Properties

Label 2816.2.c.t.1409.1
Level $2816$
Weight $2$
Character 2816.1409
Analytic conductor $22.486$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2816,2,Mod(1409,2816)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2816.1409"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2816, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2816 = 2^{8} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2816.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-6,0,0,0,0,0,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(15)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(22.4858732092\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 352)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1409.1
Root \(-2.56155i\) of defining polynomial
Character \(\chi\) \(=\) 2816.1409
Dual form 2816.2.c.t.1409.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.56155i q^{3} +0.561553i q^{5} -3.56155 q^{9} +1.00000i q^{11} +2.00000i q^{13} +1.43845 q^{15} +7.12311 q^{17} +1.12311i q^{19} -7.68466 q^{23} +4.68466 q^{25} +1.43845i q^{27} +7.12311i q^{29} +5.43845 q^{31} +2.56155 q^{33} +5.68466i q^{37} +5.12311 q^{39} +8.24621 q^{41} -1.12311i q^{43} -2.00000i q^{45} +4.00000 q^{47} -7.00000 q^{49} -18.2462i q^{51} -8.24621i q^{53} -0.561553 q^{55} +2.87689 q^{57} -0.315342i q^{59} +9.36932i q^{61} -1.12311 q^{65} -7.68466i q^{67} +19.6847i q^{69} +15.6847 q^{71} +6.00000 q^{73} -12.0000i q^{75} +13.1231 q^{79} -7.00000 q^{81} +11.3693i q^{83} +4.00000i q^{85} +18.2462 q^{87} -0.561553 q^{89} -13.9309i q^{93} -0.630683 q^{95} +5.68466 q^{97} -3.56155i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{9} + 14 q^{15} + 12 q^{17} - 6 q^{23} - 6 q^{25} + 30 q^{31} + 2 q^{33} + 4 q^{39} + 16 q^{47} - 28 q^{49} + 6 q^{55} + 28 q^{57} + 12 q^{65} + 38 q^{71} + 24 q^{73} + 36 q^{79} - 28 q^{81} + 40 q^{87}+ \cdots - 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2816\mathbb{Z}\right)^\times\).

\(n\) \(1025\) \(1541\) \(2047\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 2.56155i − 1.47891i −0.673204 0.739457i \(-0.735083\pi\)
0.673204 0.739457i \(-0.264917\pi\)
\(4\) 0 0
\(5\) 0.561553i 0.251134i 0.992085 + 0.125567i \(0.0400750\pi\)
−0.992085 + 0.125567i \(0.959925\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −3.56155 −1.18718
\(10\) 0 0
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) 0 0
\(15\) 1.43845 0.371405
\(16\) 0 0
\(17\) 7.12311 1.72761 0.863803 0.503829i \(-0.168076\pi\)
0.863803 + 0.503829i \(0.168076\pi\)
\(18\) 0 0
\(19\) 1.12311i 0.257658i 0.991667 + 0.128829i \(0.0411218\pi\)
−0.991667 + 0.128829i \(0.958878\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.68466 −1.60236 −0.801181 0.598422i \(-0.795795\pi\)
−0.801181 + 0.598422i \(0.795795\pi\)
\(24\) 0 0
\(25\) 4.68466 0.936932
\(26\) 0 0
\(27\) 1.43845i 0.276829i
\(28\) 0 0
\(29\) 7.12311i 1.32273i 0.750065 + 0.661364i \(0.230022\pi\)
−0.750065 + 0.661364i \(0.769978\pi\)
\(30\) 0 0
\(31\) 5.43845 0.976774 0.488387 0.872627i \(-0.337585\pi\)
0.488387 + 0.872627i \(0.337585\pi\)
\(32\) 0 0
\(33\) 2.56155 0.445909
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5.68466i 0.934552i 0.884111 + 0.467276i \(0.154765\pi\)
−0.884111 + 0.467276i \(0.845235\pi\)
\(38\) 0 0
\(39\) 5.12311 0.820353
\(40\) 0 0
\(41\) 8.24621 1.28784 0.643921 0.765092i \(-0.277307\pi\)
0.643921 + 0.765092i \(0.277307\pi\)
\(42\) 0 0
\(43\) − 1.12311i − 0.171272i −0.996326 0.0856360i \(-0.972708\pi\)
0.996326 0.0856360i \(-0.0272922\pi\)
\(44\) 0 0
\(45\) − 2.00000i − 0.298142i
\(46\) 0 0
\(47\) 4.00000 0.583460 0.291730 0.956501i \(-0.405769\pi\)
0.291730 + 0.956501i \(0.405769\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 0 0
\(51\) − 18.2462i − 2.55498i
\(52\) 0 0
\(53\) − 8.24621i − 1.13270i −0.824163 0.566352i \(-0.808354\pi\)
0.824163 0.566352i \(-0.191646\pi\)
\(54\) 0 0
\(55\) −0.561553 −0.0757198
\(56\) 0 0
\(57\) 2.87689 0.381054
\(58\) 0 0
\(59\) − 0.315342i − 0.0410540i −0.999789 0.0205270i \(-0.993466\pi\)
0.999789 0.0205270i \(-0.00653440\pi\)
\(60\) 0 0
\(61\) 9.36932i 1.19962i 0.800143 + 0.599809i \(0.204757\pi\)
−0.800143 + 0.599809i \(0.795243\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.12311 −0.139304
\(66\) 0 0
\(67\) − 7.68466i − 0.938830i −0.882978 0.469415i \(-0.844465\pi\)
