Properties

Label 280.6.g.a.169.9
Level $280$
Weight $6$
Character 280.169
Analytic conductor $44.907$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [280,6,Mod(169,280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("280.169"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 280.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.9074695476\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 2997 x^{18} + 3735306 x^{16} + 2520827714 x^{14} + 1008202629141 x^{12} + 246520004342481 x^{10} + \cdots + 81\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{25}\cdot 5^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 169.9
Root \(-5.80939i\) of defining polynomial
Character \(\chi\) \(=\) 280.169
Dual form 280.6.g.a.169.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.80939i q^{3} +(49.5511 + 25.8783i) q^{5} -49.0000i q^{7} +209.251 q^{9} +415.954 q^{11} -419.172i q^{13} +(150.337 - 287.862i) q^{15} +47.1504i q^{17} -1300.43 q^{19} -284.660 q^{21} +887.588i q^{23} +(1785.63 + 2564.60i) q^{25} -2627.30i q^{27} +7316.18 q^{29} -3107.24 q^{31} -2416.44i q^{33} +(1268.04 - 2428.00i) q^{35} +3814.15i q^{37} -2435.13 q^{39} +2049.14 q^{41} +8664.30i q^{43} +(10368.6 + 5415.06i) q^{45} -12342.9i q^{47} -2401.00 q^{49} +273.915 q^{51} -12300.2i q^{53} +(20611.0 + 10764.2i) q^{55} +7554.69i q^{57} -11957.5 q^{59} +16409.6 q^{61} -10253.3i q^{63} +(10847.5 - 20770.4i) q^{65} -28933.1i q^{67} +5156.34 q^{69} +65207.9 q^{71} -54723.1i q^{73} +(14898.7 - 10373.4i) q^{75} -20381.7i q^{77} +27902.0 q^{79} +35585.0 q^{81} -93273.4i q^{83} +(-1220.17 + 2336.36i) q^{85} -42502.5i q^{87} +127515. q^{89} -20539.4 q^{91} +18051.1i q^{93} +(-64437.7 - 33652.9i) q^{95} +102289. i q^{97} +87038.8 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 14 q^{5} - 1134 q^{9} + 822 q^{11} + 1322 q^{15} + 3000 q^{19} - 882 q^{21} - 1944 q^{25} + 10406 q^{29} - 8532 q^{31} - 2058 q^{35} + 71066 q^{39} - 28880 q^{41} - 3922 q^{45} - 48020 q^{49} + 34770 q^{51}+ \cdots - 630244 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 5.80939i 0.372672i −0.982486 0.186336i \(-0.940339\pi\)
0.982486 0.186336i \(-0.0596614\pi\)
\(4\) 0 0
\(5\) 49.5511 + 25.8783i 0.886397 + 0.462925i
\(6\) 0 0
\(7\) 49.0000i 0.377964i
\(8\) 0 0
\(9\) 209.251 0.861115
\(10\) 0 0
\(11\) 415.954 1.03649 0.518243 0.855233i \(-0.326586\pi\)
0.518243 + 0.855233i \(0.326586\pi\)
\(12\) 0 0
\(13\) 419.172i 0.687913i −0.938986 0.343957i \(-0.888233\pi\)
