L(s) = 1 | + (0.766 − 0.642i)2-s + (0.893 − 0.448i)3-s + (0.173 − 0.984i)4-s + (0.109 − 0.0397i)5-s + (0.396 − 0.918i)6-s + (0.207 + 1.17i)7-s + (−0.500 − 0.866i)8-s + (0.597 − 0.802i)9-s + (0.0581 − 0.100i)10-s + (−0.286 − 0.957i)12-s + (0.766 + 0.642i)13-s + (0.914 + 0.767i)14-s + (0.0798 − 0.0845i)15-s + (−0.939 − 0.342i)16-s + (0.286 − 0.496i)17-s + (−0.0581 − 0.998i)18-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)2-s + (0.893 − 0.448i)3-s + (0.173 − 0.984i)4-s + (0.109 − 0.0397i)5-s + (0.396 − 0.918i)6-s + (0.207 + 1.17i)7-s + (−0.500 − 0.866i)8-s + (0.597 − 0.802i)9-s + (0.0581 − 0.100i)10-s + (−0.286 − 0.957i)12-s + (0.766 + 0.642i)13-s + (0.914 + 0.767i)14-s + (0.0798 − 0.0845i)15-s + (−0.939 − 0.342i)16-s + (0.286 − 0.496i)17-s + (−0.0581 − 0.998i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.230 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.230 + 0.973i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.653186459\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.653186459\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.766 + 0.642i)T \) |
| 3 | \( 1 + (-0.893 + 0.448i)T \) |
| 13 | \( 1 + (-0.766 - 0.642i)T \) |
good | 5 | \( 1 + (-0.109 + 0.0397i)T + (0.766 - 0.642i)T^{2} \) |
| 7 | \( 1 + (-0.207 - 1.17i)T + (-0.939 + 0.342i)T^{2} \) |
| 11 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (-0.286 + 0.496i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 + (-0.0603 + 0.342i)T + (-0.939 - 0.342i)T^{2} \) |
| 37 | \( 1 + (0.893 - 1.54i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 43 | \( 1 + (1.82 + 0.665i)T + (0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (0.238 + 1.35i)T + (-0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 61 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 67 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 71 | \( 1 + (0.396 - 0.686i)T + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.784124703206931105091936203753, −8.353837043764479076825217022528, −7.14412252839146661867369823515, −6.47186899339747576466679552949, −5.64722315591862443949553364758, −4.88013922135501858287453646265, −3.78238688248264972730017475368, −3.12406955494354369946142990860, −2.15328369361955835982701994410, −1.50567401801824365175759949107,
1.71128944440918932324335052613, 3.00298433010399945676720881433, 3.71502273206298616707194809730, 4.28304481068395838560748998743, 5.15490881924780048648751076212, 6.07258071800027587578930180276, 6.94491182033206946677162531466, 7.72846349674225155031361533003, 8.145124334667972385685403325166, 8.889206156659653251659959715504