0.882978 0.469415i \(-0.155535\pi\)
\(68\) 0 0
\(69\) 19.6847i 2.36975i
\(70\) 0 0
\(71\) 15.6847 1.86143 0.930713 0.365750i \(-0.119187\pi\)
0.930713 + 0.365750i \(0.119187\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) − 12.0000i − 1.38564i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 13.1231 1.47646 0.738232 0.674546i \(-0.235661\pi\)
0.738232 + 0.674546i \(0.235661\pi\)
\(80\) 0 0
\(81\) −7.00000 −0.777778
\(82\) 0 0
\(83\) 11.3693i 1.24794i 0.781446 + 0.623972i \(0.214482\pi\)
−0.781446 + 0.623972i \(0.785518\pi\)
\(84\) 0 0
\(85\) 4.00000i 0.433861i
\(86\) 0 0
\(87\) 18.2462 1.95620
\(88\) 0 0
\(89\) −0.561553 −0.0595245 −0.0297622 0.999557i \(-0.509475\pi\)
−0.0297622 + 0.999557i \(0.509475\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 13.9309i − 1.44456i
\(94\) 0 0
\(95\) −0.630683 −0.0647067
\(96\) 0 0
\(97\) 5.68466 0.577190 0.288595 0.957451i \(-0.406812\pi\)
0.288595 + 0.957451i \(0.406812\pi\)
\(98\) 0 0
\(99\) − 3.56155i − 0.357950i
\(100\) 0 0
\(101\) − 4.87689i − 0.485269i −0.970118 0.242635i \(-0.921988\pi\)
0.970118 0.242635i \(-0.0780116\pi\)
\(102\) 0 0
\(103\) −14.2462 −1.40372 −0.701860 0.712314i \(-0.747647\pi\)
−0.701860 + 0.712314i \(0.747647\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 12.0000i − 1.16008i −0.814587 0.580042i \(-0.803036\pi\)
0.814587 0.580042i \(-0.196964\pi\)
\(108\) 0 0
\(109\) − 14.0000i − 1.34096i −0.741929 0.670478i \(-0.766089\pi\)
0.741929 0.670478i \(-0.233911\pi\)
\(110\) 0 0
\(111\) 14.5616 1.38212
\(112\) 0 0
\(113\) 11.4384 1.07604 0.538019 0.842933i \(-0.319173\pi\)
0.538019 + 0.842933i \(0.319173\pi\)
\(114\) 0 0
\(115\) − 4.31534i − 0.402408i
\(116\) 0 0
\(117\) − 7.12311i − 0.658531i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) 0 0
\(123\) − 21.1231i − 1.90461i
\(124\) 0 0
\(125\) 5.43845i 0.486430i
\(126\) 0 0
\(127\) −15.3693 −1.36381 −0.681903 0.731442i \(-0.738847\pi\)
−0.681903 + 0.731442i \(0.738847\pi\)
\(128\) 0 0
\(129\) −2.87689 −0.253296
\(130\) 0 0
\(131\) − 4.00000i − 0.349482i −0.984614 0.174741i \(-0.944091\pi\)
0.984614 0.174741i \(-0.0559088\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.807764 −0.0695213
\(136\) 0 0
\(137\) −13.6847 −1.16916 −0.584580 0.811336i \(-0.698741\pi\)
−0.584580 + 0.811336i \(0.698741\pi\)
\(138\) 0 0
\(139\) 12.0000i 1.01783i 0.860818 + 0.508913i \(0.169953\pi\)
−0.860818 + 0.508913i \(0.830047\pi\)
\(140\) 0 0
\(141\) − 10.2462i − 0.862887i
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) −4.00000 −0.332182
\(146\) 0 0
\(147\) 17.9309i 1.47891i
\(148\) 0 0
\(149\) − 4.87689i − 0.399531i −0.979844 0.199765i \(-0.935982\pi\)
0.979844 0.199765i \(-0.0640180\pi\)
\(150\) 0 0
\(151\) 15.3693 1.25074 0.625369 0.780329i \(-0.284949\pi\)
0.625369 + 0.780329i \(0.284949\pi\)
\(152\) 0 0
\(153\) −25.3693 −2.05099
\(154\) 0 0
\(155\) 3.05398i 0.245301i
\(156\) 0 0
\(157\) 1.68466i 0.134450i 0.997738 + 0.0672252i \(0.0214146\pi\)
−0.997738 + 0.0672252i \(0.978585\pi\)
\(158\) 0 0
\(159\) −21.1231 −1.67517
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 12.0000i 0.939913i 0.882690 + 0.469956i \(0.155730\pi\)
−0.882690 + 0.469956i \(0.844270\pi\)
\(164\) 0 0
\(165\) 1.43845i 0.111983i
\(166\) 0 0
\(167\) 7.36932 0.570255 0.285127 0.958490i \(-0.407964\pi\)
0.285127 + 0.958490i \(0.407964\pi\)
\(168\) 0 0
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) − 4.00000i − 0.305888i
\(172\) 0 0
\(173\) 18.0000i 1.36851i 0.729241 + 0.684257i \(0.239873\pi\)
−0.729241 + 0.684257i \(0.760127\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −0.807764 −0.0607153
\(178\) 0 0
\(179\) − 7.68466i − 0.574378i −0.957874 0.287189i \(-0.907279\pi\)
0.957874 0.287189i \(-0.0927208\pi\)
\(180\) 0 0
\(181\) − 25.0540i − 1.86225i −0.364704 0.931124i \(-0.618830\pi\)
0.364704 0.931124i \(-0.381170\pi\)
\(182\) 0 0
\(183\) 24.0000 1.77413
\(184\) 0 0
\(185\) −3.19224 −0.234698
\(186\) 0 0
\(187\) 7.12311i 0.520893i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.68466 −0.556042 −0.278021 0.960575i \(-0.589679\pi\)
−0.278021 + 0.960575i \(0.589679\pi\)
\(192\) 0 0
\(193\) −13.3693 −0.962344 −0.481172 0.876626i \(-0.659789\pi\)
−0.481172 + 0.876626i \(0.659789\pi\)
\(194\) 0 0
\(195\) 2.87689i 0.206019i
\(196\) 0 0