0.938986 0.343957i \(-0.111767\pi\)
\(14\) 0 0
\(15\) 150.337 287.862i 0.172519 0.330336i
\(16\) 0 0
\(17\) 47.1504i 0.0395698i 0.999804 + 0.0197849i \(0.00629813\pi\)
−0.999804 + 0.0197849i \(0.993702\pi\)
\(18\) 0 0
\(19\) −1300.43 −0.826423 −0.413212 0.910635i \(-0.635593\pi\)
−0.413212 + 0.910635i \(0.635593\pi\)
\(20\) 0 0
\(21\) −284.660 −0.140857
\(22\) 0 0
\(23\) 887.588i 0.349858i 0.984581 + 0.174929i \(0.0559696\pi\)
−0.984581 + 0.174929i \(0.944030\pi\)
\(24\) 0 0
\(25\) 1785.63 + 2564.60i 0.571400 + 0.820671i
\(26\) 0 0
\(27\) 2627.30i 0.693586i
\(28\) 0 0
\(29\) 7316.18 1.61543 0.807717 0.589571i \(-0.200703\pi\)
0.807717 + 0.589571i \(0.200703\pi\)
\(30\) 0 0
\(31\) −3107.24 −0.580724 −0.290362 0.956917i \(-0.593776\pi\)
−0.290362 + 0.956917i \(0.593776\pi\)
\(32\) 0 0
\(33\) 2416.44i 0.386270i
\(34\) 0 0
\(35\) 1268.04 2428.00i 0.174969 0.335027i
\(36\) 0 0
\(37\) 3814.15i 0.458029i 0.973423 + 0.229015i \(0.0735503\pi\)
−0.973423 + 0.229015i \(0.926450\pi\)
\(38\) 0 0
\(39\) −2435.13 −0.256366
\(40\) 0 0
\(41\) 2049.14 0.190376 0.0951878 0.995459i \(-0.469655\pi\)
0.0951878 + 0.995459i \(0.469655\pi\)
\(42\) 0 0
\(43\) 8664.30i 0.714599i 0.933990 + 0.357300i \(0.116302\pi\)
−0.933990 + 0.357300i \(0.883698\pi\)
\(44\) 0 0
\(45\) 10368.6 + 5415.06i 0.763290 + 0.398632i
\(46\) 0 0
\(47\) 12342.9i 0.815030i −0.913199 0.407515i \(-0.866395\pi\)
0.913199 0.407515i \(-0.133605\pi\)
\(48\) 0 0
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) 273.915 0.0147466
\(52\) 0 0
\(53\) 12300.2i 0.601481i −0.953706 0.300741i \(-0.902766\pi\)
0.953706 0.300741i \(-0.0972339\pi\)
\(54\) 0 0
\(55\) 20611.0 + 10764.2i 0.918739 + 0.479816i
\(56\) 0 0
\(57\) 7554.69i 0.307985i
\(58\) 0 0
\(59\) −11957.5 −0.447208 −0.223604 0.974680i \(-0.571782\pi\)
−0.223604 + 0.974680i \(0.571782\pi\)
\(60\) 0 0
\(61\) 16409.6 0.564641 0.282320 0.959320i \(-0.408896\pi\)
0.282320 + 0.959320i \(0.408896\pi\)
\(62\) 0 0
\(63\) 10253.3i 0.325471i
\(64\) 0 0
\(65\) 10847.5 20770.4i 0.318452 0.609765i
\(66\) 0 0
\(67\) 28933.1i 0.787423i −0.919234 0.393711i \(-0.871191\pi\)
0.919234 0.393711i \(-0.128809\pi\)
\(68\) 0 0
\(69\) 5156.34 0.130382
\(70\) 0 0
\(71\) 65207.9 1.53516 0.767581 0.640952i \(-0.221460\pi\)
0.767581 + 0.640952i \(0.221460\pi\)
\(72\) 0 0
\(73\) 54723.1i 1.20189i −0.799292 0.600943i \(-0.794792\pi\)
0.799292 0.600943i \(-0.205208\pi\)
\(74\) 0 0
