L(s) = 1 | + (1.32 − 0.495i)2-s + (1.50 − 1.31i)4-s + (−0.0505 + 0.0209i)5-s + (1.44 + 1.44i)7-s + (1.35 − 2.48i)8-s + (−0.0566 + 0.0527i)10-s + (0.320 − 0.132i)11-s + (0.623 − 1.50i)13-s + (2.62 + 1.19i)14-s + (0.559 − 3.96i)16-s − 5.65·17-s + (4.13 + 1.71i)19-s + (−0.0488 + 0.0979i)20-s + (0.359 − 0.335i)22-s + (−3.03 − 3.03i)23-s + ⋯ |
L(s) = 1 | + (0.936 − 0.350i)2-s + (0.754 − 0.655i)4-s + (−0.0226 + 0.00936i)5-s + (0.544 + 0.544i)7-s + (0.477 − 0.878i)8-s + (−0.0179 + 0.0166i)10-s + (0.0967 − 0.0400i)11-s + (0.172 − 0.417i)13-s + (0.701 + 0.319i)14-s + (0.139 − 0.990i)16-s − 1.37·17-s + (0.947 + 0.392i)19-s + (−0.0109 + 0.0219i)20-s + (0.0766 − 0.0714i)22-s + (−0.632 − 0.632i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.828 + 0.560i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.828 + 0.560i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.14959 - 0.658372i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.14959 - 0.658372i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.32 + 0.495i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (0.0505 - 0.0209i)T + (3.53 - 3.53i)T^{2} \) |
| 7 | \( 1 + (-1.44 - 1.44i)T + 7iT^{2} \) |
| 11 | \( 1 + (-0.320 + 0.132i)T + (7.77 - 7.77i)T^{2} \) |
| 13 | \( 1 + (-0.623 + 1.50i)T + (-9.19 - 9.19i)T^{2} \) |
| 17 | \( 1 + 5.65T + 17T^{2} \) |
| 19 | \( 1 + (-4.13 - 1.71i)T + (13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (3.03 + 3.03i)T + 23iT^{2} \) |
| 29 | \( 1 + (0.721 - 1.74i)T + (-20.5 - 20.5i)T^{2} \) |
| 31 | \( 1 - 5.26iT - 31T^{2} \) |
| 37 | \( 1 + (1.32 + 3.18i)T + (-26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (6.90 - 6.90i)T - 41iT^{2} \) |
| 43 | \( 1 + (-3.40 - 8.21i)T + (-30.4 + 30.4i)T^{2} \) |
| 47 | \( 1 + 3.23iT - 47T^{2} \) |
| 53 | \( 1 + (-0.579 - 1.40i)T + (-37.4 + 37.4i)T^{2} \) |
| 59 | \( 1 + (-4.21 - 10.1i)T + (-41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (12.1 + 5.03i)T + (43.1 + 43.1i)T^{2} \) |
| 67 | \( 1 + (-3.34 + 8.08i)T + (-47.3 - 47.3i)T^{2} \) |
| 71 | \( 1 + (-9.36 + 9.36i)T - 71iT^{2} \) |
| 73 | \( 1 + (1.72 + 1.72i)T + 73iT^{2} \) |
| 79 | \( 1 + 15.1T + 79T^{2} \) |
| 83 | \( 1 + (2.48 - 6.00i)T + (-58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (-2.70 - 2.70i)T + 89iT^{2} \) |
| 97 | \( 1 - 6.43T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.74928543251863980210446703277, −11.08155340079458619656078389221, −10.09385523145933526691525670319, −8.938793591466452111142609977805, −7.73572320366385130897426004141, −6.53092851978588684422930913318, −5.52063008292216960469365057585, −4.54951259891708036690661612557, −3.22865220335088559499025695689, −1.82157261334651645957301201489,
2.11621120399023762186348735593, 3.79161127657144757478803142742, 4.65412283985516287837187408652, 5.85301526674987305020865606462, 6.94447880369733685176265822566, 7.76465207477052095374602157325, 8.859140276402610156596972974942, 10.22205495969846847122481904483, 11.37583191114663907638523444140, 11.76846876366269955145822089058