\(197\) 8.24621i 0.587518i 0.955879 + 0.293759i \(0.0949064\pi\)
−0.955879 + 0.293759i \(0.905094\pi\)
\(198\) 0 0
\(199\) −14.2462 −1.00989 −0.504944 0.863152i \(-0.668487\pi\)
−0.504944 + 0.863152i \(0.668487\pi\)
\(200\) 0 0
\(201\) −19.6847 −1.38845
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 4.63068i 0.323421i
\(206\) 0 0
\(207\) 27.3693 1.90230
\(208\) 0 0
\(209\) −1.12311 −0.0776868
\(210\) 0 0
\(211\) − 16.4924i − 1.13539i −0.823241 0.567693i \(-0.807836\pi\)
0.823241 0.567693i \(-0.192164\pi\)
\(212\) 0 0
\(213\) − 40.1771i − 2.75289i
\(214\) 0 0
\(215\) 0.630683 0.0430122
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) − 15.3693i − 1.03856i
\(220\) 0 0
\(221\) 14.2462i 0.958304i
\(222\) 0 0
\(223\) 7.68466 0.514603 0.257301 0.966331i \(-0.417167\pi\)
0.257301 + 0.966331i \(0.417167\pi\)
\(224\) 0 0
\(225\) −16.6847 −1.11231
\(226\) 0 0
\(227\) − 20.0000i − 1.32745i −0.747978 0.663723i \(-0.768975\pi\)
0.747978 0.663723i \(-0.231025\pi\)
\(228\) 0 0
\(229\) 21.6847i 1.43296i 0.697606 + 0.716481i \(0.254248\pi\)
−0.697606 + 0.716481i \(0.745752\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −7.12311 −0.466650 −0.233325 0.972399i \(-0.574961\pi\)
−0.233325 + 0.972399i \(0.574961\pi\)
\(234\) 0 0
\(235\) 2.24621i 0.146527i
\(236\) 0 0
\(237\) − 33.6155i − 2.18356i
\(238\) 0 0
\(239\) 0.630683 0.0407955 0.0203977 0.999792i \(-0.493507\pi\)
0.0203977 + 0.999792i \(0.493507\pi\)
\(240\) 0 0
\(241\) 2.63068 0.169457 0.0847286 0.996404i \(-0.472998\pi\)
0.0847286 + 0.996404i \(0.472998\pi\)
\(242\) 0 0
\(243\) 22.2462i 1.42710i
\(244\) 0 0
\(245\) − 3.93087i − 0.251134i
\(246\) 0 0
\(247\) −2.24621 −0.142923
\(248\) 0 0
\(249\) 29.1231 1.84560
\(250\) 0 0
\(251\) − 23.0540i − 1.45515i −0.686026 0.727577i \(-0.740646\pi\)
0.686026 0.727577i \(-0.259354\pi\)
\(252\) 0 0
\(253\) − 7.68466i − 0.483130i
\(254\) 0 0
\(255\) 10.2462 0.641643
\(256\) 0 0
\(257\) −8.24621 −0.514385 −0.257192 0.966360i \(-0.582797\pi\)
−0.257192 + 0.966360i \(0.582797\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) − 25.3693i − 1.57032i
\(262\) 0 0
\(263\) 8.00000 0.493301 0.246651 0.969104i \(-0.420670\pi\)
0.246651 + 0.969104i \(0.420670\pi\)
\(264\) 0 0
\(265\) 4.63068 0.284461
\(266\) 0 0
\(267\) 1.43845i 0.0880315i
\(268\) 0 0
\(269\) 10.4924i 0.639734i 0.947462 + 0.319867i \(0.103638\pi\)
−0.947462 + 0.319867i \(0.896362\pi\)
\(270\) 0 0
\(271\) 13.1231 0.797172 0.398586 0.917131i \(-0.369501\pi\)
0.398586 + 0.917131i \(0.369501\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.68466i 0.282496i
\(276\) 0 0
\(277\) − 2.00000i − 0.120168i −0.998193 0.0600842i \(-0.980863\pi\)
0.998193 0.0600842i \(-0.0191369\pi\)
\(278\) 0 0
\(279\) −19.3693 −1.15961
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 9.75379i 0.579803i 0.957057 + 0.289901i \(0.0936225\pi\)
−0.957057 + 0.289901i \(0.906378\pi\)
\(284\) 0 0
\(285\) 1.61553i 0.0956956i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 33.7386 1.98463
\(290\) 0 0
\(291\) − 14.5616i − 0.853613i
\(292\) 0 0
\(293\) 10.4924i 0.612974i 0.951875 + 0.306487i \(0.0991536\pi\)
−0.951875 + 0.306487i \(0.900846\pi\)
\(294\) 0 0
\(295\) 0.177081 0.0103101
\(296\) 0 0
\(297\) −1.43845 −0.0834672
\(298\) 0 0
\(299\) − 15.3693i − 0.888831i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −12.4924 −0.717671
\(304\) 0 0
\(305\) −5.26137 −0.301265
\(306\) 0 0
\(307\) − 27.3693i − 1.56205i −0.624500 0.781025i \(-0.714697\pi\)
0.624500 0.781025i \(-0.285303\pi\)
\(308\) 0 0
\(309\) 36.4924i 2.07598i
\(310\) 0 0
\(311\) 18.7386 1.06257 0.531285 0.847193i \(-0.321709\pi\)
0.531285 + 0.847193i \(0.321709\pi\)
\(312\) 0 0
\(313\) −6.31534 −0.356964 −0.178482 0.983943i \(-0.557119\pi\)
−0.178482 + 0.983943i \(0.557119\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 29.0540i − 1.63183i −0.578169 0.815917i \(-0.696233\pi\)
0.578169 0.815917i \(-0.303767\pi\)
\(318\) 0 0
\(319\) −7.12311 −0.398817
\(320\) 0 0
\(321\) −30.7386 −1.71566
\(322\) 0 0
\(323\) 8.00000i 0.445132i
\(324\) 0 0
\(325\) 9.36932i 0.519716i
\(326\) 0 0
\(327\) −35.8617 −1.98316
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 16.3153i 0.896772i 0.893840 + 0.448386i \(0.148001\pi\)
−0.893840 + 0.448386i \(0.851999\pi\)
\(332\) 0 0
\(333\) − 20.2462i − 1.10949i
\(334\) 0 0
