Properties

Label 288.2.w.a.35.8
Level $288$
Weight $2$
Character 288.35
Analytic conductor $2.300$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [288,2,Mod(35,288)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(288, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 3, 4])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("288.35"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 288 = 2^{5} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 288.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.29969157821\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 35.8
Character \(\chi\) \(=\) 288.35
Dual form 288.2.w.a.107.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.32473 - 0.495070i) q^{2} +(1.50981 - 1.31167i) q^{4} +(-0.0505677 + 0.0209458i) q^{5} +(1.44150 + 1.44150i) q^{7} +(1.35072 - 2.48506i) q^{8} +(-0.0566189 + 0.0527821i) q^{10} +(0.320987 - 0.132957i) q^{11} +(0.623666 - 1.50566i) q^{13} +(2.62325 + 1.19596i) q^{14} +(0.559063 - 3.96074i) q^{16} -5.65026 q^{17} +(4.13118 + 1.71119i) q^{19} +(-0.0488738 + 0.0979522i) q^{20} +(0.359398 - 0.335043i) q^{22} +(-3.03457 - 3.03457i) q^{23} +(-3.53342 + 3.53342i) q^{25} +(0.0807799 - 2.30335i) q^{26} +(4.06717 + 0.285627i) q^{28} +(-0.721807 + 1.74260i) q^{29} +5.26441i q^{31} +(-1.22024 - 5.52368i) q^{32} +(-7.48507 + 2.79728i) q^{34} +(-0.103087 - 0.0427001i) q^{35} +(-1.32038 - 3.18767i) q^{37} +(6.31986 + 0.221641i) q^{38} +(-0.0162513 + 0.153956i) q^{40} +(-6.90990 + 6.90990i) q^{41} +(3.40135 + 8.21159i) q^{43} +(0.310235 - 0.621769i) q^{44} +(-5.52231 - 2.51766i) q^{46} -3.23039i q^{47} -2.84413i q^{49} +(-2.93153 + 6.43010i) q^{50} +(-1.03331 - 3.09131i) q^{52} +(0.579972 + 1.40018i) q^{53} +(-0.0134467 + 0.0134467i) q^{55} +(5.52930 - 1.63516i) q^{56} +(-0.0934916 + 2.66581i) q^{58} +(4.21939 + 10.1865i) q^{59} +(-12.1464 - 5.03120i) q^{61} +(2.60625 + 6.97392i) q^{62} +(-4.35109 - 6.71327i) q^{64} +0.0892011i q^{65} +(3.34709 - 8.08060i) q^{67} +(-8.53083 + 7.41126i) q^{68} +(-0.157702 - 0.00553070i) q^{70} +(9.36679 - 9.36679i) q^{71} +(-1.72215 - 1.72215i) q^{73} +(-3.32726 - 3.56912i) q^{74} +(8.48182 - 2.83516i) q^{76} +(0.654363 + 0.271046i) q^{77} -15.1224 q^{79} +(0.0546904 + 0.211996i) q^{80} +(-5.73286 + 12.5746i) q^{82} +(-2.48612 + 6.00202i) q^{83} +(0.285721 - 0.118349i) q^{85} +(8.57118 + 9.19422i) q^{86} +(0.103158 - 0.977262i) q^{88} +(2.70367 + 2.70367i) q^{89} +(3.06943 - 1.27140i) q^{91} +(-8.56197 - 0.601286i) q^{92} +(-1.59927 - 4.27939i) q^{94} -0.244747 q^{95} +6.43802 q^{97} +(-1.40804 - 3.76770i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 4 q^{2} - 4 q^{8} + 8 q^{10} - 8 q^{11} + 12 q^{14} + 8 q^{16} + 32 q^{20} + 16 q^{22} - 36 q^{26} - 16 q^{29} - 24 q^{32} + 24 q^{35} + 32 q^{38} - 32 q^{40} + 8 q^{44} - 32 q^{46} + 8 q^{50} - 56 q^{52}+ \cdots - 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/288\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.32473 0.495070i 0.936725 0.350067i
\(3\) 0 0
\(4\) 1.50981 1.31167i 0.754906 0.655833i
\(5\) −0.0505677 + 0.0209458i −0.0226146 + 0.00936726i −0.393962 0.919127i \(-0.628896\pi\)
0.371347 + 0.928494i \(0.378896\pi\)
\(6\) 0 0
\(7\) 1.44150 + 1.44150i 0.544837 + 0.544837i 0.924943 0.380106i \(-0.124112\pi\)
−0.380106 + 0.924943i \(0.624112\pi\)
\(8\) 1.35072 2.48506i 0.477553 0.878603i
\(9\) 0 0
\(10\) −0.0566189 + 0.0527821i −0.0179045 + 0.0166912i
\(11\) 0.320987 0.132957i 0.0967813 0.0400881i −0.333767 0.942655i \(-0.608320\pi\)
0.430549 + 0.902567i \(0.358320\pi\)
\(12\) 0 0
\(13\) 0.623666 1.50566i 0.172974 0.417595i −0.813489 0.581580i \(-0.802435\pi\)
0.986463 + 0.163985i \(0.0524347\pi\)
\(14\) 2.62325 + 1.19596i 0.701092 + 0.319633i
\(15\) 0 0
\(16\) 0.559063 3.96074i 0.139766 0.990185i
\(17\) −5.65026 −1.37039 −0.685195 0.728360i \(-0.740283\pi\)
−0.685195 + 0.728360i \(0.740283\pi\)
\(18\) 0 0
\(19\) 4.13118 + 1.71119i 0.947758 + 0.392574i 0.802388 0.596803i \(-0.203563\pi\)
0.145370 + 0.989377i \(0.453563\pi\)
\(20\) −0.0488738 + 0.0979522i −0.0109285 + 0.0219028i
\(21\) 0 0
\(22\) 0.359398 0.335043i 0.0766239 0.0714315i
\(23\) −3.03457 3.03457i −0.632752 0.632752i 0.316006 0.948757i \(-0.397658\pi\)
−0.948757 + 0.316006i \(0.897658\pi\)
\(24\) 0 0
\(25\) −3.53342 + 3.53342i −0.706683 + 0.706683i
\(26\) 0.0807799 2.30335i 0.0158422 0.451724i
\(27\) 0 0
\(28\) 4.06717 + 0.285627i 0.768623 + 0.0539785i
\(29\) −0.721807 + 1.74260i −0.134036 + 0.323592i −0.976620 0.214973i \(-0.931034\pi\)
0.842584 + 0.538565i \(0.181034\pi\)
\(30\) 0 0
\(31\) 5.26441i 0.945516i 0.881192 + 0.472758i \(0.156742\pi\)
−0.881192 + 0.472758i \(0.843258\pi\)
\(32\) −1.22024 5.52368i −0.215709 0.976458i
\(33\) 0 0
\(34\) −7.48507 + 2.79728i −1.28368 + 0.479729i
\(35\) −0.103087 0.0427001i −0.0174249 0.00721763i
\(36\) 0 0
\(37\) −1.32038 3.18767i −0.217069 0.524050i 0.777409 0.628995i \(-0.216533\pi\)
−0.994478 + 0.104945i \(0.966533\pi\)
\(38\) 6.31986 + 0.221641i 1.02522 + 0.0359549i
\(39\) 0 0
\(40\) −0.0162513 + 0.153956i −0.00256956 + 0.0243426i
\(41\) −6.90990 + 6.90990i −1.07915 + 1.07915i −0.0825597 + 0.996586i \(0.526310\pi\)
−0.996586 + 0.0825597i \(0.973690\pi\)
\(42\) 0 0
\(43\) 3.40135 + 8.21159i 0.518701 + 1.25226i 0.938701 + 0.344731i \(0.112030\pi\)
−0.420000 + 0.907524i \(0.637970\pi\)
\(44\) 0.310235 0.621769i 0.0467696 0.0937351i
\(45\) 0 0
\(46\) −5.52231 2.51766i −0.814219 0.371208i
\(47\) 3.23039i 0.471201i −0.971850 0.235600i \(-0.924294\pi\)
0.971850 0.235600i \(-0.0757057\pi\)
\(48\) 0 0
\(49\) 2.84413i 0.406305i
\(50\) −2.93153 + 6.43010i −0.414581 + 0.909354i
\(51\) 0 0
\(52\) −1.03331 3.09131i −0.143294 0.428687i
\(53\) 0.579972 + 1.40018i 0.0796653 + 0.192329i 0.958694 0.284440i \(-0.0918077\pi\)
−0.879029 + 0.476769i \(0.841808\pi\)
\(54\) 0 0
\(55\) −0.0134467 + 0.0134467i −0.00181315 + 0.00181315i
\(56\) 5.52930 1.63516i 0.738884 0.218507i
\(57\) 0 0
\(58\) −0.0934916 + 2.66581i −0.0122760 + 0.350038i
\(59\) 4.21939 + 10.1865i 0.549317 + 1.32617i 0.917988 + 0.396609i \(0.129813\pi\)
−0.368671 + 0.929560i \(0.620187\pi\)
\(60\) 0 0
\(61\) −12.1464 5.03120i −1.55519 0.644180i −0.570942 0.820990i \(-0.693422\pi\)
−0.984245 + 0.176811i \(0.943422\pi\)
\(62\) 2.60625 + 6.97392i 0.330994 + 0.885688i
\(63\) 0 0
\(64\) −4.35109 6.71327i −0.543886 0.839159i
