Properties

Label 2808.1.fi.a.1507.3
Level $2808$
Weight $1$
Character 2808.1507
Analytic conductor $1.401$
Analytic rank $0$
Dimension $18$
Projective image $D_{27}$
CM discriminant -104
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2808,1,Mod(259,2808)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2808, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 9, 4, 9])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2808.259"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2808 = 2^{3} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2808.fi (of order \(18\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,0,0,0,0,0,0,-9] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.40137455547\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(3\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{54})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{9} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{27}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{27} + \cdots)\)

Embedding invariants

Embedding label 1507.3
Root \(0.286803 + 0.957990i\) of defining polynomial
Character \(\chi\) \(=\) 2808.1507
Dual form 2808.1.fi.a.259.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.766044 - 0.642788i) q^{2} +(0.893633 - 0.448799i) q^{3} +(0.173648 - 0.984808i) q^{4} +(0.109277 - 0.0397734i) q^{5} +(0.396080 - 0.918216i) q^{6} +(0.207391 + 1.17617i) q^{7} +(-0.500000 - 0.866025i) q^{8} +(0.597159 - 0.802123i) q^{9} +(0.0581448 - 0.100710i) q^{10} +(-0.286803 - 0.957990i) q^{12} +(0.766044 + 0.642788i) q^{13} +(0.914900 + 0.767692i) q^{14} +(0.0798028 - 0.0845860i) q^{15} +(-0.939693 - 0.342020i) q^{16} +(0.286803 - 0.496758i) q^{17} +(-0.0581448 - 0.998308i) q^{18} +(-0.0201935 - 0.114523i) q^{20} +(0.713197 + 0.957990i) q^{21} +(-0.835488 - 0.549509i) q^{24} +(-0.755685 + 0.634095i) q^{25} +1.00000 q^{26} +(0.173648 - 0.984808i) q^{27} +1.19432 q^{28} +(0.00676164 - 0.116093i) q^{30} +(0.0603074 - 0.342020i) q^{31} +(-0.939693 + 0.342020i) q^{32} +(-0.0996057 - 0.564892i) q^{34} +(0.0694434 + 0.120279i) q^{35} +(-0.686242 - 0.727374i) q^{36} +(-0.893633 + 1.54782i) q^{37} +(0.973045 + 0.230616i) q^{39} +(-0.0890830 - 0.0747496i) q^{40} +(1.16212 + 0.275428i) q^{42} +(-1.82873 - 0.665602i) q^{43} +(0.0333522 - 0.111404i) q^{45} +(-0.238329 - 1.35163i) q^{47} +(-0.993238 + 0.116093i) q^{48} +(-0.400679 + 0.145835i) q^{49} +(-0.171300 + 0.971490i) q^{50} +(0.0333522 - 0.572636i) q^{51} +(0.766044 - 0.642788i) q^{52} +(-0.500000 - 0.866025i) q^{54} +(0.914900 - 0.767692i) q^{56} +(-0.0694434 - 0.0932786i) q^{60} +(-0.173648 - 0.300767i) q^{62} +(1.06728 + 0.536009i) q^{63} +(-0.500000 + 0.866025i) q^{64} +(0.109277 + 0.0397734i) q^{65} +(-0.439408 - 0.368707i) q^{68} +(0.130511 + 0.0475021i) q^{70} +(-0.396080 + 0.686030i) q^{71} +(-0.993238 - 0.116093i) q^{72} +(0.310355 + 1.76011i) q^{74} +(-0.390723 + 0.905799i) q^{75} +(0.893633 - 0.448799i) q^{78} -0.116290 q^{80} +(-0.286803 - 0.957990i) q^{81} +(1.06728 - 0.536009i) q^{84} +(0.0115831 - 0.0656911i) q^{85} +(-1.82873 + 0.665602i) q^{86} +(-0.0460600 - 0.106779i) q^{90} +(-0.597159 + 1.03431i) q^{91} +(-0.0996057 - 0.332706i) q^{93} +(-1.05138 - 0.882215i) q^{94} +(-0.686242 + 0.727374i) q^{96} +(-0.213197 + 0.369268i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 9 q^{8} + 18 q^{21} + 18 q^{26} + 18 q^{30} + 18 q^{31} - 9 q^{54} - 9 q^{64} - 9 q^{70} - 9 q^{75} - 9 q^{85} - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2808\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(1081\) \(1405\) \(2081\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(e\left(\frac{7}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.766044 0.642788i 0.766044 0.642788i
\(3\) 0.893633 0.448799i 0.893633 0.448799i
\(4\) 0.173648 0.984808i 0.173648 0.984808i
\(5\) 0.109277 0.0397734i 0.109277 0.0397734i −0.286803 0.957990i \(-0.592593\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(6\) 0.396080 0.918216i 0.396080 0.918216i
\(7\) 0.207391 + 1.17617i 0.207391 + 1.17617i 0.893633 + 0.448799i \(0.148148\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(8\) −0.500000 0.866025i −0.500000 0.866025i
\(9\) 0.597159 0.802123i 0.597159 0.802123i
\(10\) 0.0581448 0.100710i 0.0581448 0.100710i
\(11\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(12\) −0.286803 0.957990i −0.286803 0.957990i
\(13\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(14\) 0.914900 + 0.767692i 0.914900 + 0.767692i
\(15\) 0.0798028 0.0845860i 0.0798028 0.0845860i
\(16\) −0.939693 0.342020i −0.939693 0.342020i
\(17\) 0.286803 0.496758i 0.286803 0.496758i −0.686242 0.727374i \(-0.740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(18\) −0.0581448 0.998308i −0.0581448 0.998308i
\(19\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(20\) −0.0201935 0.114523i −0.0201935 0.114523i
\(21\) 0.713197 + 0.957990i 0.713197 + 0.957990i
\(22\) 0 0
\(23\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(24\) −0.835488 0.549509i −0.835488 0.549509i
\(25\) −0.755685 + 0.634095i −0.755685 + 0.634095i
\(26\) 1.00000 1.00000
\(27\) 0.173648 0.984808i 0.173648 0.984808i
\(28\) 1.19432 1.19432
\(29\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(30\) 0.00676164 0.116093i 0.00676164 0.116093i