\(335\) 4.31534 0.235772
\(336\) 0 0
\(337\) −6.63068 −0.361196 −0.180598 0.983557i \(-0.557803\pi\)
−0.180598 + 0.983557i \(0.557803\pi\)
\(338\) 0 0
\(339\) − 29.3002i − 1.59137i
\(340\) 0 0
\(341\) 5.43845i 0.294508i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −11.0540 −0.595126
\(346\) 0 0
\(347\) 27.3693i 1.46926i 0.678467 + 0.734631i \(0.262645\pi\)
−0.678467 + 0.734631i \(0.737355\pi\)
\(348\) 0 0
\(349\) − 13.3693i − 0.715643i −0.933790 0.357822i \(-0.883520\pi\)
0.933790 0.357822i \(-0.116480\pi\)
\(350\) 0 0
\(351\) −2.87689 −0.153557
\(352\) 0 0
\(353\) 24.5616 1.30728 0.653640 0.756806i \(-0.273241\pi\)
0.653640 + 0.756806i \(0.273241\pi\)
\(354\) 0 0
\(355\) 8.80776i 0.467468i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 15.3693 0.811162 0.405581 0.914059i \(-0.367069\pi\)
0.405581 + 0.914059i \(0.367069\pi\)
\(360\) 0 0
\(361\) 17.7386 0.933612
\(362\) 0 0
\(363\) 2.56155i 0.134447i
\(364\) 0 0
\(365\) 3.36932i 0.176358i
\(366\) 0 0
\(367\) 0.946025 0.0493821 0.0246910 0.999695i \(-0.492140\pi\)
0.0246910 + 0.999695i \(0.492140\pi\)
\(368\) 0 0
\(369\) −29.3693 −1.52891
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 21.3693i 1.10646i 0.833028 + 0.553231i \(0.186605\pi\)
−0.833028 + 0.553231i \(0.813395\pi\)
\(374\) 0 0
\(375\) 13.9309 0.719387
\(376\) 0 0
\(377\) −14.2462 −0.733717
\(378\) 0 0
\(379\) 18.5616i 0.953443i 0.879054 + 0.476721i \(0.158175\pi\)
−0.879054 + 0.476721i \(0.841825\pi\)
\(380\) 0 0
\(381\) 39.3693i 2.01695i
\(382\) 0 0
\(383\) −8.31534 −0.424894 −0.212447 0.977173i \(-0.568143\pi\)
−0.212447 + 0.977173i \(0.568143\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4.00000i 0.203331i
\(388\) 0 0
\(389\) 26.8078i 1.35921i 0.733579 + 0.679604i \(0.237848\pi\)
−0.733579 + 0.679604i \(0.762152\pi\)
\(390\) 0 0
\(391\) −54.7386 −2.76825
\(392\) 0 0
\(393\) −10.2462 −0.516853
\(394\) 0 0
\(395\) 7.36932i 0.370791i
\(396\) 0 0
\(397\) 14.0000i 0.702640i 0.936255 + 0.351320i \(0.114267\pi\)
−0.936255 + 0.351320i \(0.885733\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 22.4924 1.12322 0.561609 0.827403i \(-0.310183\pi\)
0.561609 + 0.827403i \(0.310183\pi\)
\(402\) 0 0
\(403\) 10.8769i 0.541817i
\(404\) 0 0
\(405\) − 3.93087i − 0.195326i
\(406\) 0 0
\(407\) −5.68466 −0.281778
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 0 0
\(411\) 35.0540i 1.72909i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −6.38447 −0.313401
\(416\) 0 0
\(417\) 30.7386 1.50528
\(418\) 0 0
\(419\) 18.7386i 0.915442i 0.889096 + 0.457721i \(0.151334\pi\)
−0.889096 + 0.457721i \(0.848666\pi\)
\(420\) 0 0
\(421\) 10.0000i 0.487370i 0.969854 + 0.243685i \(0.0783563\pi\)
−0.969854 + 0.243685i \(0.921644\pi\)
\(422\) 0 0
\(423\) −14.2462 −0.692674
\(424\) 0 0
\(425\) 33.3693 1.61865
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 5.12311i 0.247346i
\(430\) 0 0
\(431\) 38.7386 1.86597 0.932987 0.359910i \(-0.117192\pi\)
0.932987 + 0.359910i \(0.117192\pi\)
\(432\) 0 0
\(433\) 5.68466 0.273187 0.136594 0.990627i \(-0.456385\pi\)
0.136594 + 0.990627i \(0.456385\pi\)
\(434\) 0 0
\(435\) 10.2462i 0.491268i
\(436\) 0 0
\(437\) − 8.63068i − 0.412862i
\(438\) 0 0
\(439\) −26.2462 −1.25266 −0.626332 0.779557i \(-0.715444\pi\)
−0.626332 + 0.779557i \(0.715444\pi\)
\(440\) 0 0
\(441\) 24.9309 1.18718
\(442\) 0 0
\(443\) − 8.31534i − 0.395074i −0.980295 0.197537i \(-0.936706\pi\)
0.980295 0.197537i \(-0.0632942\pi\)
\(444\) 0 0
\(445\) − 0.315342i − 0.0149486i
\(446\) 0 0
\(447\) −12.4924 −0.590871
\(448\) 0 0
\(449\) 2.80776 0.132507 0.0662533 0.997803i \(-0.478895\pi\)
0.0662533 + 0.997803i \(0.478895\pi\)
\(450\) 0 0
\(451\) 8.24621i 0.388299i
\(452\) 0 0
\(453\) − 39.3693i − 1.84973i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −41.3693 −1.93518 −0.967588 0.252536i \(-0.918735\pi\)
−0.967588 + 0.252536i \(0.918735\pi\)
\(458\) 0 0
\(459\) 10.2462i 0.478252i
\(460\) 0 0
\(461\) − 19.1231i − 0.890652i −0.895369 0.445326i \(-0.853088\pi\)
0.895369 0.445326i \(-0.146912\pi\)
\(462\) 0 0
\(463\) −33.9309 −1.57690 −0.788451 0.615098i \(-0.789116\pi\)
−0.788451 + 0.615098i \(0.789116\pi\)
\(464\) 0 0
\(465\) 7.82292 0.362779
\(466\) 0 0
\(467\) 8.31534i 0.384788i 0.981318 + 0.192394i \(0.0616252\pi\)
−0.981318 + 0.192394i \(0.938375\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 4.31534 0.198840
