11.5122i 0.549449 0.549449i −0.376832 0.926281i \(-0.622987\pi\)
0.926281 + 0.376832i \(0.122987\pi\)
\(440\) 20.9189 + 0.744872i 0.997270 + 0.0355104i
\(441\) 0 0
\(442\) −0.594587 0.0854670i −0.0282816 0.00406525i
\(443\) −13.4242 32.4089i −0.637804 1.53980i −0.829598 0.558360i \(-0.811431\pi\)
0.191794 0.981435i \(-0.438569\pi\)
\(444\) 0 0
\(445\) −8.10785 3.35838i −0.384349 0.159202i
\(446\) 40.4107 10.3158i 1.91350 0.488466i
\(447\) 0 0
\(448\) −2.03218 + 1.76166i −0.0960114 + 0.0832304i
\(449\) 16.3232i 0.770339i −0.922846 0.385170i \(-0.874143\pi\)
0.922846 0.385170i \(-0.125857\pi\)
\(450\) 0 0
\(451\) −9.55425 + 23.0660i −0.449892 + 1.08614i
\(452\) 12.5700 6.86493i 0.591245 0.322899i
\(453\) 0 0
\(454\) 4.03219 28.0516i 0.189240 1.31653i
\(455\) 0.0781149 0.0781149i 0.00366208 0.00366208i
\(456\) 0 0
\(457\) −22.1907 22.1907i −1.03804 1.03804i −0.999247 0.0387901i \(-0.987650\pi\)
−0.0387901 0.999247i \(-0.512350\pi\)
\(458\) 6.19781 4.63996i 0.289604 0.216811i
\(459\) 0 0
\(460\) 43.8928 4.72214i 2.04651 0.220171i
\(461\) −15.6722 6.49164i −0.729927 0.302346i −0.0134051 0.999910i \(-0.504267\pi\)
−0.716522 + 0.697564i \(0.754267\pi\)
\(462\) 0 0
\(463\) −21.1826 −0.984441 −0.492220 0.870471i \(-0.663815\pi\)
−0.492220 + 0.870471i \(0.663815\pi\)
\(464\) −17.3163 24.9326i −0.803889 1.15747i
\(465\) 0 0
\(466\) 1.20257 + 0.713461i 0.0557081 + 0.0330505i
\(467\) −4.30158 + 10.3849i −0.199053 + 0.480557i −0.991614 0.129236i \(-0.958747\pi\)
0.792561 + 0.609793i \(0.208747\pi\)
\(468\) 0 0
\(469\) −4.60000 + 1.90538i −0.212408 + 0.0879824i
\(470\) −22.2652 + 16.6687i −1.02702 + 0.768871i
\(471\) 0 0
\(472\) −3.66217 + 8.02131i −0.168565 + 0.369211i
\(473\) 12.7258 + 12.7258i 0.585134 + 0.585134i
\(474\) 0 0
\(475\) −22.8136 + 9.44971i −1.04676 + 0.433583i
\(476\) −2.68451 0.788035i −0.123044 0.0361195i
\(477\) 0 0
\(478\) −30.2877 + 7.73162i −1.38532 + 0.353636i
\(479\) 36.0607 1.64766 0.823828 0.566840i \(-0.191834\pi\)
0.823828 + 0.566840i \(0.191834\pi\)
\(480\) 0 0
\(481\) 0.0468509 0.00213622
\(482\) 12.4610 3.18095i 0.567583 0.144888i
\(483\) 0 0
\(484\) 3.21936 10.9670i 0.146335 0.498502i
\(485\) −38.6014 + 15.9892i −1.75280 + 0.726033i
\(486\) 0 0
\(487\) −6.99084 6.99084i −0.316785 0.316785i 0.530746 0.847531i \(-0.321912\pi\)
−0.847531 + 0.530746i \(0.821912\pi\)
\(488\) 6.73407 + 18.0488i 0.304837 + 0.817032i
\(489\) 0 0
\(490\) −25.0991 + 18.7904i −1.13386 + 0.848862i
\(491\) −6.37664 + 2.64129i −0.287774 + 0.119200i −0.521901 0.853006i \(-0.674777\pi\)
0.234127 + 0.972206i \(0.424777\pi\)
\(492\) 0 0
\(493\) 12.0847 29.1749i 0.544266 1.31397i
\(494\) 0.571655 + 0.339151i 0.0257200 + 0.0152591i
\(495\) 0 0
\(496\) 33.2655 + 21.3717i 1.49367 + 0.959619i
\(497\) 1.66063 0.0744895
\(498\) 0 0
\(499\) 7.43198 + 3.07843i 0.332701 + 0.137809i 0.542779 0.839875i \(-0.317372\pi\)
−0.210078 + 0.977685i \(0.567372\pi\)
\(500\) 0.249985 + 2.32363i 0.0111797 + 0.103916i
\(501\) 0 0
\(502\) 4.23098 3.16751i 0.188838 0.141373i
\(503\) 2.67081 + 2.67081i 0.119086 + 0.119086i 0.764138 0.645053i \(-0.223165\pi\)
−0.645053 + 0.764138i \(0.723165\pi\)
\(504\) 0 0
\(505\) 25.3196 25.3196i 1.12671 1.12671i
\(506\) −3.17178 + 22.0658i −0.141003 + 0.980946i
\(507\) 0 0