\(31\) 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i \(-0.888889\pi\)
1.00000 \(0\)
\(32\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(33\) 0 0
\(34\) −0.0996057 0.564892i −0.0996057 0.564892i
\(35\) 0.0694434 + 0.120279i 0.0694434 + 0.120279i
\(36\) −0.686242 0.727374i −0.686242 0.727374i
\(37\) −0.893633 + 1.54782i −0.893633 + 1.54782i −0.0581448 + 0.998308i \(0.518519\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(38\) 0 0
\(39\) 0.973045 + 0.230616i 0.973045 + 0.230616i
\(40\) −0.0890830 0.0747496i −0.0890830 0.0747496i
\(41\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(42\) 1.16212 + 0.275428i 1.16212 + 0.275428i
\(43\) −1.82873 0.665602i −1.82873 0.665602i −0.993238 0.116093i \(-0.962963\pi\)
−0.835488 0.549509i \(-0.814815\pi\)
\(44\) 0 0
\(45\) 0.0333522 0.111404i 0.0333522 0.111404i
\(46\) 0 0
\(47\) −0.238329 1.35163i −0.238329 1.35163i −0.835488 0.549509i \(-0.814815\pi\)
0.597159 0.802123i \(-0.296296\pi\)
\(48\) −0.993238 + 0.116093i −0.993238 + 0.116093i
\(49\) −0.400679 + 0.145835i −0.400679 + 0.145835i
\(50\) −0.171300 + 0.971490i −0.171300 + 0.971490i
\(51\) 0.0333522 0.572636i 0.0333522 0.572636i
\(52\) 0.766044 0.642788i 0.766044 0.642788i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) −0.500000 0.866025i −0.500000 0.866025i
\(55\) 0 0
\(56\) 0.914900 0.767692i 0.914900 0.767692i
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(60\) −0.0694434 0.0932786i −0.0694434 0.0932786i
\(61\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(62\) −0.173648 0.300767i −0.173648 0.300767i
\(63\) 1.06728 + 0.536009i 1.06728 + 0.536009i
\(64\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(65\) 0.109277 + 0.0397734i 0.109277 + 0.0397734i
\(66\) 0 0
\(67\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(68\) −0.439408 0.368707i −0.439408 0.368707i
\(69\) 0 0
\(70\) 0.130511 + 0.0475021i 0.130511 + 0.0475021i
\(71\) −0.396080 + 0.686030i −0.396080 + 0.686030i −0.993238 0.116093i \(-0.962963\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(72\) −0.993238 0.116093i −0.993238 0.116093i
\(73\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(74\) 0.310355 + 1.76011i 0.310355 + 1.76011i
\(75\) −0.390723 + 0.905799i −0.390723 + 0.905799i
\(76\) 0 0
\(77\) 0 0
\(78\) 0.893633 0.448799i 0.893633 0.448799i
\(79\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(80\) −0.116290 −0.116290
\(81\) −0.286803 0.957990i −0.286803 0.957990i
\(82\) 0 0
\(83\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(84\) 1.06728 0.536009i 1.06728 0.536009i
\(85\) 0.0115831 0.0656911i 0.0115831 0.0656911i
\(86\) −1.82873 + 0.665602i −1.82873 + 0.665602i
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(90\) −0.0460600 0.106779i −0.0460600 0.106779i
\(91\) −0.597159 + 1.03431i −0.597159 + 1.03431i
\(92\) 0 0
\(93\) −0.0996057 0.332706i −0.0996057 0.332706i
\(94\) −1.05138 0.882215i −1.05138 0.882215i
\(95\) 0 0
\(96\) −0.686242 + 0.727374i −0.686242 + 0.727374i
\(97\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(98\) −0.213197 + 0.369268i −0.213197 + 0.369268i
\(99\) 0 0
\(100\) 0.493238 + 0.854314i 0.493238 + 0.854314i
\(101\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(102\) −0.342534 0.460103i −0.342534 0.460103i
\(103\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(104\) 0.173648 0.984808i 0.173648 0.984808i
\(105\) 0.116038 + 0.0763195i 0.116038 + 0.0763195i
\(106\) 0 0
\(107\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) −0.939693 0.342020i −0.939693 0.342020i
\(109\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(110\) 0 0
\(111\) −0.103920 + 1.78424i −0.103920 + 1.78424i
\(112\) 0.207391 1.17617i 0.207391 1.17617i
\(113\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.973045 0.230616i 0.973045 0.230616i
\(118\) 0 0
\(119\) 0.643753 + 0.234307i 0.643753 + 0.234307i
\(120\) −0.113155 0.0268182i −0.113155 0.0268182i
\(121\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.326352 0.118782i −0.326352 0.118782i
\(125\) −0.115503 + 0.200058i −0.115503 + 0.200058i
\(126\) 1.16212 0.275428i 1.16212 0.275428i
\(127\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(128\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(129\) −1.93293 + 0.225927i −1.93293 + 0.225927i
\(130\) 0.109277 0.0397734i 0.109277 0.0397734i
\(131\) −0.238329 + 1.35163i −0.238329 + 1.35163i 0.597159 + 0.802123i \(0.296296\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −0.0201935 0.114523i −0.0201935 0.114523i
\(136\) −0.573606 −0.573606
\(137\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(138\) 0 0
\(139\) 0.137557 0.780125i 0.137557 0.780125i −0.835488 0.549509i \(-0.814815\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(140\) 0.130511 0.0475021i 0.130511 0.0475021i
\(141\) −0.819590 1.10090i −0.819590 1.10090i
\(142\) 0.137557 + 0.780125i 0.137557 + 0.780125i
\(143\) 0 0
\(144\) −0.835488 + 0.549509i −0.835488 + 0.549509i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.292609 + 0.310147i −0.292609 + 0.310147i
\(148\) 1.36912 + 1.14883i 1.36912 + 1.14883i
\(149\) 1.17365 + 0.984808i 1.17365 + 0.984808i 1.00000 \(0\)
0.173648 + 0.984808i \(0.444444\pi\)
\(150\) 0.282925 + 0.945034i 0.282925 + 0.945034i