\(472\) 0 0
\(473\) 1.12311 0.0516405
\(474\) 0 0
\(475\) 5.26137i 0.241408i
\(476\) 0 0
\(477\) 29.3693i 1.34473i
\(478\) 0 0
\(479\) −0.630683 −0.0288166 −0.0144083 0.999896i \(-0.504586\pi\)
−0.0144083 + 0.999896i \(0.504586\pi\)
\(480\) 0 0
\(481\) −11.3693 −0.518396
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.19224i 0.144952i
\(486\) 0 0
\(487\) −31.6847 −1.43577 −0.717884 0.696162i \(-0.754889\pi\)
−0.717884 + 0.696162i \(0.754889\pi\)
\(488\) 0 0
\(489\) 30.7386 1.39005
\(490\) 0 0
\(491\) − 26.7386i − 1.20670i −0.797477 0.603349i \(-0.793833\pi\)
0.797477 0.603349i \(-0.206167\pi\)
\(492\) 0 0
\(493\) 50.7386i 2.28515i
\(494\) 0 0
\(495\) 2.00000 0.0898933
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 40.4924i 1.81269i 0.422539 + 0.906345i \(0.361139\pi\)
−0.422539 + 0.906345i \(0.638861\pi\)
\(500\) 0 0
\(501\) − 18.8769i − 0.843357i
\(502\) 0 0
\(503\) 15.3693 0.685284 0.342642 0.939466i \(-0.388678\pi\)
0.342642 + 0.939466i \(0.388678\pi\)
\(504\) 0 0
\(505\) 2.73863 0.121868
\(506\) 0 0
\(507\) − 23.0540i − 1.02386i
\(508\) 0 0
\(509\) − 13.6847i − 0.606562i −0.952901 0.303281i \(-0.901918\pi\)
0.952901 0.303281i \(-0.0980821\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −1.61553 −0.0713273
\(514\) 0 0
\(515\) − 8.00000i − 0.352522i
\(516\) 0 0
\(517\) 4.00000i 0.175920i
\(518\) 0 0
\(519\) 46.1080 2.02391
\(520\) 0 0
\(521\) 17.0540 0.747148 0.373574 0.927600i \(-0.378132\pi\)
0.373574 + 0.927600i \(0.378132\pi\)
\(522\) 0 0
\(523\) 34.1080i 1.49144i 0.666261 + 0.745718i \(0.267894\pi\)
−0.666261 + 0.745718i \(0.732106\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 38.7386 1.68748
\(528\) 0 0
\(529\) 36.0540 1.56756
\(530\) 0 0
\(531\) 1.12311i 0.0487386i
\(532\) 0 0
\(533\) 16.4924i 0.714366i
\(534\) 0 0
\(535\) 6.73863 0.291337
\(536\) 0 0
\(537\) −19.6847 −0.849456
\(538\) 0 0
\(539\) − 7.00000i − 0.301511i
\(540\) 0 0
\(541\) 18.0000i 0.773880i 0.922105 + 0.386940i \(0.126468\pi\)
−0.922105 + 0.386940i \(0.873532\pi\)
\(542\) 0 0
\(543\) −64.1771 −2.75410
\(544\) 0 0
\(545\) 7.86174 0.336760
\(546\) 0 0
\(547\) − 12.0000i − 0.513083i −0.966533 0.256541i \(-0.917417\pi\)
0.966533 0.256541i \(-0.0825830\pi\)
\(548\) 0 0
\(549\) − 33.3693i − 1.42417i
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 8.17708i 0.347098i
\(556\) 0 0
\(557\) 33.3693i 1.41390i 0.707262 + 0.706952i \(0.249930\pi\)
−0.707262 + 0.706952i \(0.750070\pi\)
\(558\) 0 0
\(559\) 2.24621 0.0950046
\(560\) 0 0
\(561\) 18.2462 0.770356
\(562\) 0 0
\(563\) − 18.7386i − 0.789739i −0.918737 0.394870i \(-0.870790\pi\)
0.918737 0.394870i \(-0.129210\pi\)
\(564\) 0 0
\(565\) 6.42329i 0.270230i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 21.3693 0.895848 0.447924 0.894072i \(-0.352163\pi\)
0.447924 + 0.894072i \(0.352163\pi\)
\(570\) 0 0
\(571\) 12.0000i 0.502184i 0.967963 + 0.251092i \(0.0807897\pi\)
−0.967963 + 0.251092i \(0.919210\pi\)
\(572\) 0 0
\(573\) 19.6847i 0.822338i
\(574\) 0 0
\(575\) −36.0000 −1.50130
\(576\) 0 0
\(577\) 5.68466 0.236655 0.118328 0.992975i \(-0.462247\pi\)
0.118328 + 0.992975i \(0.462247\pi\)
\(578\) 0 0
\(579\) 34.2462i 1.42322i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 8.24621 0.341523
\(584\) 0 0
\(585\) 4.00000 0.165380
\(586\) 0 0
\(587\) 28.0000i 1.15568i 0.816149 + 0.577842i \(0.196105\pi\)
−0.816149 + 0.577842i \(0.803895\pi\)
\(588\) 0 0
\(589\) 6.10795i 0.251674i
\(590\) 0 0
\(591\) 21.1231 0.868888
\(592\) 0 0
\(593\) −25.8617 −1.06201 −0.531007 0.847367i \(-0.678186\pi\)
−0.531007 + 0.847367i \(0.678186\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 36.4924i 1.49354i
\(598\) 0 0
\(599\) −34.7386 −1.41938 −0.709691 0.704513i \(-0.751165\pi\)
−0.709691 + 0.704513i \(0.751165\pi\)
\(600\) 0 0
\(601\) −32.1080 −1.30971 −0.654855 0.755754i \(-0.727270\pi\)
−0.654855 + 0.755754i \(0.727270\pi\)
\(602\) 0 0
\(603\) 27.3693i 1.11456i
\(604\) 0 0
\(605\) − 0.561553i − 0.0228304i
\(606\) 0 0
\(607\) −37.1231 −1.50678 −0.753390 0.657574i \(-0.771583\pi\)
−0.753390 + 0.657574i \(0.771583\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000i 0.323645i
\(612\) 0 0
\(613\) − 17.3693i − 0.701540i −0.936462 0.350770i \(-0.885920\pi\)
0.936462 0.350770i \(-0.114080\pi\)
\(614\) 0 0
