Defining parameters
Level: | \( N \) | \(=\) | \( 2816 = 2^{8} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2816.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 26 \) | ||
Sturm bound: | \(768\) | ||
Trace bound: | \(15\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(2816, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 408 | 80 | 328 |
Cusp forms | 360 | 80 | 280 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(2816, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(2816, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(2816, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(128, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(256, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(352, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(704, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1408, [\chi])\)\(^{\oplus 2}\)