\(151\) 0.109277 + 0.0397734i 0.109277 + 0.0397734i 0.396080 0.918216i \(-0.370370\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(152\) 0 0
\(153\) −0.227194 0.526695i −0.227194 0.526695i
\(154\) 0 0
\(155\) −0.00701312 0.0397734i −0.00701312 0.0397734i
\(156\) 0.396080 0.918216i 0.396080 0.918216i
\(157\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −0.0890830 + 0.0747496i −0.0890830 + 0.0747496i
\(161\) 0 0
\(162\) −0.835488 0.549509i −0.835488 0.549509i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.43969 + 0.524005i −1.43969 + 0.524005i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(168\) 0.473045 1.09664i 0.473045 1.09664i
\(169\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(170\) −0.0333522 0.0577678i −0.0333522 0.0577678i
\(171\) 0 0
\(172\) −0.973045 + 1.68536i −0.973045 + 1.68536i
\(173\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(174\) 0 0
\(175\) −0.902528 0.757311i −0.902528 0.757311i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.396080 + 0.686030i −0.396080 + 0.686030i −0.993238 0.116093i \(-0.962963\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(180\) −0.103920 0.0521907i −0.103920 0.0521907i
\(181\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(182\) 0.207391 + 1.17617i 0.207391 + 1.17617i
\(183\) 0 0
\(184\) 0 0
\(185\) −0.0360911 + 0.204683i −0.0360911 + 0.204683i
\(186\) −0.290162 0.190842i −0.290162 0.190842i
\(187\) 0 0
\(188\) −1.37248 −1.37248
\(189\) 1.19432 1.19432
\(190\) 0 0
\(191\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(192\) −0.0581448 + 0.998308i −0.0581448 + 0.998308i
\(193\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(194\) 0 0
\(195\) 0.115503 0.0135004i 0.115503 0.0135004i
\(196\) 0.0740425 + 0.419916i 0.0740425 + 0.419916i
\(197\) −0.597159 1.03431i −0.597159 1.03431i −0.993238 0.116093i \(-0.962963\pi\)
0.396080 0.918216i \(-0.370370\pi\)
\(198\) 0 0
\(199\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(200\) 0.926985 + 0.337395i 0.926985 + 0.337395i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) −0.558145 0.132283i −0.558145 0.132283i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −0.500000 0.866025i −0.500000 0.866025i
\(209\) 0 0
\(210\) 0.137948 0.0161238i 0.137948 0.0161238i
\(211\) 1.57020 0.571507i 1.57020 0.571507i 0.597159 0.802123i \(-0.296296\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(212\) 0 0
\(213\) −0.0460600 + 0.790819i −0.0460600 + 0.790819i
\(214\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(215\) −0.226310 −0.226310
\(216\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(217\) 0.414782 0.414782
\(218\) −1.05138 + 0.882215i −1.05138 + 0.882215i
\(219\) 0 0
\(220\) 0 0
\(221\) 0.539014 0.196185i 0.539014 0.196185i
\(222\) 1.06728 + 1.43361i 1.06728 + 1.43361i
\(223\) 0.337935 + 1.91652i 0.337935 + 1.91652i 0.396080 + 0.918216i \(0.370370\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(224\) −0.597159 1.03431i −0.597159 1.03431i
\(225\) 0.0573585 + 0.984808i 0.0573585 + 0.984808i
\(226\) 0.939693 1.62760i 0.939693 1.62760i
\(227\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(228\) 0 0
\(229\) −0.0890830 0.0747496i −0.0890830 0.0747496i 0.597159 0.802123i \(-0.296296\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.993238 1.72034i 0.993238 1.72034i 0.396080 0.918216i \(-0.370370\pi\)
0.597159 0.802123i \(-0.296296\pi\)
\(234\) 0.597159 0.802123i 0.597159 0.802123i
\(235\) −0.0798028 0.138223i −0.0798028 0.138223i
\(236\) 0 0
\(237\) 0 0
\(238\) 0.643753 0.234307i 0.643753 0.234307i
\(239\) 0.337935 1.91652i 0.337935 1.91652i −0.0581448 0.998308i \(-0.518519\pi\)
0.396080 0.918216i \(-0.370370\pi\)
\(240\) −0.103920 + 0.0521907i −0.103920 + 0.0521907i
\(241\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(242\) 1.00000 1.00000
\(243\) −0.686242 0.727374i −0.686242 0.727374i
\(244\) 0 0
\(245\) −0.0379844 + 0.0318727i −0.0379844 + 0.0318727i
\(246\) 0 0
\(247\) 0 0
\(248\) −0.326352 + 0.118782i −0.326352 + 0.118782i
\(249\) 0 0
\(250\) 0.0401139 + 0.227497i 0.0401139 + 0.227497i
\(251\) 0.939693 + 1.62760i 0.939693 + 1.62760i 0.766044 + 0.642788i \(0.222222\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(252\) 0.713197 0.957990i 0.713197 0.957990i
\(253\) 0 0
\(254\) 0 0
\(255\) −0.0191311 0.0639022i −0.0191311 0.0639022i
\(256\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(257\) 1.36912 + 1.14883i 1.36912 + 1.14883i 0.973045 + 0.230616i \(0.0740741\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(258\) −1.33549 + 1.41553i −1.33549 + 1.41553i
\(259\) −2.00583 0.730063i −2.00583 0.730063i
\(260\) 0.0581448 0.100710i 0.0581448 0.100710i
\(261\) 0 0
\(262\) 0.686242 + 1.18861i 0.686242 + 1.18861i
\(263\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) −0.0890830 0.0747496i −0.0890830 0.0747496i
\(271\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(272\) −0.439408 + 0.368707i −0.439408 + 0.368707i
\(273\) −0.0694434 + 1.19230i −0.0694434 + 1.19230i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(278\) −0.396080 0.686030i −0.396080 0.686030i
\(279\) −0.238329 0.252614i −0.238329 0.252614i
\(280\) 0.0694434 0.120279i 0.0694434 0.120279i
\(281\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(282\) −1.33549 0.316516i −1.33549 0.316516i