\(615\) 11.8617 0.478311
\(616\) 0 0
\(617\) 32.2462 1.29818 0.649092 0.760710i \(-0.275149\pi\)
0.649092 + 0.760710i \(0.275149\pi\)
\(618\) 0 0
\(619\) − 7.68466i − 0.308873i −0.988003 0.154436i \(-0.950644\pi\)
0.988003 0.154436i \(-0.0493561\pi\)
\(620\) 0 0
\(621\) − 11.0540i − 0.443581i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 20.3693 0.814773
\(626\) 0 0
\(627\) 2.87689i 0.114892i
\(628\) 0 0
\(629\) 40.4924i 1.61454i
\(630\) 0 0
\(631\) −38.4233 −1.52961 −0.764804 0.644264i \(-0.777164\pi\)
−0.764804 + 0.644264i \(0.777164\pi\)
\(632\) 0 0
\(633\) −42.2462 −1.67914
\(634\) 0 0
\(635\) − 8.63068i − 0.342498i
\(636\) 0 0
\(637\) − 14.0000i − 0.554700i
\(638\) 0 0
\(639\) −55.8617 −2.20986
\(640\) 0 0
\(641\) −27.9309 −1.10320 −0.551602 0.834108i \(-0.685983\pi\)
−0.551602 + 0.834108i \(0.685983\pi\)
\(642\) 0 0
\(643\) 42.5616i 1.67846i 0.543774 + 0.839232i \(0.316995\pi\)
−0.543774 + 0.839232i \(0.683005\pi\)
\(644\) 0 0
\(645\) − 1.61553i − 0.0636114i
\(646\) 0 0
\(647\) 31.6847 1.24565 0.622826 0.782360i \(-0.285984\pi\)
0.622826 + 0.782360i \(0.285984\pi\)
\(648\) 0 0
\(649\) 0.315342 0.0123782
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 13.6847i − 0.535522i −0.963485 0.267761i \(-0.913716\pi\)
0.963485 0.267761i \(-0.0862838\pi\)
\(654\) 0 0
\(655\) 2.24621 0.0877667
\(656\) 0 0
\(657\) −21.3693 −0.833696
\(658\) 0 0
\(659\) 12.6307i 0.492022i 0.969267 + 0.246011i \(0.0791199\pi\)
−0.969267 + 0.246011i \(0.920880\pi\)
\(660\) 0 0
\(661\) 21.0540i 0.818905i 0.912331 + 0.409452i \(0.134280\pi\)
−0.912331 + 0.409452i \(0.865720\pi\)
\(662\) 0 0
\(663\) 36.4924 1.41725
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 54.7386i − 2.11949i
\(668\) 0 0
\(669\) − 19.6847i − 0.761053i
\(670\) 0 0
\(671\) −9.36932 −0.361698
\(672\) 0 0
\(673\) 24.7386 0.953604 0.476802 0.879011i \(-0.341796\pi\)
0.476802 + 0.879011i \(0.341796\pi\)
\(674\) 0 0
\(675\) 6.73863i 0.259370i
\(676\) 0 0
\(677\) − 37.8617i − 1.45514i −0.686031 0.727572i \(-0.740649\pi\)
0.686031 0.727572i \(-0.259351\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −51.2311 −1.96318
\(682\) 0 0
\(683\) − 12.0000i − 0.459167i −0.973289 0.229584i \(-0.926264\pi\)
0.973289 0.229584i \(-0.0737364\pi\)
\(684\) 0 0
\(685\) − 7.68466i − 0.293616i
\(686\) 0 0
\(687\) 55.5464 2.11923
\(688\) 0 0
\(689\) 16.4924 0.628311
\(690\) 0 0
\(691\) 25.3002i 0.962464i 0.876593 + 0.481232i \(0.159811\pi\)
−0.876593 + 0.481232i \(0.840189\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −6.73863 −0.255611
\(696\) 0 0
\(697\) 58.7386 2.22488
\(698\) 0 0
\(699\) 18.2462i 0.690135i
\(700\) 0 0
\(701\) − 47.6155i − 1.79841i −0.437524 0.899207i \(-0.644144\pi\)
0.437524 0.899207i \(-0.355856\pi\)
\(702\) 0 0
\(703\) −6.38447 −0.240795
\(704\) 0 0
\(705\) 5.75379 0.216700
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) − 10.3153i − 0.387401i −0.981061 0.193700i \(-0.937951\pi\)
0.981061 0.193700i \(-0.0620490\pi\)
\(710\) 0 0
\(711\) −46.7386 −1.75284
\(712\) 0 0
\(713\) −41.7926 −1.56515
\(714\) 0 0
\(715\) − 1.12311i − 0.0420018i
\(716\) 0 0
\(717\) − 1.61553i − 0.0603330i
\(718\) 0 0
\(719\) −16.3153 −0.608460 −0.304230 0.952599i \(-0.598399\pi\)
−0.304230 + 0.952599i \(0.598399\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) − 6.73863i − 0.250612i
\(724\) 0 0
\(725\) 33.3693i 1.23931i
\(726\) 0 0
\(727\) 16.3153 0.605103 0.302551 0.953133i \(-0.402162\pi\)
0.302551 + 0.953133i \(0.402162\pi\)
\(728\) 0 0
\(729\) 35.9848 1.33277
\(730\) 0 0
\(731\) − 8.00000i − 0.295891i
\(732\) 0 0
\(733\) − 36.1080i − 1.33368i −0.745202 0.666839i \(-0.767647\pi\)
0.745202 0.666839i \(-0.232353\pi\)
\(734\) 0 0
\(735\) −10.0691 −0.371405
\(736\) 0 0
\(737\) 7.68466 0.283068
\(738\) 0 0
\(739\) − 29.6155i − 1.08942i −0.838623 0.544712i \(-0.816639\pi\)
0.838623 0.544712i \(-0.183361\pi\)
\(740\) 0 0
\(741\) 5.75379i 0.211371i
\(742\) 0 0
\(743\) −30.7386 −1.12769 −0.563846 0.825880i \(-0.690679\pi\)
−0.563846 + 0.825880i \(0.690679\pi\)
\(744\) 0 0
\(745\) 2.73863 0.100336
\(746\) 0 0
\(747\) − 40.4924i − 1.48154i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −12.1771 −0.444348 −0.222174 0.975007i \(-0.571315\pi\)
−0.222174 + 0.975007i \(0.571315\pi\)
\(752\) 0 0
\(753\) −59.0540 −2.15205
\(754\) 0 0