\(75\) 14898.7 10373.4i 0.305842 0.212945i
\(76\) 0 0
\(77\) 20381.7i 0.391755i
\(78\) 0 0
\(79\) 27902.0 0.503000 0.251500 0.967857i \(-0.419076\pi\)
0.251500 + 0.967857i \(0.419076\pi\)
\(80\) 0 0
\(81\) 35585.0 0.602635
\(82\) 0 0
\(83\) 93273.4i 1.48615i −0.669208 0.743075i \(-0.733367\pi\)
0.669208 0.743075i \(-0.266633\pi\)
\(84\) 0 0
\(85\) −1220.17 + 2336.36i −0.0183178 + 0.0350745i
\(86\) 0 0
\(87\) 42502.5i 0.602028i
\(88\) 0 0
\(89\) 127515. 1.70642 0.853208 0.521571i \(-0.174654\pi\)
0.853208 + 0.521571i \(0.174654\pi\)
\(90\) 0 0
\(91\) −20539.4 −0.260007
\(92\) 0 0
\(93\) 18051.1i 0.216420i
\(94\) 0 0
\(95\) −64437.7 33652.9i −0.732539 0.382572i
\(96\) 0 0
\(97\) 102289.i 1.10382i 0.833903 + 0.551911i \(0.186101\pi\)
−0.833903 + 0.551911i \(0.813899\pi\)
\(98\) 0 0
\(99\) 87038.8 0.892534
\(100\) 0 0
\(101\) 30278.7 0.295348 0.147674 0.989036i \(-0.452821\pi\)
0.147674 + 0.989036i \(0.452821\pi\)
\(102\) 0 0
\(103\) 140859.i 1.30825i 0.756387 + 0.654124i \(0.226963\pi\)
−0.756387 + 0.654124i \(0.773037\pi\)
\(104\) 0 0
\(105\) −14105.2 7366.52i −0.124855 0.0652062i
\(106\) 0 0
\(107\) 56163.8i 0.474238i −0.971481 0.237119i \(-0.923797\pi\)
0.971481 0.237119i \(-0.0762032\pi\)
\(108\) 0 0
\(109\) 20718.4 0.167028 0.0835141 0.996507i \(-0.473386\pi\)
0.0835141 + 0.996507i \(0.473386\pi\)
\(110\) 0 0
\(111\) 22157.9 0.170695
\(112\) 0 0
\(113\) 75128.2i 0.553487i 0.960944 + 0.276743i \(0.0892552\pi\)
−0.960944 + 0.276743i \(0.910745\pi\)
\(114\) 0 0
\(115\) −22969.3 + 43981.0i −0.161958 + 0.310113i
\(116\) 0 0
\(117\) 87712.1i 0.592373i
\(118\) 0 0
\(119\) 2310.37 0.0149560
\(120\) 0 0
\(121\) 11966.7 0.0743036
\(122\) 0 0
\(123\) 11904.2i 0.0709477i
\(124\) 0 0
\(125\) 22112.3 + 173288.i 0.126578 + 0.991957i
\(126\) 0 0
\(127\) 229939.i 1.26504i −0.774545 0.632518i \(-0.782021\pi\)
0.774545 0.632518i \(-0.217979\pi\)
\(128\) 0 0
\(129\) 50334.3 0.266311
\(130\) 0 0
\(131\) 139960. 0.712569 0.356285 0.934378i \(-0.384043\pi\)
0.356285 + 0.934378i \(0.384043\pi\)
\(132\) 0 0
\(133\) 63721.0i 0.312359i
\(134\) 0 0
\(135\) 67990.1 130186.i 0.321079 0.614793i
\(136\) 0 0
\(137\) 38939.8i 0.177253i 0.996065 + 0.0886263i \(0.0282477\pi\)
−0.996065 + 0.0886263i \(0.971752\pi\)
\(138\) 0 0
\(139\) −1146.59 −0.00503351 −0.00251676 0.999997i \(-0.500801\pi\)
−0.00251676 + 0.999997i \(0.500801\pi\)
\(140\) 0 0
\(141\) −71704.9 −0.303739
\(142\) 0 0
\(143\) 174356.i 0.713013i
\(144\) 0 0