\(283\) −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i \(-0.888889\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(284\) 0.606829 + 0.509190i 0.606829 + 0.509190i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −0.286803 + 0.957990i −0.286803 + 0.957990i
\(289\) 0.335488 + 0.581082i 0.335488 + 0.581082i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0.137557 0.780125i 0.137557 0.780125i −0.835488 0.549509i \(-0.814815\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(294\) −0.0247926 + 0.425672i −0.0247926 + 0.425672i
\(295\) 0 0
\(296\) 1.78727 1.78727
\(297\) 0 0
\(298\) 1.53209 1.53209
\(299\) 0 0
\(300\) 0.824189 + 0.542078i 0.824189 + 0.542078i
\(301\) 0.403602 2.28894i 0.403602 2.28894i
\(302\) 0.109277 0.0397734i 0.109277 0.0397734i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) −0.512593 0.257434i −0.512593 0.257434i
\(307\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −0.0309382 0.0259602i −0.0309382 0.0259602i
\(311\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(312\) −0.286803 0.957990i −0.286803 0.957990i
\(313\) 1.57020 + 0.571507i 1.57020 + 0.571507i 0.973045 0.230616i \(-0.0740741\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(314\) 0 0
\(315\) 0.137948 + 0.0161238i 0.137948 + 0.0161238i
\(316\) 0 0
\(317\) −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.0201935 + 0.114523i −0.0201935 + 0.114523i
\(321\) −0.893633 + 0.448799i −0.893633 + 0.448799i
\(322\) 0 0
\(323\) 0 0
\(324\) −0.993238 + 0.116093i −0.993238 + 0.116093i
\(325\) −0.986477 −0.986477
\(326\) 0 0
\(327\) −1.22650 + 0.615969i −1.22650 + 0.615969i
\(328\) 0 0
\(329\) 1.54033 0.560633i 1.54033 0.560633i
\(330\) 0 0
\(331\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(332\) 0 0
\(333\) 0.707900 + 1.64110i 0.707900 + 1.64110i
\(334\) −0.766044 + 1.32683i −0.766044 + 1.32683i
\(335\) 0 0
\(336\) −0.342534 1.14414i −0.342534 1.14414i
\(337\) 0.606829 + 0.509190i 0.606829 + 0.509190i 0.893633 0.448799i \(-0.148148\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(338\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(339\) 1.28971 1.36702i 1.28971 1.36702i
\(340\) −0.0626817 0.0228143i −0.0626817 0.0228143i
\(341\) 0 0
\(342\) 0 0
\(343\) 0.342534 + 0.593286i 0.342534 + 0.593286i
\(344\) 0.337935 + 1.91652i 0.337935 + 1.91652i
\(345\) 0 0
\(346\) 0 0
\(347\) 0.310355 1.76011i 0.310355 1.76011i −0.286803 0.957990i \(-0.592593\pi\)
0.597159 0.802123i \(-0.296296\pi\)
\(348\) 0 0
\(349\) −1.28004 + 1.07408i −1.28004 + 1.07408i −0.286803 + 0.957990i \(0.592593\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(350\) −1.17817 −1.17817
\(351\) 0.766044 0.642788i 0.766044 0.642788i
\(352\) 0 0
\(353\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(354\) 0 0
\(355\) −0.0159965 + 0.0907205i −0.0159965 + 0.0907205i
\(356\) 0 0
\(357\) 0.680436 0.0795315i 0.680436 0.0795315i
\(358\) 0.137557 + 0.780125i 0.137557 + 0.780125i
\(359\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(360\) −0.113155 + 0.0268182i −0.113155 + 0.0268182i
\(361\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(362\) 0 0
\(363\) 0.973045 + 0.230616i 0.973045 + 0.230616i
\(364\) 0.914900 + 0.767692i 0.914900 + 0.767692i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0.103920 + 0.179995i 0.103920 + 0.179995i
\(371\) 0 0
\(372\) −0.344948 + 0.0403186i −0.344948 + 0.0403186i
\(373\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(374\) 0 0
\(375\) −0.0134318 + 0.230616i −0.0134318 + 0.230616i
\(376\) −1.05138 + 0.882215i −1.05138 + 0.882215i
\(377\) 0 0
\(378\) 0.914900 0.767692i 0.914900 0.767692i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.86668 0.679415i 1.86668 0.679415i 0.893633 0.448799i \(-0.148148\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(384\) 0.597159 + 0.802123i 0.597159 + 0.802123i
\(385\) 0 0
\(386\) 0 0
\(387\) −1.62593 + 1.06939i −1.62593 + 1.06939i
\(388\) 0 0
\(389\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(390\) 0.0798028 0.0845860i 0.0798028 0.0845860i
\(391\) 0 0
\(392\) 0.326636 + 0.274080i 0.326636 + 0.274080i
\(393\) 0.393633 + 1.31482i 0.393633 + 1.31482i
\(394\) −1.12229 0.408481i −1.12229 0.408481i
\(395\) 0 0
\(396\) 0 0
\(397\) −0.766044 1.32683i −0.766044 1.32683i −0.939693 0.342020i \(-0.888889\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0.926985 0.337395i 0.926985 0.337395i
\(401\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(402\) 0 0
\(403\) 0.266044 0.223238i 0.266044 0.223238i
\(404\) 0 0
\(405\) −0.0694434 0.0932786i −0.0694434 0.0932786i
\(406\) 0 0
\(407\) 0 0
\(408\) −0.512593 + 0.257434i −0.512593 + 0.257434i
\(409\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −0.939693 0.342020i −0.939693 0.342020i
\(417\) −0.227194 0.758881i −0.227194 0.758881i
\(418\) 0 0
\(419\) −0.0890830 0.0747496i −0.0890830 0.0747496i 0.597159 0.802123i \(-0.296296\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(420\) 0.0953099 0.101023i 0.0953099 0.101023i
\(421\) 1.86668 + 0.679415i 1.86668 + 0.679415i 0.973045 + 0.230616i \(0.0740741\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(422\) 0.835488 1.44711i 0.835488 1.44711i
\(423\) −1.22650 0.615969i −1.22650 0.615969i
\(424\) 0 0
\(425\) 0.0982587 + 0.557253i 0.0982587 + 0.557253i
\(426\) 0.473045 + 0.635410i 0.473045 + 0.635410i