\(755\) 8.63068i 0.314103i
\(756\) 0 0
\(757\) 10.0000i 0.363456i 0.983349 + 0.181728i \(0.0581691\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(758\) 0 0
\(759\) −19.6847 −0.714508
\(760\) 0 0
\(761\) 3.75379 0.136075 0.0680374 0.997683i \(-0.478326\pi\)
0.0680374 + 0.997683i \(0.478326\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) − 14.2462i − 0.515073i
\(766\) 0 0
\(767\) 0.630683 0.0227726
\(768\) 0 0
\(769\) −38.0000 −1.37032 −0.685158 0.728395i \(-0.740267\pi\)
−0.685158 + 0.728395i \(0.740267\pi\)
\(770\) 0 0
\(771\) 21.1231i 0.760730i
\(772\) 0 0
\(773\) − 8.24621i − 0.296596i −0.988943 0.148298i \(-0.952621\pi\)
0.988943 0.148298i \(-0.0473794\pi\)
\(774\) 0 0
\(775\) 25.4773 0.915170
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.26137i 0.331823i
\(780\) 0 0
\(781\) 15.6847i 0.561241i
\(782\) 0 0
\(783\) −10.2462 −0.366170
\(784\) 0 0
\(785\) −0.946025 −0.0337651
\(786\) 0 0
\(787\) 12.0000i 0.427754i 0.976861 + 0.213877i \(0.0686091\pi\)
−0.976861 + 0.213877i \(0.931391\pi\)
\(788\) 0 0
\(789\) − 20.4924i − 0.729550i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −18.7386 −0.665428
\(794\) 0 0
\(795\) − 11.8617i − 0.420693i
\(796\) 0 0
\(797\) − 24.5616i − 0.870015i −0.900427 0.435007i \(-0.856746\pi\)
0.900427 0.435007i \(-0.143254\pi\)
\(798\) 0 0
\(799\) 28.4924 1.00799
\(800\) 0 0
\(801\) 2.00000 0.0706665
\(802\) 0 0
\(803\) 6.00000i 0.211735i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 26.8769 0.946111
\(808\) 0 0
\(809\) 8.24621 0.289921 0.144961 0.989437i \(-0.453694\pi\)
0.144961 + 0.989437i \(0.453694\pi\)
\(810\) 0 0
\(811\) 51.3693i 1.80382i 0.431923 + 0.901910i \(0.357835\pi\)
−0.431923 + 0.901910i \(0.642165\pi\)
\(812\) 0 0
\(813\) − 33.6155i − 1.17895i
\(814\) 0 0
\(815\) −6.73863 −0.236044
\(816\) 0 0
\(817\) 1.26137 0.0441296
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 0.738634i − 0.0257785i −0.999917 0.0128892i \(-0.995897\pi\)
0.999917 0.0128892i \(-0.00410289\pi\)
\(822\) 0 0
\(823\) 18.5616 0.647015 0.323508 0.946226i \(-0.395138\pi\)
0.323508 + 0.946226i \(0.395138\pi\)
\(824\) 0 0
\(825\) 12.0000 0.417786
\(826\) 0 0
\(827\) 3.36932i 0.117163i 0.998283 + 0.0585813i \(0.0186577\pi\)
−0.998283 + 0.0585813i \(0.981342\pi\)
\(828\) 0 0
\(829\) 17.6847i 0.614214i 0.951675 + 0.307107i \(0.0993609\pi\)
−0.951675 + 0.307107i \(0.900639\pi\)
\(830\) 0 0
\(831\) −5.12311 −0.177719
\(832\) 0 0
\(833\) −49.8617 −1.72761
\(834\) 0 0
\(835\) 4.13826i 0.143210i
\(836\) 0 0
\(837\) 7.82292i 0.270400i
\(838\) 0 0
\(839\) −30.4233 −1.05033 −0.525164 0.851001i \(-0.675996\pi\)
−0.525164 + 0.851001i \(0.675996\pi\)
\(840\) 0 0
\(841\) −21.7386 −0.749608
\(842\) 0 0
\(843\) − 15.3693i − 0.529347i
\(844\) 0 0
\(845\) 5.05398i 0.173862i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 24.9848 0.857478
\(850\) 0 0
\(851\) − 43.6847i − 1.49749i
\(852\) 0 0
\(853\) − 40.7386i − 1.39486i −0.716651 0.697432i \(-0.754326\pi\)
0.716651 0.697432i \(-0.245674\pi\)
\(854\) 0 0
\(855\) 2.24621 0.0768188
\(856\) 0 0
\(857\) −4.87689 −0.166592 −0.0832958 0.996525i \(-0.526545\pi\)
−0.0832958 + 0.996525i \(0.526545\pi\)
\(858\) 0 0
\(859\) 57.9309i 1.97658i 0.152601 + 0.988288i \(0.451235\pi\)
−0.152601 + 0.988288i \(0.548765\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −18.7386 −0.637871 −0.318935 0.947777i \(-0.603325\pi\)
−0.318935 + 0.947777i \(0.603325\pi\)
\(864\) 0 0
\(865\) −10.1080 −0.343681
\(866\) 0 0
\(867\) − 86.4233i − 2.93509i
\(868\) 0 0
\(869\) 13.1231i 0.445171i
\(870\) 0 0
\(871\) 15.3693 0.520769
\(872\) 0 0
\(873\) −20.2462 −0.685230
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 7.26137i − 0.245199i −0.992456 0.122599i \(-0.960877\pi\)
0.992456 0.122599i \(-0.0391230\pi\)
\(878\) 0 0
\(879\) 26.8769 0.906535
\(880\) 0 0
\(881\) −19.3002 −0.650240 −0.325120 0.945673i \(-0.605405\pi\)
−0.325120 + 0.945673i \(0.605405\pi\)
\(882\) 0 0
\(883\) 36.0000i 1.21150i 0.795656 + 0.605748i \(0.207126\pi\)
−0.795656 + 0.605748i \(0.792874\pi\)
\(884\) 0 0
\(885\) − 0.453602i − 0.0152477i
\(886\) 0 0
\(887\) 22.1080 0.742312 0.371156 0.928570i \(-0.378961\pi\)
0.371156 + 0.928570i \(0.378961\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) − 7.00000i − 0.234509i
\(892\) 0 0
\(893\) 4.49242i 0.150333i
\(894\) 0 0