\(65\) 0.0892011i 0.0110640i
\(66\) 0 0
\(67\) 3.34709 8.08060i 0.408913 0.987203i −0.576512 0.817089i \(-0.695586\pi\)
0.985424 0.170114i \(-0.0544135\pi\)
\(68\) −8.53083 + 7.41126i −1.03452 + 0.898747i
\(69\) 0 0
\(70\) −0.157702 0.00553070i −0.0188490 0.000661045i
\(71\) 9.36679 9.36679i 1.11163 1.11163i 0.118704 0.992930i \(-0.462126\pi\)
0.992930 0.118704i \(-0.0378741\pi\)
\(72\) 0 0
\(73\) −1.72215 1.72215i −0.201562 0.201562i 0.599107 0.800669i \(-0.295522\pi\)
−0.800669 + 0.599107i \(0.795522\pi\)
\(74\) −3.32726 3.56912i −0.386786 0.414902i
\(75\) 0 0
\(76\) 8.48182 2.83516i 0.972932 0.325215i
\(77\) 0.654363 + 0.271046i 0.0745716 + 0.0308886i
\(78\) 0 0
\(79\) −15.1224 −1.70140 −0.850702 0.525648i \(-0.823823\pi\)
−0.850702 + 0.525648i \(0.823823\pi\)
\(80\) 0.0546904 + 0.211996i 0.00611458 + 0.0237018i
\(81\) 0 0
\(82\) −5.73286 + 12.5746i −0.633089 + 1.38864i
\(83\) −2.48612 + 6.00202i −0.272887 + 0.658807i −0.999604 0.0281294i \(-0.991045\pi\)
0.726717 + 0.686936i \(0.241045\pi\)
\(84\) 0 0
\(85\) 0.285721 0.118349i 0.0309908 0.0128368i
\(86\) 8.57118 + 9.19422i 0.924254 + 0.991438i
\(87\) 0 0
\(88\) 0.103158 0.977262i 0.0109967 0.104177i
\(89\) 2.70367 + 2.70367i 0.286588 + 0.286588i 0.835730 0.549141i \(-0.185045\pi\)
−0.549141 + 0.835730i \(0.685045\pi\)
\(90\) 0 0
\(91\) 3.06943 1.27140i 0.321764 0.133279i
\(92\) −8.56197 0.601286i −0.892647 0.0626884i
\(93\) 0 0
\(94\) −1.59927 4.27939i −0.164952 0.441385i
\(95\) −0.244747 −0.0251105
\(96\) 0 0
\(97\) 6.43802 0.653682 0.326841 0.945079i \(-0.394016\pi\)
0.326841 + 0.945079i \(0.394016\pi\)
\(98\) −1.40804 3.76770i −0.142234 0.380596i
\(99\) 0 0
\(100\) −0.700130 + 9.96945i −0.0700130 + 0.996945i
\(101\) 17.7633 7.35780i 1.76751 0.732128i 0.772206 0.635372i \(-0.219153\pi\)
0.995308 0.0967565i \(-0.0308468\pi\)
\(102\) 0 0
\(103\) 6.97813 + 6.97813i 0.687575 + 0.687575i 0.961695 0.274120i \(-0.0883866\pi\)
−0.274120 + 0.961695i \(0.588387\pi\)
\(104\) −2.89927 3.58358i −0.284296 0.351399i
\(105\) 0 0
\(106\) 1.46149 + 1.56773i 0.141952 + 0.152271i
\(107\) 13.1509 5.44730i 1.27135 0.526611i 0.357976 0.933731i \(-0.383467\pi\)
0.913375 + 0.407120i \(0.133467\pi\)
\(108\) 0 0
\(109\) 6.94514 16.7671i 0.665224 1.60599i −0.124280 0.992247i \(-0.539662\pi\)
0.789504 0.613745i \(-0.210338\pi\)
\(110\) −0.0111562 + 0.0244703i −0.00106370 + 0.00233315i
\(111\) 0 0
\(112\) 6.51531 4.90353i 0.615639 0.463340i
\(113\) −11.5862 −1.08994 −0.544969 0.838456i \(-0.683458\pi\)
−0.544969 + 0.838456i \(0.683458\pi\)
\(114\) 0 0
\(115\) 0.217013 + 0.0898897i 0.0202366 + 0.00838226i
\(116\) 1.19591 + 3.57776i 0.111038 + 0.332187i
\(117\) 0 0
\(118\) 10.6326 + 11.4055i 0.978807 + 1.04996i
\(119\) −8.14488 8.14488i −0.746640 0.746640i
\(120\) 0 0
\(121\) −7.69282 + 7.69282i −0.699347 + 0.699347i
\(122\) −18.5815 0.651663i −1.68229 0.0589988i
\(123\) 0 0
\(124\) 6.90515 + 7.94827i 0.620101 + 0.713776i
\(125\) 0.209396 0.505526i 0.0187289 0.0452156i
\(126\) 0 0
\(127\) 11.5409i 1.02409i −0.858958 0.512045i \(-0.828888\pi\)
0.858958 0.512045i \(-0.171112\pi\)
\(128\) −9.08755 6.73917i −0.803233 0.595664i
\(129\) 0 0
\(130\) 0.0441608 + 0.118167i 0.00387315 + 0.0103640i
\(131\) 1.46501 + 0.606825i 0.127998 + 0.0530186i 0.445763 0.895151i \(-0.352932\pi\)
−0.317765 + 0.948169i \(0.602932\pi\)
\(132\) 0 0
\(133\) 3.48843 + 8.42181i 0.302485 + 0.730263i
\(134\) 0.433530 12.3616i 0.0374513 1.06788i
\(135\) 0 0
\(136\) −7.63195 + 14.0413i −0.654434 + 1.20403i
\(137\) 2.76283 2.76283i 0.236044 0.236044i −0.579166 0.815210i \(-0.696622\pi\)
0.815210 + 0.579166i \(0.196622\pi\)
\(138\) 0 0
\(139\) 2.52007 + 6.08399i 0.213750 + 0.516037i 0.993994 0.109438i \(-0.0349052\pi\)
−0.780244 + 0.625475i \(0.784905\pi\)
\(140\) −0.211650 + 0.0707468i −0.0178877 + 0.00597919i
\(141\) 0 0
\(142\) 7.77124 17.0457i 0.652148 1.43044i
\(143\) 0.566219i 0.0473496i
\(144\) 0 0
\(145\) 0.103238i 0.00857345i
\(146\) −3.13396 1.42879i −0.259368 0.118248i
\(147\) 0 0
\(148\) −6.17468 3.08089i −0.507556 0.253248i
\(149\) −2.06361 4.98199i −0.169057 0.408140i 0.816531 0.577301i \(-0.195894\pi\)
−0.985588 + 0.169161i \(0.945894\pi\)
\(150\) 0 0
\(151\) 0.971232 0.971232i 0.0790378 0.0790378i −0.666483 0.745520i \(-0.732201\pi\)
0.745520 + 0.666483i \(0.232201\pi\)
\(152\) 9.83251 7.95490i 0.797522 0.645228i
\(153\) 0 0
\(154\) 1.00104 + 0.0351070i 0.0806661 + 0.00282901i
\(155\) −0.110268 0.266209i −0.00885690 0.0213824i
\(156\) 0 0
\(157\) −10.5849 4.38441i −0.844767 0.349914i −0.0820357 0.996629i \(-0.526142\pi\)
−0.762731 + 0.646715i \(0.776142\pi\)
\(158\) −20.0331 + 7.48665i −1.59375 + 0.595606i
\(159\) 0 0
\(160\) 0.177403 + 0.253761i 0.0140249 + 0.0200616i
\(161\) 8.74869i 0.689493i
\(162\) 0 0
\(163\) 7.42825 17.9334i 0.581826 1.40465i −0.309331 0.950955i \(-0.600105\pi\)
0.891156 0.453697i \(-0.149895\pi\)
\(164\) −1.36917 + 19.4961i −0.106914 + 1.52239i
\(165\) 0 0
\(166\) −0.322013 + 9.18185i −0.0249930 + 0.712649i
\(167\) 6.24060 6.24060i 0.482912 0.482912i −0.423148 0.906060i \(-0.639075\pi\)
0.906060 + 0.423148i \(0.139075\pi\)
\(168\) 0 0
\(169\) 7.31433 + 7.31433i 0.562641 + 0.562641i
\(170\) 0.319911 0.298233i 0.0245361 0.0228734i
\(171\) 0 0
\(172\) 15.9063 + 7.93651i 1.21284 + 0.605153i
\(173\) 9.66545 + 4.00356i 0.734850 + 0.304385i 0.718544 0.695482i \(-0.244809\pi\)
0.0163069 + 0.999867i \(0.494809\pi\)
\(174\) 0 0
\(175\) −10.1869 −0.770055
\(176\) −0.347157 1.34568i −0.0261679 0.101434i
\(177\) 0 0
\(178\) 4.92013 + 2.24312i 0.368779 + 0.168129i
\(179\) −3.15817 + 7.62449i −0.236053 + 0.569881i −0.996868 0.0790873i \(-0.974799\pi\)
0.760815 + 0.648969i \(0.224799\pi\)
\(180\) 0 0
\(181\) 10.2651 4.25196i 0.763002 0.316046i 0.0329681 0.999456i \(-0.489504\pi\)
0.730034 + 0.683410i \(0.239504\pi\)
\(182\) 3.43673 3.20385i 0.254748 0.237485i
\(183\) 0 0
\(184\) −11.6400 + 3.44223i −0.858110 + 0.253765i
\(185\) 0.133537 + 0.133537i 0.00981782 + 0.00981782i
\(186\) 0 0
\(187\) −1.81366 + 0.751244i −0.132628 + 0.0549364i
\(188\) −4.23719 4.87728i −0.309029 0.355712i
\(189\) 0 0
\(190\) −0.324223 + 0.121167i −0.0235216 + 0.00879036i
\(191\) −6.11953 −0.442794 −0.221397 0.975184i \(-0.571062\pi\)
−0.221397 + 0.975184i \(0.571062\pi\)
\(192\) 0 0
\(193\) 14.6513 1.05462 0.527310 0.849673i \(-0.323201\pi\)
0.527310 + 0.849673i \(0.323201\pi\)