\(508\) 9.02951 + 16.5335i 0.400620 + 0.733556i
\(509\) −9.36796 + 22.6162i −0.415227 + 1.00245i 0.568484 + 0.822694i \(0.307530\pi\)
−0.983712 + 0.179753i \(0.942470\pi\)
\(510\) 0 0
\(511\) 0.677694i 0.0299794i
\(512\) −17.6141 + 14.2037i −0.778439 + 0.627720i
\(513\) 0 0
\(514\) 4.18268 1.06773i 0.184490 0.0470954i
\(515\) −28.0299 11.6104i −1.23515 0.511615i
\(516\) 0 0
\(517\) −5.37480 12.9759i −0.236384 0.570680i
\(518\) 0.215990 + 0.0310469i 0.00949008 + 0.00136412i
\(519\) 0 0
\(520\) 0.680181 0.633407i 0.0298279 0.0277767i
\(521\) −22.3821 + 22.3821i −0.980579 + 0.980579i −0.999815 0.0192357i \(-0.993877\pi\)
0.0192357 + 0.999815i \(0.493877\pi\)
\(522\) 0 0
\(523\) 2.70300 + 6.52561i 0.118194 + 0.285345i 0.971894 0.235420i \(-0.0756467\pi\)
−0.853700 + 0.520765i \(0.825647\pi\)
\(524\) 6.78051 0.729472i 0.296208 0.0318671i
\(525\) 0 0
\(526\) −4.20522 2.49487i −0.183356 0.108782i
\(527\) 41.1318i 1.79173i
\(528\) 0 0
\(529\) 24.0153i 1.04414i
\(530\) 25.9954 43.8166i 1.12917 1.90327i
\(531\) 0 0
\(532\) 2.41068 + 1.94236i 0.104516 + 0.0842121i
\(533\) 0.424230 + 1.02418i 0.0183755 + 0.0443623i
\(534\) 0 0
\(535\) −27.4416 + 27.4416i −1.18640 + 1.18640i
\(536\) −39.2475 + 14.6433i −1.69523 + 0.632496i
\(537\) 0 0
\(538\) −2.99479 + 20.8345i −0.129115 + 0.898240i
\(539\) −6.05892 14.6275i −0.260976 0.630052i
\(540\) 0 0
\(541\) −3.90965 1.61943i −0.168089 0.0696246i 0.297052 0.954861i \(-0.403996\pi\)
−0.465141 + 0.885237i \(0.653996\pi\)
\(542\) −8.41545 32.9665i −0.361474 1.41603i
\(543\) 0 0
\(544\) −22.3356 7.42956i −0.957630 0.318540i
\(545\) 30.9953i 1.32769i
\(546\) 0 0
\(547\) 6.81941 16.4635i 0.291577 0.703929i −0.708421 0.705790i \(-0.750592\pi\)
0.999998 + 0.00186067i \(0.000592269\pi\)
\(548\) 6.58345 22.4271i 0.281231 0.958039i
\(549\) 0 0
\(550\) −17.2587 2.48079i −0.735913 0.105781i
\(551\) −24.7082 + 24.7082i −1.05261 + 1.05261i
\(552\) 0 0
\(553\) 0.365556 + 0.365556i 0.0155450 + 0.0155450i
\(554\) 5.94644 + 7.94292i 0.252640 + 0.337462i
\(555\) 0 0
\(556\) −1.74779 1.40825i −0.0741227 0.0597231i
\(557\) −3.65431 1.51367i −0.154838 0.0641361i 0.303918 0.952698i \(-0.401705\pi\)
−0.458757 + 0.888562i \(0.651705\pi\)
\(558\) 0 0
\(559\) 0.799109 0.0337987
\(560\) 3.55549 2.46938i 0.150247 0.104350i
\(561\) 0 0
\(562\) −4.69159 + 7.90789i −0.197903 + 0.333574i
\(563\) −1.27091 + 3.06826i −0.0535626 + 0.129312i −0.948396 0.317089i \(-0.897294\pi\)
0.894833 + 0.446401i \(0.147294\pi\)
\(564\) 0 0
\(565\) −21.2983 + 8.82206i −0.896028 + 0.371147i
\(566\) −16.4752 22.0066i −0.692503 0.925006i
\(567\) 0 0
\(568\) 13.9627 + 0.497177i 0.585860 + 0.0208611i
\(569\) −8.04933 8.04933i −0.337446 0.337446i 0.517960 0.855405i \(-0.326692\pi\)
−0.855405 + 0.517960i \(0.826692\pi\)
\(570\) 0 0
\(571\) 24.5752 10.1794i 1.02844 0.425994i 0.196292 0.980546i \(-0.437110\pi\)
0.832150 + 0.554551i \(0.187110\pi\)
\(572\) 0.224961 + 0.411914i 0.00940607 + 0.0172230i
\(573\) 0 0
\(574\) 1.27707 + 5.00278i 0.0533041 + 0.208812i
\(575\) −36.7728 −1.53353
\(576\) 0 0
\(577\) 6.56790 0.273425 0.136713 0.990611i \(-0.456346\pi\)
0.136713 + 0.990611i \(0.456346\pi\)
\(578\) −0.110146 0.431485i −0.00458148 0.0179474i
\(579\) 0 0
\(580\) 23.4194 + 42.8821i 0.972437 + 1.78058i