\(145\) 362525. + 189330.i 1.43192 + 0.747825i
\(146\) 0 0
\(147\) 13948.3i 0.0532389i
\(148\) 0 0
\(149\) −95068.0 −0.350807 −0.175404 0.984497i \(-0.556123\pi\)
−0.175404 + 0.984497i \(0.556123\pi\)
\(150\) 0 0
\(151\) −426249. −1.52132 −0.760661 0.649150i \(-0.775125\pi\)
−0.760661 + 0.649150i \(0.775125\pi\)
\(152\) 0 0
\(153\) 9866.28i 0.0340741i
\(154\) 0 0
\(155\) −153967. 80410.0i −0.514752 0.268832i
\(156\) 0 0
\(157\) 48400.4i 0.156711i 0.996925 + 0.0783555i \(0.0249669\pi\)
−0.996925 + 0.0783555i \(0.975033\pi\)
\(158\) 0 0
\(159\) −71456.6 −0.224156
\(160\) 0 0
\(161\) 43491.8 0.132234
\(162\) 0 0
\(163\) 150072.i 0.442414i −0.975227 0.221207i \(-0.929000\pi\)
0.975227 0.221207i \(-0.0709997\pi\)
\(164\) 0 0
\(165\) 62533.3 119737.i 0.178814 0.342389i
\(166\) 0 0
\(167\) 335508.i 0.930918i −0.885069 0.465459i \(-0.845889\pi\)
0.885069 0.465459i \(-0.154111\pi\)
\(168\) 0 0
\(169\) 195588. 0.526775
\(170\) 0 0
\(171\) −272116. −0.711646
\(172\) 0 0
\(173\) 437203.i 1.11063i 0.831641 + 0.555313i \(0.187402\pi\)
−0.831641 + 0.555313i \(0.812598\pi\)
\(174\) 0 0
\(175\) 125665. 87495.7i 0.310185 0.215969i
\(176\) 0 0
\(177\) 69465.6i 0.166662i
\(178\) 0 0
\(179\) 123917. 0.289068 0.144534 0.989500i \(-0.453832\pi\)
0.144534 + 0.989500i \(0.453832\pi\)
\(180\) 0 0
\(181\) −503171. −1.14161 −0.570806 0.821085i \(-0.693369\pi\)
−0.570806 + 0.821085i \(0.693369\pi\)
\(182\) 0 0
\(183\) 95329.5i 0.210426i
\(184\) 0 0
\(185\) −98703.7 + 188995.i −0.212033 + 0.405996i
\(186\) 0 0
\(187\) 19612.4i 0.0410135i
\(188\) 0 0
\(189\) −128738. −0.262151
\(190\) 0 0
\(191\) −630079. −1.24972 −0.624859 0.780738i \(-0.714843\pi\)
−0.624859 + 0.780738i \(0.714843\pi\)
\(192\) 0 0
\(193\) 1.03204e6i 1.99436i 0.0750449 + 0.997180i \(0.476090\pi\)
−0.0750449 + 0.997180i \(0.523910\pi\)
\(194\) 0 0
\(195\) −120664. 63017.1i −0.227242 0.118678i
\(196\) 0 0
\(197\) 143159.i 0.262817i 0.991328 + 0.131408i \(0.0419499\pi\)
−0.991328 + 0.131408i \(0.958050\pi\)
\(198\) 0 0
\(199\) −547921. −0.980811 −0.490405 0.871495i \(-0.663151\pi\)
−0.490405 + 0.871495i \(0.663151\pi\)
\(200\) 0 0
\(201\) −168084. −0.293451
\(202\) 0 0
\(203\) 358493.i 0.610577i
\(204\) 0 0
\(205\) 101537. + 53028.2i 0.168748 + 0.0881297i
\(206\) 0 0
\(207\) 185729.i 0.301268i
\(208\) 0 0
\(209\) −540918. −0.856576
\(210\) 0 0
\(211\) −225800. −0.349155 −0.174578 0.984643i \(-0.555856\pi\)
−0.174578 + 0.984643i \(0.555856\pi\)
\(212\) 0 0