\(427\) 0 0
\(428\) −0.173648 + 0.984808i −0.173648 + 0.984808i
\(429\) 0 0
\(430\) −0.173364 + 0.145469i −0.173364 + 0.145469i
\(431\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(432\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(433\) 1.19432 1.19432 0.597159 0.802123i \(-0.296296\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(434\) 0.317741 0.266617i 0.317741 0.266617i
\(435\) 0 0
\(436\) −0.238329 + 1.35163i −0.238329 + 1.35163i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(440\) 0 0
\(441\) −0.122291 + 0.408481i −0.122291 + 0.408481i
\(442\) 0.286803 0.496758i 0.286803 0.496758i
\(443\) −0.744386 0.270935i −0.744386 0.270935i −0.0581448 0.998308i \(-0.518519\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(444\) 1.73909 + 0.412172i 1.73909 + 0.412172i
\(445\) 0 0
\(446\) 1.49079 + 1.25092i 1.49079 + 1.25092i
\(447\) 1.49079 + 0.353324i 1.49079 + 0.353324i
\(448\) −1.12229 0.408481i −1.12229 0.408481i
\(449\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(450\) 0.676961 + 0.717537i 0.676961 + 0.717537i
\(451\) 0 0
\(452\) −0.326352 1.85083i −0.326352 1.85083i
\(453\) 0.115503 0.0135004i 0.115503 0.0135004i
\(454\) 0 0
\(455\) −0.0241174 + 0.136777i −0.0241174 + 0.136777i
\(456\) 0 0
\(457\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(458\) −0.116290 −0.116290
\(459\) −0.439408 0.368707i −0.439408 0.368707i
\(460\) 0 0
\(461\) −1.52173 + 1.27688i −1.52173 + 1.27688i −0.686242 + 0.727374i \(0.740741\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(462\) 0 0
\(463\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(464\) 0 0
\(465\) −0.0241174 0.0323953i −0.0241174 0.0323953i
\(466\) −0.344948 1.95630i −0.344948 1.95630i
\(467\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(468\) −0.0581448 0.998308i −0.0581448 0.998308i
\(469\) 0 0
\(470\) −0.149980 0.0545883i −0.149980 0.0545883i
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0.342534 0.593286i 0.342534 0.593286i
\(477\) 0 0
\(478\) −0.973045 1.68536i −0.973045 1.68536i
\(479\) −0.290162 1.64559i −0.290162 1.64559i −0.686242 0.727374i \(-0.740741\pi\)
0.396080 0.918216i \(-0.370370\pi\)
\(480\) −0.0460600 + 0.106779i −0.0460600 + 0.106779i
\(481\) −1.67948 + 0.611281i −1.67948 + 0.611281i
\(482\) 0 0
\(483\) 0 0
\(484\) 0.766044 0.642788i 0.766044 0.642788i
\(485\) 0 0
\(486\) −0.993238 0.116093i −0.993238 0.116093i
\(487\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −0.00861037 + 0.0488318i −0.00861037 + 0.0488318i
\(491\) −1.82873 + 0.665602i −1.82873 + 0.665602i −0.835488 + 0.549509i \(0.814815\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.173648 + 0.300767i −0.173648 + 0.300767i
\(497\) −0.889034 0.323582i −0.889034 0.323582i
\(498\) 0 0
\(499\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(500\) 0.176961 + 0.148488i 0.176961 + 0.148488i
\(501\) −1.05138 + 1.11440i −1.05138 + 1.11440i
\(502\) 1.76604 + 0.642788i 1.76604 + 0.642788i
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) −0.0694434 1.19230i −0.0694434 1.19230i
\(505\) 0 0
\(506\) 0 0
\(507\) 0.597159 + 0.802123i 0.597159 + 0.802123i
\(508\) 0 0
\(509\) 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i \(-0.666667\pi\)
0.766044 0.642788i \(-0.222222\pi\)
\(510\) −0.0557308 0.0366547i −0.0557308 0.0366547i
\(511\) 0 0
\(512\) 1.00000 1.00000
\(513\) 0 0
\(514\) 1.78727 1.78727
\(515\) 0 0
\(516\) −0.113155 + 1.94280i −0.113155 + 1.94280i
\(517\) 0 0
\(518\) −2.00583 + 0.730063i −2.00583 + 0.730063i
\(519\) 0 0
\(520\) −0.0201935 0.114523i −0.0201935 0.114523i
\(521\) −0.893633 1.54782i −0.893633 1.54782i −0.835488 0.549509i \(-0.814815\pi\)
−0.0581448 0.998308i \(-0.518519\pi\)
\(522\) 0 0
\(523\) −0.766044 + 1.32683i −0.766044 + 1.32683i 0.173648 + 0.984808i \(0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(524\) 1.28971 + 0.469417i 1.28971 + 0.469417i
\(525\) −1.14641 0.271704i −1.14641 0.271704i
\(526\) 0 0
\(527\) −0.152605 0.128051i −0.152605 0.128051i
\(528\) 0 0
\(529\) −0.939693 0.342020i −0.939693 0.342020i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −0.109277 + 0.0397734i −0.109277 + 0.0397734i
\(536\) 0 0
\(537\) −0.0460600 + 0.790819i −0.0460600 + 0.790819i
\(538\) 0 0
\(539\) 0 0
\(540\) −0.116290 −0.116290
\(541\) 0.792160 0.792160 0.396080 0.918216i \(-0.370370\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(542\) −1.28004 + 1.07408i −1.28004 + 1.07408i
\(543\) 0 0
\(544\) −0.0996057 + 0.564892i −0.0996057 + 0.564892i
\(545\) −0.149980 + 0.0545883i −0.149980 + 0.0545883i
\(546\) 0.713197 + 0.957990i 0.713197 + 0.957990i
\(547\) −0.290162 1.64559i −0.290162 1.64559i −0.686242 0.727374i \(-0.740741\pi\)
0.396080 0.918216i \(-0.370370\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0.0596093 + 0.199109i 0.0596093 + 0.199109i
\(556\) −0.744386 0.270935i −0.744386 0.270935i
\(557\) 0.686242 1.18861i 0.686242 1.18861i −0.286803 0.957990i \(-0.592593\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(558\) −0.344948 0.0403186i −0.344948 0.0403186i
\(559\) −0.973045 1.68536i −0.973045 1.68536i
\(560\) −0.0241174 0.136777i −0.0241174 0.136777i
\(561\) 0 0
\(562\) 0 0
\(563\) −0.344948 + 1.95630i −0.344948 + 1.95630i −0.0581448 + 0.998308i \(0.518519\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(564\) −1.22650 + 0.615969i −1.22650 + 0.615969i