\(581\) −2.40149 + 0.994728i −0.0996304 + 0.0412683i
\(582\) 0 0
\(583\) 18.1919 + 18.1919i 0.753430 + 0.753430i
\(584\) 0.202895 5.69808i 0.00839585 0.235788i
\(585\) 0 0
\(586\) 0.0277182 + 0.0370244i 0.00114503 + 0.00152946i
\(587\) 16.5921 6.87268i 0.684830 0.283666i −0.0130142 0.999915i \(-0.504143\pi\)
0.697844 + 0.716249i \(0.254143\pi\)
\(588\) 0 0
\(589\) 17.4172 42.0490i 0.717665 1.73260i
\(590\) 7.24177 12.2064i 0.298139 0.502528i
\(591\) 0 0
\(592\) 1.80676 + 0.325709i 0.0742575 + 0.0133866i
\(593\) 28.8208 1.18353 0.591765 0.806111i \(-0.298431\pi\)
0.591765 + 0.806111i \(0.298431\pi\)
\(594\) 0 0
\(595\) 4.16047 + 1.72332i 0.170563 + 0.0706494i
\(596\) −1.03034 0.830181i −0.0422045 0.0340055i
\(597\) 0 0
\(598\) 0.593219 + 0.792389i 0.0242585 + 0.0324032i
\(599\) −17.4840 17.4840i −0.714377 0.714377i 0.253071 0.967448i \(-0.418560\pi\)
−0.967448 + 0.253071i \(0.918560\pi\)
\(600\) 0 0
\(601\) 33.1960 33.1960i 1.35409 1.35409i 0.473065 0.881028i \(-0.343148\pi\)
0.881028 0.473065i \(-0.156852\pi\)
\(602\) 3.68403 + 0.529549i 0.150150 + 0.0215828i
\(603\) 0 0
\(604\) −9.15192 + 31.1768i −0.372386 + 1.26857i
\(605\) −7.04030 + 16.9968i −0.286229 + 0.691017i
\(606\) 0 0
\(607\) 15.7874i 0.640790i 0.947284 + 0.320395i \(0.103816\pi\)
−0.947284 + 0.320395i \(0.896184\pi\)
\(608\) 19.6876 + 17.0532i 0.798437 + 0.691599i
\(609\) 0 0
\(610\) −7.66936 30.0438i −0.310523 1.21644i
\(611\) −0.576160 0.238653i −0.0233090 0.00965488i
\(612\) 0 0
\(613\) −1.45651 3.51632i −0.0588278 0.142023i 0.891733 0.452563i \(-0.149490\pi\)
−0.950560 + 0.310540i \(0.899490\pi\)
\(614\) −4.73063 + 32.9106i −0.190913 + 1.32816i
\(615\) 0 0
\(616\) 0.764142 + 2.04807i 0.0307881 + 0.0825192i
\(617\) 5.98815 5.98815i 0.241074 0.241074i −0.576220 0.817294i \(-0.695473\pi\)
0.817294 + 0.576220i \(0.195473\pi\)
\(618\) 0 0
\(619\) −7.03768 16.9905i −0.282868 0.682905i 0.717032 0.697041i \(-0.245500\pi\)
−0.999900 + 0.0141358i \(0.995500\pi\)
\(620\) −49.5568 39.9295i −1.99025 1.60361i
\(621\) 0 0
\(622\) 3.67199 6.18931i 0.147233 0.248169i
\(623\) 0.916479i 0.0367179i
\(624\) 0 0
\(625\) 23.0533i 0.922132i
\(626\) −2.13450 1.26635i −0.0853117 0.0506136i
\(627\) 0 0
\(628\) 29.5131 3.17513i 1.17770 0.126701i
\(629\) 0.730862 + 1.76446i 0.0291414 + 0.0703535i
\(630\) 0 0
\(631\) −19.0530 + 19.0530i −0.758486 + 0.758486i −0.976047 0.217561i \(-0.930190\pi\)
0.217561 + 0.976047i \(0.430190\pi\)
\(632\) 2.96417 + 3.18306i 0.117908 + 0.126615i
\(633\) 0 0
\(634\) −10.6920 1.53689i −0.424635 0.0610378i
\(635\) −11.6037 28.0139i −0.460481 1.11170i
\(636\) 0 0
\(637\) −0.649495 0.269030i −0.0257339 0.0106593i
\(638\) −23.9066 + 6.10271i −0.946472 + 0.241609i
\(639\) 0 0
\(640\) 30.6341 19.6982i 1.21092 0.778638i
\(641\) 4.84179i 0.191239i 0.995418 + 0.0956197i \(0.0304833\pi\)
−0.995418 + 0.0956197i \(0.969517\pi\)
\(642\) 0 0
\(643\) −1.99669 + 4.82043i −0.0787417 + 0.190099i −0.958348 0.285603i \(-0.907806\pi\)
0.879606 + 0.475702i \(0.157806\pi\)
\(644\) 2.20975 + 4.04616i 0.0870762 + 0.159441i
\(645\) 0 0
\(646\) −3.85513 + 26.8198i −0.151678 + 1.05521i
\(647\) −23.0278 + 23.0278i −0.905316 + 0.905316i −0.995890 0.0905742i \(-0.971130\pi\)
0.0905742 + 0.995890i \(0.471130\pi\)
\(648\) 0 0
\(649\) 5.06786 + 5.06786i 0.198931 + 0.198931i