\(194\) 8.52863 3.18727i 0.612320 0.228833i
\(195\) 0 0
\(196\) −3.73055 4.29410i −0.266468 0.306722i
\(197\) 20.1664 8.35319i 1.43680 0.595140i 0.477776 0.878482i \(-0.341443\pi\)
0.959019 + 0.283341i \(0.0914429\pi\)
\(198\) 0 0
\(199\) −1.34312 1.34312i −0.0952113 0.0952113i 0.657897 0.753108i \(-0.271446\pi\)
−0.753108 + 0.657897i \(0.771446\pi\)
\(200\) 4.00809 + 13.5534i 0.283415 + 0.958373i
\(201\) 0 0
\(202\) 19.8889 18.5412i 1.39938 1.30455i
\(203\) −3.55245 + 1.47147i −0.249333 + 0.103277i
\(204\) 0 0
\(205\) 0.204684 0.494152i 0.0142958 0.0345131i
\(206\) 12.6988 + 5.78946i 0.884766 + 0.403371i
\(207\) 0 0
\(208\) −5.61486 3.31194i −0.389321 0.229641i
\(209\) 1.55357 0.107463
\(210\) 0 0
\(211\) −14.6312 6.06043i −1.00725 0.417217i −0.182800 0.983150i \(-0.558516\pi\)
−0.824451 + 0.565933i \(0.808516\pi\)
\(212\) 2.71221 + 1.35327i 0.186275 + 0.0929431i
\(213\) 0 0
\(214\) 14.7246 13.7268i 1.00656 0.938347i
\(215\) −0.343997 0.343997i −0.0234604 0.0234604i
\(216\) 0 0
\(217\) −7.58867 + 7.58867i −0.515153 + 0.515153i
\(218\) 0.899565 25.6501i 0.0609262 1.73725i
\(219\) 0 0
\(220\) −0.00266440 + 0.0379395i −0.000179634 + 0.00255788i
\(221\) −3.52387 + 8.50739i −0.237041 + 0.572269i
\(222\) 0 0
\(223\) 0.0733906i 0.00491460i −0.999997 0.00245730i \(-0.999218\pi\)
0.999997 0.00245730i \(-0.000782183\pi\)
\(224\) 6.20343 9.72138i 0.414484 0.649537i
\(225\) 0 0
\(226\) −15.3486 + 5.73597i −1.02097 + 0.381551i
\(227\) −14.3718 5.95299i −0.953888 0.395114i −0.149198 0.988807i \(-0.547669\pi\)
−0.804691 + 0.593694i \(0.797669\pi\)
\(228\) 0 0
\(229\) 10.0229 + 24.1975i 0.662333 + 1.59901i 0.794138 + 0.607737i \(0.207923\pi\)
−0.131806 + 0.991276i \(0.542077\pi\)
\(230\) 0.331985 + 0.0116429i 0.0218904 + 0.000767710i
\(231\) 0 0
\(232\) 3.35550 + 4.14750i 0.220299 + 0.272297i
\(233\) −4.88581 + 4.88581i −0.320080 + 0.320080i −0.848798 0.528718i \(-0.822673\pi\)
0.528718 + 0.848798i \(0.322673\pi\)
\(234\) 0 0
\(235\) 0.0676632 + 0.163353i 0.00441386 + 0.0106560i
\(236\) 19.7318 + 9.84527i 1.28443 + 0.640872i
\(237\) 0 0
\(238\) −14.8220 6.75747i −0.960770 0.438022i
\(239\) 24.3341i 1.57404i 0.616928 + 0.787020i \(0.288377\pi\)
−0.616928 + 0.787020i \(0.711623\pi\)
\(240\) 0 0
\(241\) 3.20992i 0.206769i 0.994641 + 0.103384i \(0.0329672\pi\)
−0.994641 + 0.103384i \(0.967033\pi\)
\(242\) −6.38242 + 13.9994i −0.410277 + 0.899914i
\(243\) 0 0
\(244\) −24.9380 + 8.33585i −1.59649 + 0.533648i
\(245\) 0.0595727 + 0.143821i 0.00380596 + 0.00918841i
\(246\) 0 0
\(247\) 5.15295 5.15295i 0.327875 0.327875i
\(248\) 13.0824 + 7.11077i 0.830733 + 0.451534i
\(249\) 0 0
\(250\) 0.0271218 0.773350i 0.00171533 0.0489109i
\(251\) 8.63734 + 20.8524i 0.545184 + 1.31619i 0.921024 + 0.389506i \(0.127354\pi\)
−0.375840 + 0.926685i \(0.622646\pi\)
\(252\) 0 0
\(253\) −1.37753 0.570590i −0.0866043 0.0358727i
\(254\) −5.71356 15.2886i −0.358501 0.959291i
\(255\) 0 0
\(256\) −15.3749 4.42861i −0.960931 0.276788i
\(257\) 11.4338i 0.713221i −0.934253 0.356611i \(-0.883932\pi\)
0.934253 0.356611i \(-0.116068\pi\)
\(258\) 0 0
\(259\) 2.69171 6.49837i 0.167255 0.403789i
\(260\) 0.117002 + 0.134677i 0.00725616 + 0.00835230i
\(261\) 0 0
\(262\) 2.24116 + 0.0785986i 0.138459 + 0.00485584i
\(263\) −10.2028 + 10.2028i −0.629129 + 0.629129i −0.947849 0.318720i \(-0.896747\pi\)
0.318720 + 0.947849i \(0.396747\pi\)
\(264\) 0 0
\(265\) −0.0586557 0.0586557i −0.00360319 0.00360319i
\(266\) 8.79060 + 9.42959i 0.538986 + 0.578165i
\(267\) 0 0
\(268\) −5.54557 16.5905i −0.338750 1.01342i
\(269\) −24.4000 10.1068i −1.48770 0.616223i −0.516881 0.856057i \(-0.672907\pi\)
−0.970814 + 0.239834i \(0.922907\pi\)
\(270\) 0 0
\(271\) −23.0385 −1.39949 −0.699746 0.714392i \(-0.746703\pi\)
−0.699746 + 0.714392i \(0.746703\pi\)
\(272\) −3.15885 + 22.3792i −0.191534 + 1.35694i
\(273\) 0 0
\(274\) 2.29221 5.02779i 0.138477 0.303740i
\(275\) −0.664388 + 1.60397i −0.0400641 + 0.0967233i
\(276\) 0 0
\(277\) 0.872254 0.361300i 0.0524087 0.0217084i −0.356325 0.934362i \(-0.615970\pi\)
0.408734 + 0.912654i \(0.365970\pi\)
\(278\) 6.35041 + 6.81202i 0.380872 + 0.408558i
\(279\) 0 0
\(280\) −0.245355 + 0.198502i −0.0146627 + 0.0118628i
\(281\) 15.0398 + 15.0398i 0.897197 + 0.897197i 0.995187 0.0979901i \(-0.0312413\pi\)
−0.0979901 + 0.995187i \(0.531241\pi\)
\(282\) 0 0
\(283\) −25.3592 + 10.5041i −1.50745 + 0.624405i −0.975029 0.222077i \(-0.928716\pi\)
−0.532417 + 0.846482i \(0.678716\pi\)
\(284\) 1.85599 26.4282i 0.110133 1.56823i
\(285\) 0 0
\(286\) −0.280318 0.750087i −0.0165755 0.0443536i
\(287\) −19.9213 −1.17592
\(288\) 0 0
\(289\) 14.9255 0.877970
\(290\) −0.0511100 0.136762i −0.00300128 0.00803096i
\(291\) 0 0
\(292\) −4.85899 0.341235i −0.284351 0.0199693i
\(293\) −17.2872 + 7.16058i −1.00993 + 0.418326i −0.825428 0.564507i \(-0.809066\pi\)
−0.184499 + 0.982833i \(0.559066\pi\)
\(294\) 0 0
\(295\) −0.426729 0.426729i −0.0248451 0.0248451i
\(296\) −9.70503 1.02444i −0.564093 0.0595446i
\(297\) 0 0
\(298\) −5.20015 5.57815i −0.301237 0.323134i
\(299\) −6.46159 + 2.67648i −0.373684 + 0.154785i
\(300\) 0 0
\(301\) −6.93397 + 16.7401i −0.399668 + 0.964883i
\(302\) 0.805792 1.76745i 0.0463681 0.101705i
\(303\) 0 0
\(304\) 9.08718 15.4059i 0.521185 0.883587i
\(305\) 0.719598 0.0412041
\(306\) 0 0
\(307\) 0.389197 + 0.161211i 0.0222126 + 0.00920078i 0.393762 0.919212i \(-0.371173\pi\)
−0.371549 + 0.928413i \(0.621173\pi\)
\(308\) 1.34349 0.449077i 0.0765522 0.0255886i
\(309\) 0 0
\(310\) −0.277867 0.298065i −0.0157818 0.0169290i
\(311\) −3.59481 3.59481i −0.203843 0.203843i 0.597801 0.801644i \(-0.296041\pi\)
−0.801644 + 0.597801i \(0.796041\pi\)
\(312\) 0 0
\(313\) −16.1765 + 16.1765i −0.914351 + 0.914351i −0.996611 0.0822596i \(-0.973786\pi\)
0.0822596 + 0.996611i \(0.473786\pi\)
\(314\) −16.1927 0.567888i −0.913808 0.0320478i
\(315\) 0 0
\(316\) −22.8320 + 19.8356i −1.28440 + 1.11584i
\(317\) 1.85103 4.46879i 0.103964 0.250992i −0.863334 0.504632i \(-0.831628\pi\)
0.967299 + 0.253640i \(0.0816280\pi\)
\(318\) 0 0
\(319\) 0.655321i 0.0366909i
\(320\) 0.360640 + 0.248338i 0.0201604 + 0.0138825i
\(321\) 0 0
\(322\) −4.33121 11.5896i −0.241369 0.645865i
\(323\) −23.3423 9.66869i −1.29880 0.537980i
\(324\) 0 0
\(325\) 3.11646 + 7.52380i 0.172870 + 0.417345i
\(326\) 0.962139 27.4344i 0.0532880 1.51945i