\(895\) 4.31534 0.144246
\(896\) 0 0
\(897\) −39.3693 −1.31450
\(898\) 0 0
\(899\) 38.7386i 1.29201i
\(900\) 0 0
\(901\) − 58.7386i − 1.95687i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14.0691 0.467674
\(906\) 0 0
\(907\) − 16.4924i − 0.547622i −0.961784 0.273811i \(-0.911716\pi\)
0.961784 0.273811i \(-0.0882843\pi\)
\(908\) 0 0
\(909\) 17.3693i 0.576104i
\(910\) 0 0
\(911\) −26.7386 −0.885890 −0.442945 0.896549i \(-0.646066\pi\)
−0.442945 + 0.896549i \(0.646066\pi\)
\(912\) 0 0
\(913\) −11.3693 −0.376269
\(914\) 0 0
\(915\) 13.4773i 0.445545i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 17.6155 0.581083 0.290541 0.956862i \(-0.406165\pi\)
0.290541 + 0.956862i \(0.406165\pi\)
\(920\) 0 0
\(921\) −70.1080 −2.31014
\(922\) 0 0
\(923\) 31.3693i 1.03253i
\(924\) 0 0
\(925\) 26.6307i 0.875611i
\(926\) 0 0
\(927\) 50.7386 1.66648
\(928\) 0 0
\(929\) 22.4924 0.737952 0.368976 0.929439i \(-0.379708\pi\)
0.368976 + 0.929439i \(0.379708\pi\)
\(930\) 0 0
\(931\) − 7.86174i − 0.257658i
\(932\) 0 0
\(933\) − 48.0000i − 1.57145i
\(934\) 0 0
\(935\) −4.00000 −0.130814
\(936\) 0 0
\(937\) 20.7386 0.677502 0.338751 0.940876i \(-0.389996\pi\)
0.338751 + 0.940876i \(0.389996\pi\)
\(938\) 0 0
\(939\) 16.1771i 0.527919i
\(940\) 0 0
\(941\) − 8.24621i − 0.268819i −0.990926 0.134409i \(-0.957086\pi\)
0.990926 0.134409i \(-0.0429137\pi\)
\(942\) 0 0
\(943\) −63.3693 −2.06359
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 31.6847i − 1.02961i −0.857306 0.514807i \(-0.827864\pi\)
0.857306 0.514807i \(-0.172136\pi\)
\(948\) 0 0
\(949\) 12.0000i 0.389536i
\(950\) 0 0
\(951\) −74.4233 −2.41334
\(952\) 0 0
\(953\) 47.6155 1.54242 0.771209 0.636582i \(-0.219652\pi\)
0.771209 + 0.636582i \(0.219652\pi\)
\(954\) 0 0
\(955\) − 4.31534i − 0.139641i
\(956\) 0 0
\(957\) 18.2462i 0.589816i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −1.42329 −0.0459127
\(962\) 0 0
\(963\) 42.7386i 1.37723i
\(964\) 0 0
\(965\) − 7.50758i − 0.241677i
\(966\) 0 0
\(967\) −30.7386 −0.988488 −0.494244 0.869323i \(-0.664555\pi\)
−0.494244 + 0.869323i \(0.664555\pi\)
\(968\) 0 0
\(969\) 20.4924 0.658311
\(970\) 0 0
\(971\) 16.3153i 0.523584i 0.965124 + 0.261792i \(0.0843135\pi\)
−0.965124 + 0.261792i \(0.915687\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 24.0000 0.768615
\(976\) 0 0
\(977\) −50.0388 −1.60088 −0.800442 0.599410i \(-0.795402\pi\)
−0.800442 + 0.599410i \(0.795402\pi\)
\(978\) 0 0
\(979\) − 0.561553i − 0.0179473i
\(980\) 0 0
\(981\) 49.8617i 1.59196i
\(982\) 0 0
\(983\) 16.3153 0.520379 0.260189 0.965558i \(-0.416215\pi\)
0.260189 + 0.965558i \(0.416215\pi\)
\(984\) 0 0
\(985\) −4.63068 −0.147546
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.63068i 0.274440i
\(990\) 0 0
\(991\) −5.26137 −0.167133 −0.0835664 0.996502i \(-0.526631\pi\)
−0.0835664 + 0.996502i \(0.526631\pi\)
\(992\) 0 0
\(993\) 41.7926 1.32625
\(994\) 0 0
\(995\) − 8.00000i − 0.253617i
\(996\) 0 0
\(997\) − 25.3693i − 0.803454i −0.915759 0.401727i \(-0.868410\pi\)
0.915759 0.401727i \(-0.131590\pi\)
\(998\) 0 0
\(999\) −8.17708 −0.258711
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2816.2.c.t.1409.1 4
4.3 odd 2 2816.2.c.s.1409.4 4
8.3 odd 2 2816.2.c.s.1409.1 4
8.5 even 2 inner 2816.2.c.t.1409.4 4
16.3 odd 4 704.2.a.n.1.1 2
16.5 even 4 352.2.a.g.1.1 2
16.11 odd 4 352.2.a.h.1.2 yes 2
16.13 even 4 704.2.a.o.1.2 2
48.5 odd 4 3168.2.a.bd.1.2 2
48.11 even 4 3168.2.a.bc.1.2 2
48.29 odd 4 6336.2.a.cv.1.1 2
48.35 even 4 6336.2.a.cw.1.1 2
80.59 odd 4 8800.2.a.bd.1.1 2
80.69 even 4 8800.2.a.be.1.2 2
176.21 odd 4 3872.2.a.p.1.1 2
176.43 even 4 3872.2.a.ba.1.2 2
176.109 odd 4 7744.2.a.cm.1.2 2
176.131 even 4 7744.2.a.bw.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
352.2.a.g.1.1 2 16.5 even 4
352.2.a.h.1.2 yes 2 16.11 odd 4
704.2.a.n.1.1 2 16.3 odd 4
704.2.a.o.1.2 2 16.13 even 4
2816.2.c.s.1409.1 4 8.3 odd 2
2816.2.c.s.1409.4 4 4.3 odd 2
2816.2.c.t.1409.1 4 1.1 even 1 trivial
2816.2.c.t.1409.4 4 8.5 even 2 inner
3168.2.a.bc.1.2 2 48.11 even 4
3168.2.a.bd.1.2 2 48.5 odd 4
3872.2.a.p.1.1 2 176.21 odd 4
3872.2.a.ba.1.2 2 176.43 even 4
6336.2.a.cv.1.1 2 48.29 odd 4
6336.2.a.cw.1.1 2 48.35 even 4
7744.2.a.bw.1.1 2 176.131 even 4
7744.2.a.cm.1.2 2 176.109 odd 4
8800.2.a.bd.1.1 2 80.59 odd 4
8800.2.a.be.1.2 2 80.69 even 4