\(650\) −0.619763 + 0.463983i −0.0243091 + 0.0181989i
\(651\) 0 0
\(652\) 1.49056 + 13.8549i 0.0583747 + 0.542599i
\(653\) 25.3058 + 10.4820i 0.990294 + 0.410193i 0.818229 0.574893i \(-0.194956\pi\)
0.172065 + 0.985086i \(0.444956\pi\)
\(654\) 0 0
\(655\) −10.9768 −0.428897
\(656\) 9.23992 + 42.4460i 0.360758 + 1.65724i
\(657\) 0 0
\(658\) −2.49805 1.48204i −0.0973841 0.0577759i
\(659\) −8.74923 + 21.1225i −0.340821 + 0.822816i 0.656812 + 0.754055i \(0.271905\pi\)
−0.997633 + 0.0687611i \(0.978095\pi\)
\(660\) 0 0
\(661\) 14.1409 5.85735i 0.550017 0.227824i −0.0903280 0.995912i \(-0.528792\pi\)
0.640345 + 0.768088i \(0.278792\pi\)
\(662\) 33.2634 24.9025i 1.29282 0.967863i
\(663\) 0 0
\(664\) −20.4896 + 7.64474i −0.795151 + 0.296673i
\(665\) −3.52350 3.52350i −0.136635 0.136635i
\(666\) 0 0
\(667\) −48.0751 + 19.9133i −1.86147 + 0.771048i
\(668\) −5.20577 + 17.7339i −0.201417 + 0.686146i
\(669\) 0 0
\(670\) 65.3306 16.6771i 2.52394 0.644294i
\(671\) 15.6578 0.604464
\(672\) 0 0
\(673\) 38.4339 1.48152 0.740758 0.671772i \(-0.234466\pi\)
0.740758 + 0.671772i \(0.234466\pi\)
\(674\) 18.2846 4.66756i 0.704296 0.179788i
\(675\) 0 0
\(676\) −24.9273 7.31739i −0.958744 0.281438i
\(677\) 11.0186 4.56407i 0.423481 0.175412i −0.160757 0.986994i \(-0.551394\pi\)
0.584238 + 0.811583i \(0.301394\pi\)
\(678\) 0 0
\(679\) −3.08535 3.08535i −0.118405 0.118405i
\(680\) 34.4655 + 15.7354i 1.32169 + 0.603425i
\(681\) 0 0
\(682\) 25.7265 19.2601i 0.985120 0.737507i
\(683\) −44.4586 + 18.4153i −1.70116 + 0.704643i −0.999965 0.00832649i \(-0.997350\pi\)
−0.701195 + 0.712970i \(0.747350\pi\)
\(684\) 0 0
\(685\) −14.3971 + 34.7577i −0.550085 + 1.32802i
\(686\) −5.67822 3.36877i −0.216796 0.128620i
\(687\) 0 0
\(688\) 30.8170 + 5.55544i 1.17489 + 0.211799i
\(689\) 1.14235 0.0435199
\(690\) 0 0
\(691\) −2.14643 0.889080i −0.0816540 0.0338222i 0.341483 0.939888i \(-0.389071\pi\)
−0.423137 + 0.906066i \(0.639071\pi\)
\(692\) 6.98143 0.751086i 0.265394 0.0285520i
\(693\) 0 0
\(694\) −10.0123 + 7.49570i −0.380063 + 0.284533i
\(695\) 2.55461 + 2.55461i 0.0969017 + 0.0969017i
\(696\) 0 0
\(697\) −31.9540 + 31.9540i −1.21034 + 1.21034i
\(698\) 3.91170 27.2134i 0.148060 1.03004i
\(699\) 0 0
\(700\) −3.16468 + 1.72834i −0.119614 + 0.0653252i
\(701\) 11.0073 26.5740i 0.415740 1.00368i −0.567828 0.823147i \(-0.692216\pi\)
0.983568 0.180537i \(-0.0577837\pi\)
\(702\) 0 0
\(703\) 2.11328i 0.0797040i
\(704\) 5.81177 + 17.4491i 0.219039 + 0.657636i
\(705\) 0 0
\(706\) −41.3452 + 10.5543i −1.55605 + 0.397216i
\(707\) 3.45478 + 1.43101i 0.129930 + 0.0538189i
\(708\) 0 0
\(709\) 2.62019 + 6.32569i 0.0984031 + 0.237566i 0.965413 0.260724i \(-0.0839613\pi\)
−0.867010 + 0.498290i \(0.833961\pi\)
\(710\) −22.2595 3.19962i −0.835383 0.120079i
\(711\) 0 0
\(712\) 0.274385 7.70580i 0.0102830 0.288787i
\(713\) 47.9261 47.9261i 1.79485 1.79485i
\(714\) 0 0
\(715\) −0.289095 0.697937i −0.0108115 0.0261014i
\(716\) 5.51647 + 51.2762i 0.206160 + 1.91628i
\(717\) 0 0
\(718\) −9.02720 5.35565i −0.336892 0.199871i
\(719\) 17.1528i 0.639691i −0.947470 0.319845i \(-0.896369\pi\)
0.947470 0.319845i \(-0.103631\pi\)
\(720\) 0 0
\(721\) 3.16839i 0.117997i
\(722\) 1.58779 2.67629i 0.0590913 0.0996012i
\(723\) 0 0