\(565\) 0.167421 0.140483i 0.167421 0.140483i
\(566\) −1.87939 −1.87939
\(567\) 1.06728 0.536009i 1.06728 0.536009i
\(568\) 0.792160 0.792160
\(569\) −1.28004 + 1.07408i −1.28004 + 1.07408i −0.286803 + 0.957990i \(0.592593\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(570\) 0 0
\(571\) −0.0996057 + 0.564892i −0.0996057 + 0.564892i 0.893633 + 0.448799i \(0.148148\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.396080 + 0.918216i 0.396080 + 0.918216i
\(577\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(578\) 0.630511 + 0.229487i 0.630511 + 0.229487i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0.0971586 0.0639022i 0.0971586 0.0639022i
\(586\) −0.396080 0.686030i −0.396080 0.686030i
\(587\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(588\) 0.254625 + 0.342020i 0.254625 + 0.342020i
\(589\) 0 0
\(590\) 0 0
\(591\) −0.997837 0.656288i −0.997837 0.656288i
\(592\) 1.36912 1.14883i 1.36912 1.14883i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0.0796663 0.0796663
\(596\) 1.17365 0.984808i 1.17365 0.984808i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(600\) 0.979807 0.114523i 0.979807 0.114523i
\(601\) 0.337935 + 1.91652i 0.337935 + 1.91652i 0.396080 + 0.918216i \(0.370370\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(602\) −1.16212 2.01286i −1.16212 2.01286i
\(603\) 0 0
\(604\) 0.0581448 0.100710i 0.0581448 0.100710i
\(605\) 0.109277 + 0.0397734i 0.109277 + 0.0397734i
\(606\) 0 0
\(607\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.686242 1.18861i 0.686242 1.18861i
\(612\) −0.558145 + 0.132283i −0.558145 + 0.132283i
\(613\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(618\) 0 0
\(619\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(620\) −0.0403870 −0.0403870
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −0.835488 0.549509i −0.835488 0.549509i
\(625\) 0.166635 0.945034i 0.166635 0.945034i
\(626\) 1.57020 0.571507i 1.57020 0.571507i
\(627\) 0 0
\(628\) 0 0
\(629\) 0.512593 + 0.887838i 0.512593 + 0.887838i
\(630\) 0.116038 0.0763195i 0.116038 0.0763195i
\(631\) 0.286803 0.496758i 0.286803 0.496758i −0.686242 0.727374i \(-0.740741\pi\)
0.973045 + 0.230616i \(0.0740741\pi\)
\(632\) 0 0
\(633\) 1.14669 1.21542i 1.14669 1.21542i
\(634\) −1.43969 1.20805i −1.43969 1.20805i
\(635\) 0 0
\(636\) 0 0
\(637\) −0.400679 0.145835i −0.400679 0.145835i
\(638\) 0 0
\(639\) 0.313758 + 0.727374i 0.313758 + 0.727374i
\(640\) 0.0581448 + 0.100710i 0.0581448 + 0.100710i
\(641\) 0.266044 + 1.50881i 0.266044 + 1.50881i 0.766044 + 0.642788i \(0.222222\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) −0.396080 + 0.918216i −0.396080 + 0.918216i
\(643\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(644\) 0 0
\(645\) −0.202238 + 0.101568i −0.202238 + 0.101568i
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −0.686242 + 0.727374i −0.686242 + 0.727374i
\(649\) 0 0
\(650\) −0.755685 + 0.634095i −0.755685 + 0.634095i
\(651\) 0.370663 0.186154i 0.370663 0.186154i
\(652\) 0 0
\(653\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(654\) −0.543613 + 1.26024i −0.543613 + 1.26024i
\(655\) 0.0277152 + 0.157181i 0.0277152 + 0.157181i
\(656\) 0 0
\(657\) 0 0
\(658\) 0.819590 1.41957i 0.819590 1.41957i
\(659\) −0.326352 0.118782i −0.326352 0.118782i 0.173648 0.984808i \(-0.444444\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) −0.766044 0.642788i −0.766044 0.642788i 0.173648 0.984808i \(-0.444444\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(662\) 0 0
\(663\) 0.393633 0.417226i 0.393633 0.417226i
\(664\) 0 0
\(665\) 0 0
\(666\) 1.59716 + 0.802123i 1.59716 + 0.802123i
\(667\) 0 0
\(668\) 0.266044 + 1.50881i 0.266044 + 1.50881i
\(669\) 1.16212 + 1.56100i 1.16212 + 1.56100i
\(670\) 0 0
\(671\) 0 0
\(672\) −0.997837 0.656288i −0.997837 0.656288i
\(673\) 1.36912 1.14883i 1.36912 1.14883i 0.396080 0.918216i \(-0.370370\pi\)
0.973045 0.230616i \(-0.0740741\pi\)
\(674\) 0.792160 0.792160
\(675\) 0.493238 + 0.854314i 0.493238 + 0.854314i
\(676\) 1.00000 1.00000
\(677\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(678\) 0.109277 1.87621i 0.109277 1.87621i
\(679\) 0 0
\(680\) −0.0626817 + 0.0228143i −0.0626817 + 0.0228143i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.643753 + 0.234307i 0.643753 + 0.234307i
\(687\) −0.113155 0.0268182i −0.113155 0.0268182i
\(688\) 1.49079 + 1.25092i 1.49079 + 1.25092i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −0.893633 1.54782i −0.893633 1.54782i
\(695\) −0.0159965 0.0907205i −0.0159965 0.0907205i
\(696\) 0 0
\(697\) 0 0
\(698\) −0.290162 + 1.64559i −0.290162 + 1.64559i
\(699\) 0.115503 1.98312i 0.115503 1.98312i
\(700\) −0.902528 + 0.757311i −0.902528 + 0.757311i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0.173648 0.984808i 0.173648 0.984808i
\(703\) 0 0
\(704\) 0 0
\(705\) −0.133349 0.0877047i −0.133349 0.0877047i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 \(0\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(710\) 0.0460600 + 0.0797782i 0.0460600 + 0.0797782i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0.470122 0.498300i 0.470122 0.498300i
\(715\) 0 0
\(716\) 0.606829 + 0.509190i 0.606829 + 0.509190i