\(327\) 0 0
\(328\) 7.83818 + 26.5049i 0.432791 + 1.46349i
\(329\) 4.65662 4.65662i 0.256728 0.256728i
\(330\) 0 0
\(331\) 6.31236 + 15.2394i 0.346959 + 0.837632i 0.996976 + 0.0777129i \(0.0247617\pi\)
−0.650017 + 0.759920i \(0.725238\pi\)
\(332\) 4.11908 + 12.3229i 0.226064 + 0.676305i
\(333\) 0 0
\(334\) 5.17757 11.3566i 0.283304 0.621407i
\(335\) 0.478725i 0.0261556i
\(336\) 0 0
\(337\) 13.9550i 0.760179i −0.924950 0.380089i \(-0.875893\pi\)
0.924950 0.380089i \(-0.124107\pi\)
\(338\) 13.3106 + 6.06840i 0.724001 + 0.330077i
\(339\) 0 0
\(340\) 0.276150 0.553456i 0.0149763 0.0300154i
\(341\) 0.699942 + 1.68981i 0.0379040 + 0.0915083i
\(342\) 0 0
\(343\) 14.1904 14.1904i 0.766207 0.766207i
\(344\) 25.0006 + 2.63902i 1.34794 + 0.142286i
\(345\) 0 0
\(346\) 14.7861 + 0.518558i 0.794908 + 0.0278779i
\(347\) −6.72778 16.2423i −0.361166 0.871932i −0.995130 0.0985697i \(-0.968573\pi\)
0.633964 0.773363i \(-0.281427\pi\)
\(348\) 0 0
\(349\) 18.1387 + 7.51328i 0.970940 + 0.402177i 0.811062 0.584960i \(-0.198890\pi\)
0.159878 + 0.987137i \(0.448890\pi\)
\(350\) −13.4948 + 5.04321i −0.721329 + 0.269571i
\(351\) 0 0
\(352\) −1.12609 1.61079i −0.0600210 0.0858555i
\(353\) 1.36137i 0.0724586i 0.999344 + 0.0362293i \(0.0115347\pi\)
−0.999344 + 0.0362293i \(0.988465\pi\)
\(354\) 0 0
\(355\) −0.277462 + 0.669853i −0.0147262 + 0.0355521i
\(356\) 7.62834 + 0.535720i 0.404301 + 0.0283931i
\(357\) 0 0
\(358\) −0.409060 + 11.6639i −0.0216195 + 0.616456i
\(359\) 1.43099 1.43099i 0.0755246 0.0755246i −0.668335 0.743860i \(-0.732993\pi\)
0.743860 + 0.668335i \(0.232993\pi\)
\(360\) 0 0
\(361\) 0.703464 + 0.703464i 0.0370244 + 0.0370244i
\(362\) 11.4935 10.7147i 0.604086 0.563150i
\(363\) 0 0
\(364\) 2.96661 5.94565i 0.155493 0.311637i
\(365\) 0.123157 + 0.0510132i 0.00644632 + 0.00267015i
\(366\) 0 0
\(367\) 4.44867 0.232219 0.116109 0.993236i \(-0.462958\pi\)
0.116109 + 0.993236i \(0.462958\pi\)
\(368\) −13.7157 + 10.3226i −0.714978 + 0.538104i
\(369\) 0 0
\(370\) 0.243010 + 0.110790i 0.0126335 + 0.00575970i
\(371\) −1.18233 + 2.85439i −0.0613834 + 0.148193i
\(372\) 0 0
\(373\) −15.1942 + 6.29364i −0.786726 + 0.325873i −0.739626 0.673018i \(-0.764998\pi\)
−0.0470995 + 0.998890i \(0.514998\pi\)
\(374\) −2.03069 + 1.89308i −0.105005 + 0.0978890i
\(375\) 0 0
\(376\) −8.02773 4.36337i −0.413998 0.225023i
\(377\) 2.17359 + 2.17359i 0.111946 + 0.111946i
\(378\) 0 0
\(379\) 7.31677 3.03071i 0.375837 0.155677i −0.186765 0.982405i \(-0.559800\pi\)
0.562602 + 0.826728i \(0.309800\pi\)
\(380\) −0.369522 + 0.321026i −0.0189561 + 0.0164683i
\(381\) 0 0
\(382\) −8.10671 + 3.02959i −0.414776 + 0.155007i
\(383\) 37.8805 1.93560 0.967801 0.251716i \(-0.0809948\pi\)
0.967801 + 0.251716i \(0.0809948\pi\)
\(384\) 0 0
\(385\) −0.0387669 −0.00197575
\(386\) 19.4089 7.25340i 0.987889 0.369188i
\(387\) 0 0
\(388\) 9.72020 8.44453i 0.493468 0.428706i
\(389\) −11.3365 + 4.69571i −0.574781 + 0.238082i −0.651088 0.759002i \(-0.725687\pi\)
0.0763069 + 0.997084i \(0.475687\pi\)
\(390\) 0 0
\(391\) 17.1461 + 17.1461i 0.867117 + 0.867117i
\(392\) −7.06785 3.84164i −0.356980 0.194032i
\(393\) 0 0
\(394\) 22.5796 21.0495i 1.13754 1.06046i
\(395\) 0.764706 0.316752i 0.0384765 0.0159375i
\(396\) 0 0
\(397\) 2.58068 6.23031i 0.129520 0.312690i −0.845794 0.533509i \(-0.820873\pi\)
0.975315 + 0.220819i \(0.0708730\pi\)
\(398\) −2.44421 1.11433i −0.122517 0.0558564i
\(399\) 0 0
\(400\) 12.0195 + 15.9703i 0.600977 + 0.798517i
\(401\) −0.816119 −0.0407550 −0.0203775 0.999792i \(-0.506487\pi\)
−0.0203775 + 0.999792i \(0.506487\pi\)
\(402\) 0 0
\(403\) 7.92642 + 3.28323i 0.394843 + 0.163549i
\(404\) 17.1683 34.4084i 0.854153 1.71188i
\(405\) 0 0
\(406\) −3.97755 + 3.70801i −0.197402 + 0.184025i
\(407\) −0.847648 0.847648i −0.0420164 0.0420164i
\(408\) 0 0
\(409\) 17.3208 17.3208i 0.856460 0.856460i −0.134459 0.990919i \(-0.542930\pi\)
0.990919 + 0.134459i \(0.0429297\pi\)
\(410\) 0.0265116 0.755950i 0.00130932 0.0373337i
\(411\) 0 0
\(412\) 19.6886 + 1.38268i 0.969989 + 0.0681200i
\(413\) −8.60162 + 20.7661i −0.423258 + 1.02183i
\(414\) 0 0
\(415\) 0.355582i 0.0174548i
\(416\) −9.07781 1.60767i −0.445076 0.0788223i
\(417\) 0 0
\(418\) 2.05806 0.769127i 0.100663 0.0376192i
\(419\) 11.8029 + 4.88890i 0.576607 + 0.238839i 0.651877 0.758325i \(-0.273982\pi\)
−0.0752697 + 0.997163i \(0.523982\pi\)
\(420\) 0 0
\(421\) 0.806753 + 1.94767i 0.0393187 + 0.0949238i 0.942319 0.334716i \(-0.108640\pi\)
−0.903000 + 0.429640i \(0.858640\pi\)
\(422\) −22.3827 0.784973i −1.08957 0.0382119i
\(423\) 0 0
\(424\) 4.26291 + 0.449985i 0.207025 + 0.0218532i
\(425\) 19.9647 19.9647i 0.968432 0.968432i
\(426\) 0 0
\(427\) −10.2566 24.7616i −0.496351 1.19830i
\(428\) 12.7104 25.4741i 0.614381 1.23134i
\(429\) 0 0
\(430\) −0.626005 0.285400i −0.0301887 0.0137632i
\(431\) 33.1877i 1.59860i 0.600934 + 0.799299i \(0.294795\pi\)
−0.600934 + 0.799299i \(0.705205\pi\)
\(432\) 0 0
\(433\) 14.0761i 0.676453i −0.941065 0.338227i \(-0.890173\pi\)
0.941065 0.338227i \(-0.109827\pi\)
\(434\) −6.29601 + 13.8099i −0.302218 + 0.662894i
\(435\) 0 0
\(436\) −11.5069 34.4248i −0.551082 1.64865i
\(437\) −7.34363 17.7291i −0.351293 0.848098i
\(438\) 0 0
\(439\) 1.50704 1.50704i 0.0719273 0.0719273i −0.670228 0.742155i \(-0.733804\pi\)
0.742155 + 0.670228i \(0.233804\pi\)
\(440\) 0.0152531 + 0.0515787i 0.000727164 + 0.00245892i
\(441\) 0 0
\(442\) −0.456428 + 13.0145i −0.0217100 + 0.619039i
\(443\) −10.4760 25.2913i −0.497731 1.20163i −0.950703 0.310103i \(-0.899636\pi\)
0.452972 0.891525i \(-0.350364\pi\)
\(444\) 0 0
\(445\) −0.193349 0.0800878i −0.00916562 0.00379652i
\(446\) −0.0363335 0.0972226i −0.00172044 0.00460362i
\(447\) 0 0
\(448\) 3.40510 15.9493i 0.160876 0.753535i
\(449\) 13.5428i 0.639126i −0.947565 0.319563i \(-0.896464\pi\)
0.947565 0.319563i \(-0.103536\pi\)
\(450\) 0 0
\(451\) −1.29927 + 3.13671i −0.0611802 + 0.147702i
\(452\) −17.4930 + 15.1972i −0.822800 + 0.714817i
\(453\) 0 0
\(454\) −21.9859 0.771057i −1.03185 0.0361875i
\(455\) −0.128584 + 0.128584i −0.00602810 + 0.00602810i
\(456\) 0 0
\(457\) −14.4316 14.4316i −0.675084 0.675084i 0.283800 0.958884i \(-0.408405\pi\)
−0.958884 + 0.283800i \(0.908405\pi\)
\(458\) 25.2571 + 27.0930i 1.18019 + 1.26597i
\(459\) 0 0
\(460\) 0.445554 0.148932i 0.0207741 0.00694399i