\(724\) −16.5516 + 20.5423i −0.615135 + 0.763447i
\(725\) −15.5751 37.6017i −0.578445 1.39649i
\(726\) 0 0
\(727\) −7.52775 + 7.52775i −0.279189 + 0.279189i −0.832785 0.553596i \(-0.813255\pi\)
0.553596 + 0.832785i \(0.313255\pi\)
\(728\) 0.0882955 + 0.0403117i 0.00327245 + 0.00149405i
\(729\) 0 0
\(730\) −1.30574 + 9.08396i −0.0483278 + 0.336212i
\(731\) 12.4659 + 30.0954i 0.461068 + 1.11312i
\(732\) 0 0
\(733\) −7.56986 3.13554i −0.279599 0.115814i 0.238477 0.971148i \(-0.423352\pi\)
−0.518076 + 0.855334i \(0.673352\pi\)
\(734\) 10.9616 + 42.9407i 0.404600 + 1.58497i
\(735\) 0 0
\(736\) 17.3683 + 34.6819i 0.640203 + 1.27839i
\(737\) 34.0482i 1.25418i
\(738\) 0 0
\(739\) 3.52118 8.50088i 0.129529 0.312710i −0.845789 0.533518i \(-0.820870\pi\)
0.975317 + 0.220808i \(0.0708696\pi\)
\(740\) −2.83537 0.832318i −0.104230 0.0305966i
\(741\) 0 0
\(742\) 5.26641 + 0.757003i 0.193336 + 0.0277905i
\(743\) 6.66625 6.66625i 0.244561 0.244561i −0.574173 0.818734i \(-0.694676\pi\)
0.818734 + 0.574173i \(0.194676\pi\)
\(744\) 0 0
\(745\) 1.50597 + 1.50597i 0.0551745 + 0.0551745i
\(746\) −11.2479 15.0243i −0.411814 0.550078i
\(747\) 0 0
\(748\) −12.0038 + 14.8980i −0.438904 + 0.544726i
\(749\) −3.74431 1.55094i −0.136814 0.0566702i
\(750\) 0 0
\(751\) 8.17302 0.298238 0.149119 0.988819i \(-0.452356\pi\)
0.149119 + 0.988819i \(0.452356\pi\)
\(752\) −20.5600 13.2090i −0.749746 0.481681i
\(753\) 0 0
\(754\) −0.558992 + 0.942207i −0.0203573 + 0.0343132i
\(755\) 20.0140 48.3180i 0.728383 1.75847i
\(756\) 0 0
\(757\) −17.8950 + 7.41237i −0.650406 + 0.269407i −0.683395 0.730049i \(-0.739497\pi\)
0.0329891 + 0.999456i \(0.489497\pi\)
\(758\) −21.6030 28.8561i −0.784657 1.04810i
\(759\) 0 0
\(760\) −28.5709 30.6807i −1.03637 1.11290i
\(761\) 30.8536 + 30.8536i 1.11844 + 1.11844i 0.991970 + 0.126471i \(0.0403650\pi\)
0.126471 + 0.991970i \(0.459635\pi\)
\(762\) 0 0
\(763\) −2.99049 + 1.23870i −0.108263 + 0.0448441i
\(764\) 22.3957 12.2311i 0.810249 0.442505i
\(765\) 0 0
\(766\) −5.83173 22.8451i −0.210709 0.825426i
\(767\) 0.318233 0.0114907
\(768\) 0 0
\(769\) 36.0834 1.30120 0.650599 0.759421i \(-0.274518\pi\)
0.650599 + 0.759421i \(0.274518\pi\)
\(770\) −0.870272 3.40918i −0.0313624 0.122858i
\(771\) 0 0
\(772\) 22.1304 12.0862i 0.796490 0.434991i
\(773\) 14.9974 6.21213i 0.539419 0.223435i −0.0963038 0.995352i \(-0.530702\pi\)
0.635723 + 0.771917i \(0.280702\pi\)
\(774\) 0 0
\(775\) 37.4852 + 37.4852i 1.34651 + 1.34651i
\(776\) −25.0181 26.8655i −0.898096 0.964416i
\(777\) 0 0
\(778\) 1.26856 + 1.69447i 0.0454799 + 0.0607495i
\(779\) 46.1974 19.1356i 1.65519 0.685604i
\(780\) 0 0
\(781\) 4.34575 10.4916i 0.155503 0.375418i
\(782\) −20.5882 + 34.7024i −0.736233 + 1.24096i
\(783\) 0 0
\(784\) −23.1769 14.8902i −0.827747 0.531793i
\(785\) −47.7779 −1.70527
\(786\) 0 0
\(787\) 43.7262 + 18.1120i 1.55867 + 0.645623i 0.984858 0.173364i \(-0.0554636\pi\)
0.573813 + 0.818986i \(0.305464\pi\)
\(788\) 0.905733 1.12411i 0.0322654 0.0400448i
\(789\) 0 0
\(790\) −4.19567 5.60434i −0.149275 0.199393i
\(791\) −1.70234 1.70234i −0.0605284 0.0605284i
\(792\) 0 0
\(793\) 0.491611 0.491611i 0.0174576 0.0174576i
\(794\) −16.0213 2.30293i −0.568575 0.0817280i
\(795\) 0 0
\(796\) 11.5865 + 3.40119i 0.410671 + 0.120552i