\(717\) −0.558145 1.86433i −0.558145 1.86433i
\(718\) −0.326352 0.118782i −0.326352 0.118782i
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) −0.0694434 + 0.0932786i −0.0694434 + 0.0932786i
\(721\) 0 0
\(722\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0.893633 0.448799i 0.893633 0.448799i
\(727\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(728\) 1.19432 1.19432
\(729\) −0.939693 0.342020i −0.939693 0.342020i
\(730\) 0 0
\(731\) −0.855127 + 0.717537i −0.855127 + 0.717537i
\(732\) 0 0
\(733\) −0.344948 + 1.95630i −0.344948 + 1.95630i −0.0581448 + 0.998308i \(0.518519\pi\)
−0.286803 + 0.957990i \(0.592593\pi\)
\(734\) 0 0
\(735\) −0.0196397 + 0.0455299i −0.0196397 + 0.0455299i
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(740\) 0.195306 + 0.0710856i 0.195306 + 0.0710856i
\(741\) 0 0
\(742\) 0 0
\(743\) 1.49079 + 1.25092i 1.49079 + 1.25092i 0.893633 + 0.448799i \(0.148148\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(744\) −0.238329 + 0.252614i −0.238329 + 0.252614i
\(745\) 0.167421 + 0.0609364i 0.167421 + 0.0609364i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.207391 1.17617i −0.207391 1.17617i
\(750\) 0.137948 + 0.185296i 0.137948 + 0.185296i
\(751\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(752\) −0.238329 + 1.35163i −0.238329 + 1.35163i
\(753\) 1.57020 + 1.03274i 1.57020 + 1.03274i
\(754\) 0 0
\(755\) 0.0135233 0.0135233
\(756\) 0.207391 1.17617i 0.207391 1.17617i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(762\) 0 0
\(763\) −0.284641 1.61428i −0.284641 1.61428i
\(764\) 0 0
\(765\) −0.0457754 0.0485191i −0.0457754 0.0485191i
\(766\) 0.993238 1.72034i 0.993238 1.72034i
\(767\) 0 0
\(768\) 0.973045 + 0.230616i 0.973045 + 0.230616i
\(769\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(770\) 0 0
\(771\) 1.73909 + 0.412172i 1.73909 + 0.412172i
\(772\) 0 0
\(773\) −0.973045 + 1.68536i −0.973045 + 1.68536i −0.286803 + 0.957990i \(0.592593\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(774\) −0.558145 + 1.86433i −0.558145 + 1.86433i
\(775\) 0.171300 + 0.296700i 0.171300 + 0.296700i
\(776\) 0 0
\(777\) −2.12013 + 0.247807i −2.12013 + 0.247807i
\(778\) 0 0
\(779\) 0 0
\(780\) 0.00676164 0.116093i 0.00676164 0.116093i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.426394 0.426394
\(785\) 0 0
\(786\) 1.14669 + 0.754192i 1.14669 + 0.754192i
\(787\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(788\) −1.12229 + 0.408481i −1.12229 + 0.408481i
\(789\) 0 0
\(790\) 0 0
\(791\) 1.12229 + 1.94387i 1.12229 + 1.94387i
\(792\) 0 0
\(793\) 0 0
\(794\) −1.43969 0.524005i −1.43969 0.524005i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(798\) 0 0
\(799\) −0.739787 0.269261i −0.739787 0.269261i
\(800\) 0.493238 0.854314i 0.493238 0.854314i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0.0603074 0.342020i 0.0603074 0.342020i
\(807\) 0 0
\(808\) 0 0
\(809\) −1.37248 −1.37248 −0.686242 0.727374i \(-0.740741\pi\)
−0.686242 + 0.727374i \(0.740741\pi\)
\(810\) −0.113155 0.0268182i −0.113155 0.0268182i
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) −1.49324 + 0.749932i −1.49324 + 0.749932i
\(814\) 0 0
\(815\) 0 0
\(816\) −0.227194 + 0.526695i −0.227194 + 0.526695i
\(817\) 0 0
\(818\) 0 0
\(819\) 0.473045 + 1.09664i 0.473045 + 1.09664i
\(820\) 0 0
\(821\) 0.539014 + 0.196185i 0.539014 + 0.196185i 0.597159 0.802123i \(-0.296296\pi\)
−0.0581448 + 0.998308i \(0.518519\pi\)
\(822\) 0 0
\(823\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(828\) 0 0
\(829\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.939693 + 0.342020i −0.939693 + 0.342020i
\(833\) −0.0424712 + 0.240866i −0.0424712 + 0.240866i
\(834\) −0.661840 0.435299i −0.661840 0.435299i
\(835\) −0.136483 + 0.114523i −0.136483 + 0.114523i
\(836\) 0 0
\(837\) −0.326352 0.118782i −0.326352 0.118782i
\(838\) −0.116290 −0.116290
\(839\) −1.43969 + 1.20805i −1.43969 + 1.20805i −0.500000 + 0.866025i \(0.666667\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(840\) 0.00807555 0.138652i 0.00807555 0.138652i
\(841\) 0.173648 0.984808i 0.173648 0.984808i
\(842\) 1.86668 0.679415i 1.86668 0.679415i
\(843\) 0 0
\(844\) −0.290162 1.64559i −0.290162 1.64559i
\(845\) 0.0581448 + 0.100710i 0.0581448 + 0.100710i
\(846\) −1.33549 + 0.316516i −1.33549 + 0.316516i
\(847\) −0.597159 + 1.03431i −0.597159 + 1.03431i
\(848\) 0 0
\(849\) −1.82873 0.433416i −1.82873 0.433416i
\(850\) 0.433466 + 0.363721i 0.433466 + 0.363721i
\(851\) 0 0
\(852\) 0.770807 + 0.182685i 0.770807 + 0.182685i
\(853\) 1.28971 + 0.469417i 1.28971 + 0.469417i 0.893633 0.448799i \(-0.148148\pi\)
0.396080 + 0.918216i \(0.370370\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(857\) −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i \(-0.666667\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(858\) 0 0
\(859\) 1.76604 0.642788i 1.76604 0.642788i 0.766044 0.642788i \(-0.222222\pi\)
1.00000 \(0\)
\(860\) −0.0392983 + 0.222872i −0.0392983 + 0.222872i
\(861\) 0 0
\(862\) 1.36912 1.14883i 1.36912 1.14883i
\(863\) −1.67098 −1.67098 −0.835488 0.549509i \(-0.814815\pi\)
−0.835488 + 0.549509i \(0.814815\pi\)
\(864\) 0.173648 + 0.984808i 0.173648 + 0.984808i
\(865\) 0 0
\(866\) 0.914900 0.767692i 0.914900 0.767692i
\(867\) 0.560592 + 0.368707i 0.560592 + 0.368707i