\(461\) 9.33454 + 3.86649i 0.434753 + 0.180080i 0.589316 0.807902i \(-0.299397\pi\)
−0.154564 + 0.987983i \(0.549397\pi\)
\(462\) 0 0
\(463\) 33.3750 1.55107 0.775534 0.631306i \(-0.217481\pi\)
0.775534 + 0.631306i \(0.217481\pi\)
\(464\) 6.49843 + 3.83311i 0.301682 + 0.177948i
\(465\) 0 0
\(466\) −4.05355 + 8.89118i −0.187777 + 0.411876i
\(467\) 13.5324 32.6702i 0.626207 1.51180i −0.218095 0.975928i \(-0.569984\pi\)
0.844301 0.535869i \(-0.180016\pi\)
\(468\) 0 0
\(469\) 16.4731 6.82337i 0.760656 0.315074i
\(470\) 0.170507 + 0.182901i 0.00786489 + 0.00843659i
\(471\) 0 0
\(472\) 31.0133 + 3.27371i 1.42750 + 0.150685i
\(473\) 2.18358 + 2.18358i 0.100401 + 0.100401i
\(474\) 0 0
\(475\) −20.6435 + 8.55083i −0.947190 + 0.392339i
\(476\) −22.9806 1.61387i −1.05331 0.0739716i
\(477\) 0 0
\(478\) 12.0471 + 32.2360i 0.551020 + 1.47444i
\(479\) −16.4726 −0.752653 −0.376326 0.926487i \(-0.622813\pi\)
−0.376326 + 0.926487i \(0.622813\pi\)
\(480\) 0 0
\(481\) −5.62303 −0.256388
\(482\) 1.58913 + 4.25227i 0.0723830 + 0.193685i
\(483\) 0 0
\(484\) −1.52430 + 21.7051i −0.0692862 + 0.986596i
\(485\) −0.325556 + 0.134850i −0.0147827 + 0.00612321i
\(486\) 0 0
\(487\) −3.20291 3.20291i −0.145138 0.145138i 0.630804 0.775942i \(-0.282725\pi\)
−0.775942 + 0.630804i \(0.782725\pi\)
\(488\) −28.9093 + 23.3888i −1.30866 + 1.05876i
\(489\) 0 0
\(490\) 0.150119 + 0.161032i 0.00678170 + 0.00727466i
\(491\) 36.4450 15.0960i 1.64474 0.681274i 0.647977 0.761660i \(-0.275615\pi\)
0.996764 + 0.0803853i \(0.0256151\pi\)
\(492\) 0 0
\(493\) 4.07840 9.84613i 0.183682 0.443447i
\(494\) 4.27519 9.37733i 0.192350 0.421906i
\(495\) 0 0
\(496\) 20.8510 + 2.94314i 0.936236 + 0.132151i
\(497\) 27.0045 1.21132
\(498\) 0 0
\(499\) −17.7901 7.36890i −0.796395 0.329877i −0.0528833 0.998601i \(-0.516841\pi\)
−0.743511 + 0.668723i \(0.766841\pi\)
\(500\) −0.346933 1.03791i −0.0155153 0.0464166i
\(501\) 0 0
\(502\) 21.7655 + 23.3477i 0.971443 + 1.04206i
\(503\) 24.4309 + 24.4309i 1.08932 + 1.08932i 0.995598 + 0.0937240i \(0.0298771\pi\)
0.0937240 + 0.995598i \(0.470123\pi\)
\(504\) 0 0
\(505\) −0.744134 + 0.744134i −0.0331135 + 0.0331135i
\(506\) −2.10733 0.0739053i −0.0936823 0.00328549i
\(507\) 0 0
\(508\) −15.1378 17.4246i −0.671633 0.773092i
\(509\) −0.742577 + 1.79274i −0.0329141 + 0.0794618i −0.939482 0.342599i \(-0.888693\pi\)
0.906568 + 0.422060i \(0.138693\pi\)
\(510\) 0 0
\(511\) 4.96496i 0.219637i
\(512\) −22.5600 + 1.74495i −0.997022 + 0.0771165i
\(513\) 0 0
\(514\) −5.66053 15.1467i −0.249675 0.668092i
\(515\) −0.499031 0.206705i −0.0219899 0.00910852i
\(516\) 0 0
\(517\) −0.429504 1.03691i −0.0188896 0.0456034i
\(518\) 0.348642 9.94116i 0.0153185 0.436789i
\(519\) 0 0
\(520\) 0.221670 + 0.120486i 0.00972089 + 0.00528366i
\(521\) −9.94706 + 9.94706i −0.435788 + 0.435788i −0.890592 0.454803i \(-0.849710\pi\)
0.454803 + 0.890592i \(0.349710\pi\)
\(522\) 0 0
\(523\) 12.9517 + 31.2681i 0.566338 + 1.36726i 0.904621 + 0.426216i \(0.140154\pi\)
−0.338284 + 0.941044i \(0.609846\pi\)
\(524\) 3.00783 1.00541i 0.131398 0.0439214i
\(525\) 0 0
\(526\) −8.46481 + 18.5670i −0.369083 + 0.809558i
\(527\) 29.7453i 1.29573i
\(528\) 0 0
\(529\) 4.58277i 0.199251i
\(530\) −0.106742 0.0486642i −0.00463656 0.00211384i
\(531\) 0 0
\(532\) 16.3135 + 8.13969i 0.707278 + 0.352900i
\(533\) 6.09451 + 14.7134i 0.263983 + 0.637310i
\(534\) 0 0
\(535\) −0.550915 + 0.550915i −0.0238181 + 0.0238181i
\(536\) −15.5598 19.2324i −0.672081 0.830714i
\(537\) 0 0
\(538\) −37.3270 1.30908i −1.60928 0.0564384i
\(539\) −0.378148 0.912930i −0.0162880 0.0393227i
\(540\) 0 0
\(541\) −24.6347 10.2040i −1.05913 0.438705i −0.215986 0.976396i \(-0.569296\pi\)
−0.843142 + 0.537692i \(0.819296\pi\)
\(542\) −30.5198 + 11.4057i −1.31094 + 0.489916i
\(543\) 0 0
\(544\) 6.89465 + 31.2102i 0.295606 + 1.33813i
\(545\) 0.993343i 0.0425502i
\(546\) 0 0
\(547\) −5.59032 + 13.4962i −0.239025 + 0.577057i −0.997182 0.0750145i \(-0.976100\pi\)
0.758158 + 0.652071i \(0.226100\pi\)
\(548\) 0.547442 7.79526i 0.0233856 0.332997i
\(549\) 0 0
\(550\) −0.0860544 + 2.45375i −0.00366937 + 0.104628i
\(551\) −5.96383 + 5.96383i −0.254068 + 0.254068i
\(552\) 0 0
\(553\) −21.7990 21.7990i −0.926989 0.926989i
\(554\) 0.976632 0.910451i 0.0414931 0.0386813i
\(555\) 0 0
\(556\) 11.7850 + 5.88018i 0.499795 + 0.249375i
\(557\) −32.9643 13.6543i −1.39674 0.578549i −0.447838 0.894115i \(-0.647806\pi\)
−0.948904 + 0.315565i \(0.897806\pi\)
\(558\) 0 0
\(559\) 14.4852 0.612658
\(560\) −0.226756 + 0.384429i −0.00958219 + 0.0162451i
\(561\) 0 0
\(562\) 27.3693 + 12.4779i 1.15451 + 0.526347i
\(563\) 11.6660 28.1642i 0.491663 1.18698i −0.462211 0.886770i \(-0.652944\pi\)
0.953873 0.300209i \(-0.0970564\pi\)
\(564\) 0 0
\(565\) 0.585887 0.242683i 0.0246485 0.0102097i
\(566\) −28.3937 + 26.4697i −1.19348 + 1.11260i
\(567\) 0 0
\(568\) −10.6251 35.9290i −0.445820 1.50755i
\(569\) −2.70810 2.70810i −0.113529 0.113529i 0.648060 0.761589i \(-0.275581\pi\)
−0.761589 + 0.648060i \(0.775581\pi\)
\(570\) 0 0
\(571\) 13.3976 5.54948i 0.560673 0.232238i −0.0843044 0.996440i \(-0.526867\pi\)
0.644977 + 0.764202i \(0.276867\pi\)
\(572\) −0.742691 0.854884i −0.0310534 0.0357445i
\(573\) 0 0
\(574\) −26.3903 + 9.86244i −1.10151 + 0.411650i
\(575\) 21.4448 0.894310
\(576\) 0 0
\(577\) −31.1960 −1.29871 −0.649354 0.760486i \(-0.724961\pi\)
−0.649354 + 0.760486i \(0.724961\pi\)
\(578\) 19.7722 7.38916i 0.822416 0.307348i
\(579\) 0 0
\(580\) −0.135414 0.155870i −0.00562275 0.00647214i
\(581\) −12.2357 + 5.06818i −0.507622 + 0.210264i
\(582\) 0 0
\(583\) 0.372327 + 0.372327i 0.0154202 + 0.0154202i
\(584\) −6.60578 + 1.95350i −0.273349 + 0.0808363i
\(585\) 0 0
\(586\) −19.3558 + 18.0442i −0.799582 + 0.745398i
\(587\) −20.0976 + 8.32471i −0.829518 + 0.343598i −0.756712 0.653749i \(-0.773195\pi\)
−0.0728061 + 0.997346i \(0.523195\pi\)
\(588\) 0 0
\(589\) −9.00842 + 21.7482i −0.371185 + 0.896121i
\(590\) −0.776561 0.354040i −0.0319705 0.0145756i
\(591\) 0 0
\(592\) −13.3637 + 3.44756i −0.549245 + 0.141694i
\(593\) 13.4216 0.551158 0.275579 0.961278i \(-0.411130\pi\)
0.275579 + 0.961278i \(0.411130\pi\)
\(594\) 0 0
\(595\) 0.582469 + 0.241267i 0.0238789 + 0.00989097i
\(596\) −9.65037 4.81510i −0.395294 0.197234i
\(597\) 0 0
\(598\) −7.23481 + 6.74455i −0.295853 + 0.275805i
\(599\) 18.3224 + 18.3224i 0.748635 + 0.748635i 0.974223 0.225588i \(-0.0724304\pi\)