\(797\) −10.6617 + 25.7396i −0.377656 + 0.911742i 0.614748 + 0.788723i \(0.289258\pi\)
−0.992404 + 0.123019i \(0.960742\pi\)
\(798\) 0 0
\(799\) 25.4218i 0.899358i
\(800\) −27.1263 + 13.5845i −0.959058 + 0.480285i
\(801\) 0 0
\(802\) −8.31553 32.5751i −0.293632 1.15027i
\(803\) −4.28155 1.77347i −0.151092 0.0625845i
\(804\) 0 0
\(805\) −2.83973 6.85571i −0.100087 0.241632i
\(806\) 0.203028 1.41245i 0.00715137 0.0497515i
\(807\) 0 0
\(808\) 28.6195 + 13.0664i 1.00683 + 0.459673i
\(809\) −7.10579 + 7.10579i −0.249826 + 0.249826i −0.820899 0.571073i \(-0.806527\pi\)
0.571073 + 0.820899i \(0.306527\pi\)
\(810\) 0 0
\(811\) −12.7431 30.7646i −0.447471 1.08029i −0.973266 0.229680i \(-0.926232\pi\)
0.525795 0.850611i \(-0.323768\pi\)
\(812\) −3.20142 + 3.97331i −0.112348 + 0.139436i
\(813\) 0 0
\(814\) 0.761379 1.28334i 0.0266863 0.0449811i
\(815\) 22.4292i 0.785662i
\(816\) 0 0
\(817\) 36.0451i 1.26106i
\(818\) 41.5799 + 24.6685i 1.45381 + 0.862514i
\(819\) 0 0
\(820\) −7.47911 69.5191i −0.261182 2.42771i
\(821\) −17.6756 42.6728i −0.616884 1.48929i −0.855303 0.518128i \(-0.826629\pi\)
0.238419 0.971162i \(-0.423371\pi\)
\(822\) 0 0
\(823\) −26.0687 + 26.0687i −0.908697 + 0.908697i −0.996167 0.0874705i \(-0.972122\pi\)
0.0874705 + 0.996167i \(0.472122\pi\)
\(824\) 0.948587 26.6400i 0.0330456 0.928048i
\(825\) 0 0
\(826\) 1.46711 + 0.210885i 0.0510472 + 0.00733762i
\(827\) −0.996651 2.40613i −0.0346569 0.0836693i 0.905603 0.424126i \(-0.139418\pi\)
−0.940260 + 0.340456i \(0.889418\pi\)
\(828\) 0 0
\(829\) 15.8506 + 6.56553i 0.550514 + 0.228030i 0.640561 0.767907i \(-0.278702\pi\)
−0.0900472 + 0.995938i \(0.528702\pi\)
\(830\) 34.1067 8.70650i 1.18386 0.302207i
\(831\) 0 0
\(832\) 0.730324 + 0.365378i 0.0253194 + 0.0126672i
\(833\) 28.6575i 0.992925i
\(834\) 0 0
\(835\) 11.3843 27.4841i 0.393970 0.951127i
\(836\) 18.5801 10.1472i 0.642605 0.350949i
\(837\) 0 0
\(838\) −1.47699 + 10.2753i −0.0510219 + 0.354955i
\(839\) 22.7964 22.7964i 0.787019 0.787019i −0.193985 0.981004i \(-0.562141\pi\)
0.981004 + 0.193985i \(0.0621414\pi\)
\(840\) 0 0
\(841\) −20.2183 20.2183i −0.697182 0.697182i
\(842\) −26.8045 + 20.0671i −0.923744 + 0.691557i
\(843\) 0 0
\(844\) −33.6564 + 3.62088i −1.15850 + 0.124636i
\(845\) 38.6325 + 16.0021i 1.32900 + 0.550489i
\(846\) 0 0
\(847\) −1.92125 −0.0660149
\(848\) 44.0536 + 7.94163i 1.51281 + 0.272717i
\(849\) 0 0
\(850\) −27.1423 16.1030i −0.930973 0.552327i
\(851\) 1.20433 2.90751i 0.0412839 0.0996681i
\(852\) 0 0
\(853\) −12.7603 + 5.28551i −0.436906 + 0.180972i −0.590285 0.807195i \(-0.700985\pi\)
0.153379 + 0.988167i \(0.450985\pi\)
\(854\) 2.59219 1.94063i 0.0887029 0.0664071i
\(855\) 0 0
\(856\) −31.0180 14.1614i −1.06017 0.484027i
\(857\) 18.2677 + 18.2677i 0.624014 + 0.624014i 0.946555 0.322542i \(-0.104537\pi\)
−0.322542 + 0.946555i \(0.604537\pi\)
\(858\) 0 0
\(859\) −11.7109 + 4.85082i −0.399572 + 0.165508i −0.573414 0.819265i \(-0.694382\pi\)
0.173843 + 0.984773i \(0.444382\pi\)
\(860\) −48.3613 14.1964i −1.64911 0.484093i
\(861\) 0 0
\(862\) −31.4017 + 8.01600i −1.06955 + 0.273026i
\(863\) 12.2378 0.416579 0.208290 0.978067i \(-0.433210\pi\)
0.208290 + 0.978067i \(0.433210\pi\)
\(864\) 0 0
\(865\) −11.3020 −0.384280
\(866\) −24.1834 + 6.17337i −0.821786 + 0.209780i
\(867\) 0 0