\(868\) 0.0720261 0.408481i 0.0720261 0.408481i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0.686242 + 1.18861i 0.686242 + 1.18861i
\(873\) 0 0
\(874\) 0 0
\(875\) −0.259257 0.0943617i −0.259257 0.0943617i
\(876\) 0 0
\(877\) −1.28004 1.07408i −1.28004 1.07408i −0.993238 0.116093i \(-0.962963\pi\)
−0.286803 0.957990i \(-0.592593\pi\)
\(878\) 0 0
\(879\) −0.227194 0.758881i −0.227194 0.758881i
\(880\) 0 0
\(881\) 0.835488 1.44711i 0.835488 1.44711i −0.0581448 0.998308i \(-0.518519\pi\)
0.893633 0.448799i \(-0.148148\pi\)
\(882\) 0.168886 + 0.391521i 0.168886 + 0.391521i
\(883\) −0.893633 1.54782i −0.893633 1.54782i −0.835488 0.549509i \(-0.814815\pi\)
−0.0581448 0.998308i \(-0.518519\pi\)
\(884\) −0.0996057 0.564892i −0.0996057 0.564892i
\(885\) 0 0
\(886\) −0.744386 + 0.270935i −0.744386 + 0.270935i
\(887\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(888\) 1.59716 0.802123i 1.59716 0.802123i
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 1.94609 1.94609
\(893\) 0 0
\(894\) 1.36912 0.687600i 1.36912 0.687600i
\(895\) −0.0159965 + 0.0907205i −0.0159965 + 0.0907205i
\(896\) −1.12229 + 0.408481i −1.12229 + 0.408481i
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0.979807 + 0.114523i 0.979807 + 0.114523i
\(901\) 0 0
\(902\) 0 0
\(903\) −0.666602 2.22661i −0.666602 2.22661i
\(904\) −1.43969 1.20805i −1.43969 1.20805i
\(905\) 0 0
\(906\) 0.0798028 0.0845860i 0.0798028 0.0845860i
\(907\) 1.86668 + 0.679415i 1.86668 + 0.679415i 0.973045 + 0.230616i \(0.0740741\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0.0694434 + 0.120279i 0.0694434 + 0.120279i
\(911\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −0.0890830 + 0.0747496i −0.0890830 + 0.0747496i
\(917\) −1.63918 −1.63918
\(918\) −0.573606 −0.573606
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −0.344948 + 1.95630i −0.344948 + 1.95630i
\(923\) −0.744386 + 0.270935i −0.744386 + 0.270935i
\(924\) 0 0
\(925\) −0.306158 1.73631i −0.306158 1.73631i
\(926\) −0.766044 1.32683i −0.766044 1.32683i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(930\) −0.0392983 0.00931388i −0.0392983 0.00931388i
\(931\) 0 0
\(932\) −1.52173 1.27688i −1.52173 1.27688i
\(933\) 0 0
\(934\) −0.326352 0.118782i −0.326352 0.118782i
\(935\) 0 0
\(936\) −0.686242 0.727374i −0.686242 0.727374i
\(937\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(938\) 0 0
\(939\) 1.65968 0.193988i 1.65968 0.193988i
\(940\) −0.149980 + 0.0545883i −0.149980 + 0.0545883i
\(941\) 0.207391 1.17617i 0.207391 1.17617i −0.686242 0.727374i \(-0.740741\pi\)
0.893633 0.448799i \(-0.148148\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0.130511 0.0475021i 0.130511 0.0475021i
\(946\) 0 0
\(947\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −1.12229 1.50750i −1.12229 1.50750i
\(952\) −0.118961 0.674660i −0.118961 0.674660i
\(953\) −0.396080 0.686030i −0.396080 0.686030i 0.597159 0.802123i \(-0.296296\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −1.82873 0.665602i −1.82873 0.665602i
\(957\) 0 0
\(958\) −1.28004 1.07408i −1.28004 1.07408i
\(959\) 0 0
\(960\) 0.0333522 + 0.111404i 0.0333522 + 0.111404i
\(961\) 0.826352 + 0.300767i 0.826352 + 0.300767i
\(962\) −0.893633 + 1.54782i −0.893633 + 1.54782i
\(963\) −0.597159 + 0.802123i −0.597159 + 0.802123i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0.539014 0.196185i 0.539014 0.196185i −0.0581448 0.998308i \(-0.518519\pi\)
0.597159 + 0.802123i \(0.296296\pi\)
\(968\) 0.173648 0.984808i 0.173648 0.984808i
\(969\) 0 0
\(970\) 0 0
\(971\) 1.78727 1.78727 0.893633 0.448799i \(-0.148148\pi\)
0.893633 + 0.448799i \(0.148148\pi\)
\(972\) −0.835488 + 0.549509i −0.835488 + 0.549509i
\(973\) 0.946090 0.946090
\(974\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(975\) −0.881548 + 0.442730i −0.881548 + 0.442730i
\(976\) 0 0
\(977\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0.0247926 + 0.0429420i 0.0247926 + 0.0429420i
\(981\) −0.819590 + 1.10090i −0.819590 + 1.10090i
\(982\) −0.973045 + 1.68536i −0.973045 + 1.68536i
\(983\) −1.67948 0.611281i −1.67948 0.611281i −0.686242 0.727374i \(-0.740741\pi\)
−0.993238 + 0.116093i \(0.962963\pi\)
\(984\) 0 0
\(985\) −0.106393 0.0892747i −0.106393 0.0892747i
\(986\) 0 0
\(987\) 1.12487 1.19230i 1.12487 1.19230i
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0.0603074 + 0.342020i 0.0603074 + 0.342020i
\(993\) 0 0
\(994\) −0.889034 + 0.323582i −0.889034 + 0.323582i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(998\) 0 0
\(999\) 1.36912 + 1.14883i 1.36912 + 1.14883i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2808.1.fi.a.1507.3 yes 18
8.3 odd 2 2808.1.fi.b.1507.3 yes 18
13.12 even 2 2808.1.fi.b.1507.3 yes 18
27.16 even 9 inner 2808.1.fi.a.259.3 18
104.51 odd 2 CM 2808.1.fi.a.1507.3 yes 18
216.43 odd 18 2808.1.fi.b.259.3 yes 18
351.259 even 18 2808.1.fi.b.259.3 yes 18
2808.259 odd 18 inner 2808.1.fi.a.259.3 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2808.1.fi.a.259.3 18 27.16 even 9 inner
2808.1.fi.a.259.3 18 2808.259 odd 18 inner
2808.1.fi.a.1507.3 yes 18 1.1 even 1 trivial
2808.1.fi.a.1507.3 yes 18 104.51 odd 2 CM
2808.1.fi.b.259.3 yes 18 216.43 odd 18
2808.1.fi.b.259.3 yes 18 351.259 even 18
2808.1.fi.b.1507.3 yes 18 8.3 odd 2
2808.1.fi.b.1507.3 yes 18 13.12 even 2