−0.225588 + 0.974223i \(0.572430\pi\)
\(600\) 0 0
\(601\) 7.64445 7.64445i 0.311824 0.311824i −0.533792 0.845616i \(-0.679234\pi\)
0.845616 + 0.533792i \(0.179234\pi\)
\(602\) −0.898118 + 25.6089i −0.0366046 + 1.04374i
\(603\) 0 0
\(604\) 0.192445 2.74031i 0.00783049 0.111502i
\(605\) 0.227876 0.550141i 0.00926447 0.0223664i
\(606\) 0 0
\(607\) 13.1965i 0.535628i 0.963471 + 0.267814i \(0.0863013\pi\)
−0.963471 + 0.267814i \(0.913699\pi\)
\(608\) 4.41106 24.9074i 0.178892 1.01013i
\(609\) 0 0
\(610\) 0.953273 0.356251i 0.0385969 0.0144242i
\(611\) −4.86387 2.01468i −0.196771 0.0815053i
\(612\) 0 0
\(613\) −7.87596 19.0142i −0.318107 0.767978i −0.999354 0.0359251i \(-0.988562\pi\)
0.681247 0.732053i \(-0.261438\pi\)
\(614\) 0.595391 + 0.0208807i 0.0240280 + 0.000842677i
\(615\) 0 0
\(616\) 1.55743 1.26003i 0.0627507 0.0507679i
\(617\) 2.36409 2.36409i 0.0951748 0.0951748i −0.657916 0.753091i \(-0.728562\pi\)
0.753091 + 0.657916i \(0.228562\pi\)
\(618\) 0 0
\(619\) −9.55563 23.0693i −0.384073 0.927235i −0.991169 0.132606i \(-0.957665\pi\)
0.607095 0.794629i \(-0.292335\pi\)
\(620\) −0.515661 0.257292i −0.0207094 0.0103331i
\(621\) 0 0
\(622\) −6.54183 2.98247i −0.262304 0.119586i
\(623\) 7.79470i 0.312288i
\(624\) 0 0
\(625\) 24.9551i 0.998203i
\(626\) −13.4210 + 29.4380i −0.536411 + 1.17658i
\(627\) 0 0
\(628\) −21.7321 + 7.26423i −0.867205 + 0.289874i
\(629\) 7.46048 + 18.0112i 0.297469 + 0.718153i
\(630\) 0 0
\(631\) −1.69280 + 1.69280i −0.0673892 + 0.0673892i −0.739998 0.672609i \(-0.765174\pi\)
0.672609 + 0.739998i \(0.265174\pi\)
\(632\) −20.4262 + 37.5802i −0.812511 + 1.49486i
\(633\) 0 0
\(634\) 0.239754 6.83632i 0.00952183 0.271505i
\(635\) 0.241734 + 0.583598i 0.00959292 + 0.0231594i
\(636\) 0 0
\(637\) −4.28230 1.77379i −0.169671 0.0702800i
\(638\) 0.324429 + 0.868122i 0.0128443 + 0.0343693i
\(639\) 0 0
\(640\) 0.600694 + 0.150438i 0.0237445 + 0.00594660i
\(641\) 39.0060i 1.54065i 0.637654 + 0.770323i \(0.279905\pi\)
−0.637654 + 0.770323i \(0.720095\pi\)
\(642\) 0 0
\(643\) −8.76787 + 21.1675i −0.345771 + 0.834765i 0.651339 + 0.758787i \(0.274208\pi\)
−0.997110 + 0.0759778i \(0.975792\pi\)
\(644\) −11.4754 13.2089i −0.452193 0.520503i
\(645\) 0 0
\(646\) −35.7089 1.25233i −1.40495 0.0492723i
\(647\) 17.6444 17.6444i 0.693674 0.693674i −0.269364 0.963038i \(-0.586814\pi\)
0.963038 + 0.269364i \(0.0868136\pi\)
\(648\) 0 0
\(649\) 2.70874 + 2.70874i 0.106327 + 0.106327i
\(650\) 7.85327 + 8.42413i 0.308031 + 0.330421i
\(651\) 0 0
\(652\) −12.3074 36.8194i −0.481993 1.44196i
\(653\) −3.16105 1.30935i −0.123701 0.0512387i 0.319974 0.947426i \(-0.396326\pi\)
−0.443676 + 0.896187i \(0.646326\pi\)
\(654\) 0 0
\(655\) −0.0867924 −0.00339126
\(656\) 23.5053 + 31.2314i 0.917726 + 1.21938i
\(657\) 0 0
\(658\) 3.86341 8.47411i 0.150611 0.330355i
\(659\) −9.00896 + 21.7495i −0.350939 + 0.847242i 0.645565 + 0.763705i \(0.276622\pi\)
−0.996505 + 0.0835372i \(0.973378\pi\)
\(660\) 0 0
\(661\) −27.2013 + 11.2672i −1.05801 + 0.438242i −0.842744 0.538314i \(-0.819061\pi\)
−0.215265 + 0.976556i \(0.569061\pi\)
\(662\) 15.9067 + 17.0630i 0.618232 + 0.663172i
\(663\) 0 0
\(664\) 11.5573 + 14.2852i 0.448512 + 0.554375i
\(665\) −0.352804 0.352804i −0.0136811 0.0136811i
\(666\) 0 0
\(667\) 7.47840 3.09766i 0.289565 0.119942i
\(668\) 1.23655 17.6077i 0.0478434 0.681263i
\(669\) 0 0
\(670\) 0.237002 + 0.634181i 0.00915620 + 0.0245006i
\(671\) −4.56777 −0.176337
\(672\) 0 0
\(673\) −40.2867 −1.55294 −0.776469 0.630155i \(-0.782991\pi\)
−0.776469 + 0.630155i \(0.782991\pi\)
\(674\) −6.90871 18.4866i −0.266114 0.712078i
\(675\) 0 0
\(676\) 20.6372 + 1.44930i 0.793739 + 0.0557424i
\(677\) −20.8698 + 8.64457i −0.802093 + 0.332238i −0.745794 0.666176i \(-0.767930\pi\)
−0.0562986 + 0.998414i \(0.517930\pi\)
\(678\) 0 0
\(679\) 9.28043 + 9.28043i 0.356150 + 0.356150i
\(680\) 0.0918242 0.869892i 0.00352130 0.0333589i
\(681\) 0 0
\(682\) 1.76381 + 1.89202i 0.0675396 + 0.0724491i
\(683\) 13.3957 5.54867i 0.512572 0.212314i −0.111379 0.993778i \(-0.535527\pi\)
0.623950 + 0.781464i \(0.285527\pi\)
\(684\) 0 0
\(685\) −0.0818402 + 0.197580i −0.00312695 + 0.00754913i
\(686\) 11.7732 25.8236i 0.449501 0.985949i
\(687\) 0 0
\(688\) 34.4255 8.88107i 1.31246 0.338587i
\(689\) 2.46990 0.0940957
\(690\) 0 0
\(691\) 4.05430 + 1.67935i 0.154233 + 0.0638854i 0.458464 0.888713i \(-0.348400\pi\)
−0.304232 + 0.952598i \(0.598400\pi\)
\(692\) 19.8443 6.63322i 0.754369 0.252157i
\(693\) 0 0
\(694\) −16.9536 18.1859i −0.643548 0.690328i
\(695\) −0.254868 0.254868i −0.00966771 0.00966771i
\(696\) 0 0
\(697\) 39.0428 39.0428i 1.47885 1.47885i
\(698\) 27.7484 + 0.973153i 1.05029 + 0.0368344i
\(699\) 0 0
\(700\) −15.3802 + 13.3618i −0.581319 + 0.505027i
\(701\) −8.00533 + 19.3266i −0.302357 + 0.729954i 0.697553 + 0.716533i \(0.254272\pi\)
−0.999910 + 0.0134211i \(0.995728\pi\)
\(702\) 0 0
\(703\) 15.4283i 0.581888i
\(704\) −2.28922 1.57637i −0.0862783 0.0594115i
\(705\) 0 0
\(706\) 0.673975 + 1.80345i 0.0253654 + 0.0678738i
\(707\) 36.2122 + 14.9996i 1.36190 + 0.564117i
\(708\) 0 0
\(709\) −7.37340 17.8010i −0.276914 0.668529i 0.722833 0.691022i \(-0.242839\pi\)
−0.999747 + 0.0224936i \(0.992839\pi\)
\(710\) −0.0359381 + 1.02474i −0.00134873 + 0.0384577i
\(711\) 0 0
\(712\) 10.3707 3.06688i 0.388658 0.114936i
\(713\) 15.9752 15.9752i 0.598277 0.598277i
\(714\) 0 0
\(715\) 0.0118599 + 0.0286324i 0.000443536 + 0.00107079i
\(716\) 5.23255 + 15.6540i 0.195550 + 0.585018i
\(717\) 0 0
\(718\) 1.18723 2.60411i 0.0443071 0.0971845i
\(719\) 14.6223i 0.545320i −0.962110 0.272660i \(-0.912097\pi\)
0.962110 0.272660i \(-0.0879035\pi\)
\(720\) 0 0
\(721\) 20.1180i 0.749233i
\(722\) 1.28016 + 0.583635i 0.0476427 + 0.0217206i
\(723\) 0 0
\(724\) 9.92128 19.8841i 0.368722 0.738987i
\(725\) −3.60687 8.70776i −0.133956 0.323398i
\(726\) 0 0
\(727\) −20.9235 + 20.9235i −0.776011 + 0.776011i −0.979150 0.203139i \(-0.934886\pi\)
0.203139 + 0.979150i \(0.434886\pi\)
\(728\) 0.986446 9.34505i 0.0365601 0.346351i
\(729\) 0 0
\(730\) 0.188404 + 0.00660745i 0.00697316 + 0.000244553i
\(731\) −19.2185 46.3976i −0.710823 1.71608i
\(732\) 0 0
\(733\) 23.8873 + 9.89446i 0.882299 + 0.365460i 0.777388 0.629021i \(-0.216544\pi\)
0.104911 + 0.994482i \(0.466544\pi\)
\(734\) 5.89328 2.20240i 0.217525 0.0812922i
\(735\) 0 0