\(868\) 1.87199 6.37710i 0.0635395 0.216453i
\(869\) 3.26615 1.35288i 0.110797 0.0458935i
\(870\) 0 0
\(871\) 1.06902 + 1.06902i 0.0362222 + 0.0362222i
\(872\) −25.5151 + 9.51975i −0.864049 + 0.322379i
\(873\) 0 0
\(874\) 35.7420 26.7581i 1.20899 0.905107i
\(875\) 0.362933 0.150332i 0.0122694 0.00508214i
\(876\) 0 0
\(877\) 11.9105 28.7545i 0.402189 0.970971i −0.584944 0.811073i \(-0.698884\pi\)
0.987134 0.159897i \(-0.0511164\pi\)
\(878\) −19.8018 11.7480i −0.668278 0.396475i
\(879\) 0 0
\(880\) −6.29661 28.9251i −0.212259 0.975066i
\(881\) −27.8002 −0.936611 −0.468306 0.883567i \(-0.655135\pi\)
−0.468306 + 0.883567i \(0.655135\pi\)
\(882\) 0 0
\(883\) 39.6413 + 16.4200i 1.33404 + 0.552576i 0.931804 0.362962i \(-0.118235\pi\)
0.402232 + 0.915538i \(0.368235\pi\)
\(884\) 0.0908696 + 0.844642i 0.00305627 + 0.0284084i
\(885\) 0 0
\(886\) −39.7134 + 29.7313i −1.33420 + 0.998842i
\(887\) −0.491398 0.491398i −0.0164995 0.0164995i 0.698809 0.715308i \(-0.253714\pi\)
−0.715308 + 0.698809i \(0.753714\pi\)
\(888\) 0 0
\(889\) 2.23911 2.23911i 0.0750974 0.0750974i
\(890\) −1.76582 + 12.2847i −0.0591905 + 0.411784i
\(891\) 0 0
\(892\) −28.2708 51.7653i −0.946577 1.73323i
\(893\) −10.7649 + 25.9887i −0.360232 + 0.869677i
\(894\) 0 0
\(895\) 83.0093i 2.77470i
\(896\) 3.12479 + 2.16842i 0.104392 + 0.0724419i
\(897\) 0 0
\(898\) −22.3672 + 5.70974i −0.746404 + 0.190537i
\(899\) 69.3055 + 28.7073i 2.31147 + 0.957442i
\(900\) 0 0
\(901\) 17.8203 + 43.0220i 0.593681 + 1.43327i
\(902\) 34.9487 + 5.02359i 1.16366 + 0.167267i
\(903\) 0 0
\(904\) −13.8037 14.8231i −0.459105 0.493008i
\(905\) 30.0250 30.0250i 0.998065 0.998065i
\(906\) 0 0
\(907\) 0.533580 + 1.28817i 0.0177172 + 0.0427731i 0.932491 0.361194i \(-0.117631\pi\)
−0.914773 + 0.403967i \(0.867631\pi\)
\(908\) −39.8488 + 4.28707i −1.32243 + 0.142271i
\(909\) 0 0
\(910\) −0.134363 0.0797146i −0.00445408 0.00264251i
\(911\) 19.5482i 0.647661i 0.946115 + 0.323830i \(0.104971\pi\)
−0.946115 + 0.323830i \(0.895029\pi\)
\(912\) 0 0
\(913\) 17.7753i 0.588276i
\(914\) −22.6451 + 38.1695i −0.749035 + 1.26253i
\(915\) 0 0
\(916\) −8.52596 6.86965i −0.281706 0.226980i
\(917\) −0.438678 1.05906i −0.0144864 0.0349733i
\(918\) 0 0
\(919\) 13.3357 13.3357i 0.439905 0.439905i −0.452075 0.891980i \(-0.649316\pi\)
0.891980 + 0.452075i \(0.149316\pi\)
\(920\) −21.8240 58.4933i −0.719517 1.92847i
\(921\) 0 0
\(922\) −3.41328 + 23.7459i −0.112410 + 0.782030i
\(923\) −0.192961 0.465849i −0.00635139 0.0153336i
\(924\) 0 0
\(925\) 2.27409 + 0.941960i 0.0747717 + 0.0309714i
\(926\) 7.40954 + 29.0260i 0.243493 + 0.953853i
\(927\) 0 0
\(928\) −28.1073 + 32.4493i −0.922667 + 1.06520i
\(929\) 10.1690i 0.333632i −0.985988 0.166816i \(-0.946651\pi\)
0.985988 0.166816i \(-0.0533487\pi\)
\(930\) 0 0
\(931\) −12.1350 + 29.2965i −0.397709 + 0.960155i
\(932\) 0.556984 1.89742i 0.0182446 0.0621519i
\(933\) 0 0
\(934\) 15.7348 + 2.26175i 0.514859 + 0.0740068i
\(935\) 21.7753 21.7753i 0.712128 0.712128i
\(936\) 0 0
\(937\) −19.7470 19.7470i −0.645107 0.645107i 0.306699 0.951806i \(-0.400775\pi\)
−0.951806 + 0.306699i \(0.900775\pi\)
\(938\) 4.21994 + 5.63676i 0.137786 + 0.184047i
\(939\) 0 0
\(940\) 30.6289 + 24.6787i 0.999005 + 0.804931i