\(736\) −13.0591 + 20.4649i −0.481365 + 0.754345i
\(737\) 3.03879i 0.111935i
\(738\) 0 0
\(739\) −12.2087 + 29.4745i −0.449106 + 1.08424i 0.523552 + 0.851994i \(0.324607\pi\)
−0.972658 + 0.232243i \(0.925393\pi\)
\(740\) 0.376771 + 0.0264597i 0.0138504 + 0.000972679i
\(741\) 0 0
\(742\) −0.153140 + 4.36663i −0.00562195 + 0.160304i
\(743\) −6.80000 + 6.80000i −0.249468 + 0.249468i −0.820752 0.571284i \(-0.806445\pi\)
0.571284 + 0.820752i \(0.306445\pi\)
\(744\) 0 0
\(745\) 0.208704 + 0.208704i 0.00764632 + 0.00764632i
\(746\) −17.0124 + 15.8596i −0.622868 + 0.580660i
\(747\) 0 0
\(748\) −1.75291 + 3.51316i −0.0640927 + 0.128454i
\(749\) 26.8095 + 11.1048i 0.979596 + 0.405762i
\(750\) 0 0
\(751\) 44.9473 1.64015 0.820074 0.572257i \(-0.193932\pi\)
0.820074 + 0.572257i \(0.193932\pi\)
\(752\) −12.7947 1.80599i −0.466576 0.0658577i
\(753\) 0 0
\(754\) 3.95550 + 1.80334i 0.144051 + 0.0656738i
\(755\) −0.0287697 + 0.0694563i −0.00104704 + 0.00252777i
\(756\) 0 0
\(757\) −1.70690 + 0.707023i −0.0620385 + 0.0256972i −0.413487 0.910510i \(-0.635689\pi\)
0.351448 + 0.936207i \(0.385689\pi\)
\(758\) 8.19233 7.63718i 0.297559 0.277395i
\(759\) 0 0
\(760\) −0.330586 + 0.608212i −0.0119916 + 0.0220622i
\(761\) −12.7724 12.7724i −0.463001 0.463001i 0.436637 0.899638i \(-0.356169\pi\)
−0.899638 + 0.436637i \(0.856169\pi\)
\(762\) 0 0
\(763\) 34.1812 14.1583i 1.23744 0.512566i
\(764\) −9.23934 + 8.02678i −0.334267 + 0.290399i
\(765\) 0 0
\(766\) 50.1814 18.7535i 1.81313 0.677591i
\(767\) 17.9689 0.648820
\(768\) 0 0
\(769\) 19.1995 0.692350 0.346175 0.938170i \(-0.387480\pi\)
0.346175 + 0.938170i \(0.387480\pi\)
\(770\) −0.0513556 + 0.0191923i −0.00185073 + 0.000691644i
\(771\) 0 0
\(772\) 22.1206 19.2176i 0.796139 0.691655i
\(773\) −23.1310 + 9.58115i −0.831962 + 0.344610i −0.757679 0.652627i \(-0.773667\pi\)
−0.0742831 + 0.997237i \(0.523667\pi\)
\(774\) 0 0
\(775\) −18.6014 18.6014i −0.668180 0.668180i
\(776\) 8.69599 15.9989i 0.312168 0.574327i
\(777\) 0 0
\(778\) −12.6930 + 11.8329i −0.455067 + 0.424229i
\(779\) −40.3703 + 16.7219i −1.44641 + 0.599124i
\(780\) 0 0
\(781\) 1.76124 4.25200i 0.0630221 0.152149i
\(782\) 31.2025 + 14.2254i 1.11580 + 0.508700i
\(783\) 0 0
\(784\) −11.2649 1.59005i −0.402317 0.0567875i
\(785\) 0.627089 0.0223818
\(786\) 0 0
\(787\) 4.05121 + 1.67807i 0.144410 + 0.0598166i 0.453718 0.891145i \(-0.350097\pi\)
−0.309308 + 0.950962i \(0.600097\pi\)
\(788\) 19.4908 39.0633i 0.694333 1.39157i
\(789\) 0 0
\(790\) 0.856214 0.798193i 0.0304627 0.0283984i
\(791\) −16.7015 16.7015i −0.593839 0.593839i
\(792\) 0 0
\(793\) −15.1506 + 15.1506i −0.538013 + 0.538013i
\(794\) 0.334260 9.53108i 0.0118625 0.338245i
\(795\) 0 0
\(796\) −3.78958 0.266133i −0.134318 0.00943284i
\(797\) 14.5713 35.1783i 0.516144 1.24608i −0.424111 0.905610i \(-0.639413\pi\)
0.940255 0.340471i \(-0.110587\pi\)
\(798\) 0 0
\(799\) 18.2526i 0.645729i
\(800\) 23.8291 + 15.2059i 0.842484 + 0.537608i
\(801\) 0 0
\(802\) −1.08114 + 0.404036i −0.0381763 + 0.0142670i
\(803\) −0.781758 0.323815i −0.0275877 0.0114272i
\(804\) 0 0
\(805\) 0.183249 + 0.442401i 0.00645866 + 0.0155926i
\(806\) 12.1258 + 0.425259i 0.427113 + 0.0149791i
\(807\) 0 0
\(808\) 5.70872 54.0813i 0.200832 1.90257i
\(809\) −20.5126 + 20.5126i −0.721186 + 0.721186i −0.968847 0.247661i \(-0.920338\pi\)
0.247661 + 0.968847i \(0.420338\pi\)
\(810\) 0 0
\(811\) 0.939648 + 2.26851i 0.0329955 + 0.0796582i 0.939518 0.342499i \(-0.111273\pi\)
−0.906523 + 0.422157i \(0.861273\pi\)
\(812\) −3.43345 + 6.88127i −0.120490 + 0.241485i
\(813\) 0 0
\(814\) −1.54255 0.703259i −0.0540663 0.0246492i
\(815\) 1.06244i 0.0372157i
\(816\) 0 0
\(817\) 39.7439i 1.39046i
\(818\) 14.3704 31.5204i 0.502448 1.10209i
\(819\) 0 0
\(820\) −0.339127 1.01455i −0.0118428 0.0354298i
\(821\) −10.2442 24.7317i −0.357526 0.863143i −0.995647 0.0932071i \(-0.970288\pi\)
0.638121 0.769936i \(-0.279712\pi\)
\(822\) 0 0
\(823\) 8.04412 8.04412i 0.280400 0.280400i −0.552868 0.833269i \(-0.686467\pi\)
0.833269 + 0.552868i \(0.186467\pi\)
\(824\) 26.7666 7.91557i 0.932459 0.275752i
\(825\) 0 0
\(826\) −1.11412 + 31.7679i −0.0387651 + 1.10535i
\(827\) 14.8516 + 35.8550i 0.516441 + 1.24680i 0.940076 + 0.340966i \(0.110754\pi\)
−0.423634 + 0.905833i \(0.639246\pi\)
\(828\) 0 0
\(829\) 48.7703 + 20.2013i 1.69386 + 0.701620i 0.999832 0.0183260i \(-0.00583367\pi\)
0.694030 + 0.719946i \(0.255834\pi\)
\(830\) −0.176038 0.471050i −0.00611037 0.0163504i
\(831\) 0 0
\(832\) −12.8215 + 2.36443i −0.444507 + 0.0819718i
\(833\) 16.0701i 0.556796i
\(834\) 0 0
\(835\) −0.184858 + 0.446287i −0.00639728 + 0.0154444i
\(836\) 2.34560 2.03777i 0.0811243 0.0704777i
\(837\) 0 0
\(838\) 18.0559 + 0.633232i 0.623732 + 0.0218746i
\(839\) −36.5267 + 36.5267i −1.26104 + 1.26104i −0.310451 + 0.950589i \(0.600480\pi\)
−0.950589 + 0.310451i \(0.899520\pi\)
\(840\) 0 0
\(841\) 17.9905 + 17.9905i 0.620361 + 0.620361i
\(842\) 2.03296 + 2.18074i 0.0700606 + 0.0751533i
\(843\) 0 0
\(844\) −30.0396 + 10.0411i −1.03400 + 0.345629i
\(845\) −0.523074 0.216664i −0.0179943 0.00745348i
\(846\) 0 0
\(847\) −22.1785 −0.762061
\(848\) 5.86997 1.51433i 0.201576 0.0520023i
\(849\) 0 0
\(850\) 16.5639 36.3318i 0.568138 1.24617i
\(851\) −5.66643 + 13.6800i −0.194243 + 0.468944i
\(852\) 0 0
\(853\) 8.47051 3.50860i 0.290025 0.120132i −0.232928 0.972494i \(-0.574831\pi\)
0.522952 + 0.852362i \(0.324831\pi\)
\(854\) −25.8459 27.7247i −0.884429 0.948718i
\(855\) 0 0
\(856\) 4.22642 40.0388i 0.144456 1.36850i
\(857\) −30.1040 30.1040i −1.02833 1.02833i −0.999587 0.0287458i \(-0.990849\pi\)
−0.0287458 0.999587i \(-0.509151\pi\)
\(858\) 0 0
\(859\) −25.2414 + 10.4553i −0.861225 + 0.356731i −0.769186 0.639025i \(-0.779338\pi\)
−0.0920383 + 0.995755i \(0.529338\pi\)
\(860\) −0.970580 0.0681615i −0.0330965 0.00232429i
\(861\) 0 0
\(862\) 16.4302 + 43.9647i 0.559616 + 1.49745i
\(863\) −37.4443 −1.27462 −0.637309 0.770608i \(-0.719952\pi\)
−0.637309 + 0.770608i \(0.719952\pi\)
\(864\) 0 0
\(865\) −0.572618 −0.0194696
\(866\) −6.96864 18.6470i −0.236804 0.633650i
\(867\) 0 0
\(868\) −1.50366 + 21.4113i −0.0510376 + 0.726746i
\(869\) −4.85410 + 2.01063i −0.164664 + 0.0682061i
\(870\) 0 0
\(871\) −10.0792 10.0792i −0.341520 0.341520i
\(872\) −32.2862 39.9068i −1.09335 1.35141i
\(873\) 0 0
\(874\) −18.5055 19.8506i −0.625956 0.671457i