\(941\) 30.2481 + 12.5292i 0.986059 + 0.408439i 0.816667 0.577109i \(-0.195819\pi\)
0.169393 + 0.985549i \(0.445819\pi\)
\(942\) 0 0
\(943\) 74.4646 2.42490
\(944\) 12.2724 + 2.21237i 0.399432 + 0.0720064i
\(945\) 0 0
\(946\) 12.9864 21.8892i 0.422225 0.711681i
\(947\) −21.4716 + 51.8370i −0.697732 + 1.68448i 0.0308563 + 0.999524i \(0.490177\pi\)
−0.728589 + 0.684951i \(0.759823\pi\)
\(948\) 0 0
\(949\) −0.190110 + 0.0787463i −0.00617124 + 0.00255621i
\(950\) 20.9287 + 27.9554i 0.679018 + 0.906994i
\(951\) 0 0
\(952\) −0.140798 + 3.95416i −0.00456330 + 0.128155i
\(953\) −39.2913 39.2913i −1.27277 1.27277i −0.944628 0.328143i \(-0.893577\pi\)
−0.328143 0.944628i \(-0.606423\pi\)
\(954\) 0 0
\(955\) −37.9467 + 15.7180i −1.22793 + 0.508624i
\(956\) 21.1888 + 38.7978i 0.685296 + 1.25481i
\(957\) 0 0
\(958\) −12.6138 49.4130i −0.407533 1.59646i
\(959\) −3.92887 −0.126870
\(960\) 0 0
\(961\) −66.7092 −2.15191
\(962\) −0.0163881 0.0641984i −0.000528374 0.00206984i
\(963\) 0 0
\(964\) −8.71754 15.9623i −0.280773 0.514110i
\(965\) −37.4971 + 15.5318i −1.20708 + 0.499987i
\(966\) 0 0
\(967\) −6.93096 6.93096i −0.222885 0.222885i 0.586827 0.809712i \(-0.300377\pi\)
−0.809712 + 0.586827i \(0.800377\pi\)
\(968\) −16.1539 0.575203i −0.519208 0.0184877i
\(969\) 0 0
\(970\) 35.4121 + 47.3015i 1.13701 + 1.51876i
\(971\) 10.2938 4.26384i 0.330345 0.136833i −0.211346 0.977411i \(-0.567785\pi\)
0.541690 + 0.840578i \(0.317785\pi\)
\(972\) 0 0
\(973\) −0.144381 + 0.348567i −0.00462865 + 0.0111745i
\(974\) −7.13400 + 12.0247i −0.228588 + 0.385296i
\(975\) 0 0
\(976\) 22.3763 15.5409i 0.716247 0.497451i
\(977\) −59.9974 −1.91949 −0.959743 0.280879i \(-0.909374\pi\)
−0.959743 + 0.280879i \(0.909374\pi\)
\(978\) 0 0
\(979\) −5.79015 2.39836i −0.185054 0.0766518i
\(980\) 34.5274 + 27.8199i 1.10294 + 0.888673i
\(981\) 0 0
\(982\) 5.84979 + 7.81382i 0.186674 + 0.249349i
\(983\) 8.59392 + 8.59392i 0.274104 + 0.274104i 0.830750 0.556646i \(-0.187912\pi\)
−0.556646 + 0.830750i \(0.687912\pi\)
\(984\) 0 0
\(985\) −1.64302 + 1.64302i −0.0523511 + 0.0523511i
\(986\) −44.2047 6.35407i −1.40777 0.202355i
\(987\) 0 0
\(988\) 0.264768 0.901955i 0.00842338 0.0286950i
\(989\) 20.5416 49.5918i 0.653184 1.57693i
\(990\) 0 0
\(991\) 17.4869i 0.555488i −0.960655 0.277744i \(-0.910413\pi\)
0.960655 0.277744i \(-0.0895867\pi\)
\(992\) 17.6490 53.0585i 0.560357 1.68461i
\(993\) 0 0
\(994\) −0.580877 2.27552i −0.0184243 0.0721750i
\(995\) −17.9567 7.43792i −0.569267 0.235798i
\(996\) 0 0
\(997\) 19.1891 + 46.3265i 0.607724 + 1.46718i 0.865469 + 0.500963i \(0.167021\pi\)
−0.257745 + 0.966213i \(0.582979\pi\)
\(998\) 1.61862 11.2606i 0.0512367 0.356449i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.2.w.b.35.4 yes 32
3.2 odd 2 288.2.w.a.35.5 32
4.3 odd 2 1152.2.w.a.431.8 32
12.11 even 2 1152.2.w.b.431.1 32
32.11 odd 8 288.2.w.a.107.5 yes 32
32.21 even 8 1152.2.w.b.719.1 32
96.11 even 8 inner 288.2.w.b.107.4 yes 32
96.53 odd 8 1152.2.w.a.719.8 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.w.a.35.5 32 3.2 odd 2
288.2.w.a.107.5 yes 32 32.11 odd 8
288.2.w.b.35.4 yes 32 1.1 even 1 trivial
288.2.w.b.107.4 yes 32 96.11 even 8 inner
1152.2.w.a.431.8 32 4.3 odd 2
1152.2.w.a.719.8 32 96.53 odd 8
1152.2.w.b.431.1 32 12.11 even 2
1152.2.w.b.719.1 32 32.21 even 8