\(875\) 1.03056 0.426873i 0.0348394 0.0144309i
\(876\) 0 0
\(877\) −9.67707 + 23.3625i −0.326772 + 0.788896i 0.672057 + 0.740500i \(0.265411\pi\)
−0.998828 + 0.0483966i \(0.984589\pi\)
\(878\) 1.25033 2.74252i 0.0421967 0.0925555i
\(879\) 0 0
\(880\) 0.0457413 + 0.0607764i 0.00154194 + 0.00204877i
\(881\) −21.5129 −0.724789 −0.362394 0.932025i \(-0.618041\pi\)
−0.362394 + 0.932025i \(0.618041\pi\)
\(882\) 0 0
\(883\) 43.7878 + 18.1375i 1.47358 + 0.610376i 0.967672 0.252213i \(-0.0811584\pi\)
0.505906 + 0.862589i \(0.331158\pi\)
\(884\) 5.83846 + 17.4667i 0.196369 + 0.587469i
\(885\) 0 0
\(886\) −26.3989 28.3178i −0.886887 0.951355i
\(887\) −0.105277 0.105277i −0.00353486 0.00353486i 0.705337 0.708872i \(-0.250796\pi\)
−0.708872 + 0.705337i \(0.750796\pi\)
\(888\) 0 0
\(889\) 16.6363 16.6363i 0.557963 0.557963i
\(890\) −0.295784 0.0103733i −0.00991470 0.000347714i
\(891\) 0 0
\(892\) −0.0962640 0.110806i −0.00322316 0.00371006i
\(893\) 5.52782 13.3453i 0.184981 0.446584i
\(894\) 0 0
\(895\) 0.451704i 0.0150988i
\(896\) −3.38519 22.8143i −0.113091 0.762172i
\(897\) 0 0
\(898\) −6.70465 17.9406i −0.223737 0.598685i
\(899\) −9.17374 3.79989i −0.305961 0.126733i
\(900\) 0 0
\(901\) −3.27699 7.91136i −0.109173 0.263566i
\(902\) −0.168287 + 4.79852i −0.00560334 + 0.159773i
\(903\) 0 0
\(904\) −15.6498 + 28.7924i −0.520503 + 0.957622i
\(905\) −0.430024 + 0.430024i −0.0142945 + 0.0142945i
\(906\) 0 0
\(907\) −8.71193 21.0325i −0.289275 0.698371i 0.710712 0.703483i \(-0.248373\pi\)
−0.999987 + 0.00511165i \(0.998373\pi\)
\(908\) −29.5070 + 9.86309i −0.979225 + 0.327318i
\(909\) 0 0
\(910\) −0.106681 + 0.233996i −0.00353643 + 0.00775691i
\(911\) 45.6074i 1.51104i −0.655125 0.755521i \(-0.727384\pi\)
0.655125 0.755521i \(-0.272616\pi\)
\(912\) 0 0
\(913\) 2.25712i 0.0746997i
\(914\) −26.2627 11.9733i −0.868692 0.396043i
\(915\) 0 0
\(916\) 46.8717 + 23.3869i 1.54868 + 0.772724i
\(917\) 1.23707 + 2.98655i 0.0408517 + 0.0986246i
\(918\) 0 0
\(919\) −24.4249 + 24.4249i −0.805703 + 0.805703i −0.983980 0.178277i \(-0.942948\pi\)
0.178277 + 0.983980i \(0.442948\pi\)
\(920\) 0.516506 0.417875i 0.0170287 0.0137769i
\(921\) 0 0
\(922\) 14.2799 + 0.500805i 0.470284 + 0.0164931i
\(923\) −8.26148 19.9450i −0.271930 0.656497i
\(924\) 0 0
\(925\) 15.9288 + 6.59793i 0.523736 + 0.216938i
\(926\) 44.2128 16.5229i 1.45292 0.542978i
\(927\) 0 0
\(928\) 10.5063 + 1.86065i 0.344887 + 0.0610789i
\(929\) 14.0133i 0.459760i 0.973219 + 0.229880i \(0.0738334\pi\)
−0.973219 + 0.229880i \(0.926167\pi\)
\(930\) 0 0
\(931\) 4.86686 11.7496i 0.159505 0.385079i
\(932\) −0.968101 + 13.7852i −0.0317112 + 0.451549i
\(933\) 0 0
\(934\) 1.75278 49.9786i 0.0573527 1.63535i
\(935\) 0.0759774 0.0759774i 0.00248473 0.00248473i
\(936\) 0 0
\(937\) 13.8787 + 13.8787i 0.453398 + 0.453398i 0.896481 0.443083i \(-0.146115\pi\)
−0.443083 + 0.896481i \(0.646115\pi\)
\(938\) 18.4443 17.1944i 0.602228 0.561418i
\(939\) 0 0
\(940\) 0.316424 + 0.157881i 0.0103206 + 0.00514952i
\(941\) −3.58022 1.48297i −0.116712 0.0483436i 0.323563 0.946206i \(-0.395119\pi\)
−0.440275 + 0.897863i \(0.645119\pi\)
\(942\) 0 0
\(943\) 41.9372 1.36566
\(944\) 42.7050 11.0170i 1.38993 0.358572i
\(945\) 0 0
\(946\) 3.97368 + 1.81163i 0.129195 + 0.0589011i
\(947\) 1.90171 4.59114i 0.0617974 0.149192i −0.889964 0.456030i \(-0.849271\pi\)
0.951762 + 0.306838i \(0.0992710\pi\)
\(948\) 0 0
\(949\) −3.66701 + 1.51893i −0.119036 + 0.0493064i
\(950\) −23.1138 + 21.5475i −0.749911 + 0.699094i
\(951\) 0 0
\(952\) −31.2420 + 9.23906i −1.01256 + 0.299440i
\(953\) 16.0973 + 16.0973i 0.521441 + 0.521441i 0.918007 0.396565i \(-0.129798\pi\)
−0.396565 + 0.918007i \(0.629798\pi\)
\(954\) 0 0
\(955\) 0.309451 0.128179i 0.0100136 0.00414776i
\(956\) 31.9182 + 36.7399i 1.03231 + 1.18825i
\(957\) 0 0
\(958\) −21.8217 + 8.15509i −0.705028 + 0.263479i
\(959\) 7.96526 0.257212
\(960\) 0 0
\(961\) 3.28596 0.105999
\(962\) −7.44899 + 2.78379i −0.240165 + 0.0897530i
\(963\) 0 0
\(964\) 4.21034 + 4.84637i 0.135606 + 0.156091i
\(965\) −0.740881 + 0.306883i −0.0238498 + 0.00987891i
\(966\) 0 0
\(967\) −13.6682 13.6682i −0.439540 0.439540i 0.452317 0.891857i \(-0.350597\pi\)
−0.891857 + 0.452317i \(0.850597\pi\)
\(968\) 8.72627 + 29.5080i 0.280473 + 0.948424i
\(969\) 0 0
\(970\) −0.364513 + 0.339812i −0.0117038 + 0.0109107i
\(971\) −35.7127 + 14.7927i −1.14608 + 0.474720i −0.873216 0.487333i \(-0.837970\pi\)
−0.272860 + 0.962054i \(0.587970\pi\)
\(972\) 0 0
\(973\) −5.13740 + 12.4028i −0.164698 + 0.397615i
\(974\) −5.82865 2.65732i −0.186762 0.0851462i
\(975\) 0 0
\(976\) −26.7179 + 45.2960i −0.855219 + 1.44989i
\(977\) −3.99623 −0.127851 −0.0639254 0.997955i \(-0.520362\pi\)
−0.0639254 + 0.997955i \(0.520362\pi\)
\(978\) 0 0
\(979\) 1.22732 + 0.508371i 0.0392252 + 0.0162476i
\(980\) 0.278589 + 0.139004i 0.00889920 + 0.00444031i
\(981\) 0 0
\(982\) 40.8062 38.0410i 1.30218 1.21394i
\(983\) −5.05054 5.05054i −0.161087 0.161087i 0.621961 0.783048i \(-0.286336\pi\)
−0.783048 + 0.621961i \(0.786336\pi\)
\(984\) 0 0
\(985\) −0.844804 + 0.844804i −0.0269177 + 0.0269177i
\(986\) 0.528252 15.0625i 0.0168230 0.479689i
\(987\) 0 0
\(988\) 1.02103 14.5389i 0.0324834 0.462545i
\(989\) 14.5970 35.2403i 0.464158 1.12058i
\(990\) 0 0
\(991\) 45.1460i 1.43411i 0.697017 + 0.717055i \(0.254510\pi\)
−0.697017 + 0.717055i \(0.745490\pi\)
\(992\) 29.0789 6.42382i 0.923257 0.203957i
\(993\) 0 0
\(994\) 35.7737 13.3691i 1.13467 0.424043i
\(995\) 0.0960513 + 0.0397858i 0.00304503 + 0.00126129i
\(996\) 0 0
\(997\) −17.6186 42.5351i −0.557987 1.34710i −0.911357 0.411616i \(-0.864964\pi\)
0.353370 0.935484i \(-0.385036\pi\)
\(998\) −27.2152 0.954453i −0.861482 0.0302127i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 288.2.w.a.35.8 32
3.2 odd 2 288.2.w.b.35.1 yes 32
4.3 odd 2 1152.2.w.b.431.5 32
12.11 even 2 1152.2.w.a.431.4 32
32.11 odd 8 288.2.w.b.107.1 yes 32
32.21 even 8 1152.2.w.a.719.4 32
96.11 even 8 inner 288.2.w.a.107.8 yes 32
96.53 odd 8 1152.2.w.b.719.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
288.2.w.a.35.8 32 1.1 even 1 trivial
288.2.w.a.107.8 yes 32 96.11 even 8 inner
288.2.w.b.35.1 yes 32 3.2 odd 2
288.2.w.b.107.1 yes 32 32.11 odd 8
1152.2.w.a.431.4 32 12.11 even 2
1152.2.w.a.719.4 32 32.21 even 8
1152.2.w.b.431.5 32 4.3 odd 2
1152.2.w.b.719.5 32 96.53 odd 8