\(213\) 378818.i 0.572113i
\(214\) 0 0
\(215\) −224218. + 429326.i −0.330806 + 0.633419i
\(216\) 0 0
\(217\) 152255.i 0.219493i
\(218\) 0 0
\(219\) −317908. −0.447910
\(220\) 0 0
\(221\) 19764.1 0.0272206
\(222\) 0 0
\(223\) 536423.i 0.722346i 0.932499 + 0.361173i \(0.117624\pi\)
−0.932499 + 0.361173i \(0.882376\pi\)
\(224\) 0 0
\(225\) 373644. + 536645.i 0.492042 + 0.706693i
\(226\) 0 0
\(227\) 1.14413e6i 1.47371i 0.676052 + 0.736854i \(0.263690\pi\)
−0.676052 + 0.736854i \(0.736310\pi\)
\(228\) 0 0
\(229\) −671253. −0.845858 −0.422929 0.906163i \(-0.638998\pi\)
−0.422929 + 0.906163i \(0.638998\pi\)
\(230\) 0 0
\(231\) −118405. −0.145996
\(232\) 0 0
\(233\) 292427.i 0.352881i −0.984311 0.176440i \(-0.943542\pi\)
0.984311 0.176440i \(-0.0564583\pi\)
\(234\) 0 0
\(235\) 319414. 611606.i 0.377298 0.722440i
\(236\) 0 0
\(237\) 162094.i 0.187454i
\(238\) 0 0
\(239\) 472673. 0.535262 0.267631 0.963522i \(-0.413759\pi\)
0.267631 + 0.963522i \(0.413759\pi\)
\(240\) 0 0
\(241\) −575591. −0.638368 −0.319184 0.947693i \(-0.603409\pi\)
−0.319184 + 0.947693i \(0.603409\pi\)
\(242\) 0 0
\(243\) 845161.i 0.918172i
\(244\) 0 0
\(245\) −118972. 62133.8i −0.126628 0.0661322i
\(246\) 0 0
\(247\) 545103.i 0.568507i
\(248\) 0 0
\(249\) −541862. −0.553847
\(250\) 0 0
\(251\) −883595. −0.885257 −0.442628 0.896705i \(-0.645954\pi\)
−0.442628 + 0.896705i \(0.645954\pi\)
\(252\) 0 0
\(253\) 369196.i 0.362623i
\(254\) 0 0
\(255\) 13572.8 + 7088.46i 0.0130713 + 0.00682656i
\(256\) 0 0
\(257\) 1.36145e6i 1.28579i −0.765956 0.642893i \(-0.777734\pi\)
0.765956 0.642893i \(-0.222266\pi\)
\(258\) 0 0
\(259\) 186893. 0.173119
\(260\) 0 0
\(261\) 1.53092e6 1.39107
\(262\) 0 0
\(263\) 510894.i 0.455451i 0.973725 + 0.227725i \(0.0731288\pi\)
−0.973725 + 0.227725i \(0.926871\pi\)
\(264\) 0 0
\(265\) 318308. 609488.i 0.278441 0.533151i
\(266\) 0 0
\(267\) 740782.i 0.635934i
\(268\) 0 0
\(269\) 1.63320e6 1.37613 0.688063 0.725651i \(-0.258461\pi\)
0.688063 + 0.725651i \(0.258461\pi\)
\(270\) 0 0
\(271\) −641076. −0.530257 −0.265129 0.964213i \(-0.585414\pi\)
−0.265129 + 0.964213i \(0.585414\pi\)
\(272\) 0 0
\(273\) 119321.i 0.0968974i
\(274\) 0 0
\(275\) 742738. + 1.06675e6i 0.592249 + 0.850615i
\(276\) 0 0
\(277\) 2.12633e6i 1.66506i 0.553978 + 0.832531i \(0.313109\pi\)
−0.553978 + 0.832531i \(0.686891\pi\)
\(278\) 0 0
\(279\) −650192. −0.500070
\(280\) 0 0
\(281\) −2.54572e6 −1.92329 −0.961645 0.274296i \(-0.911555\pi\)
−0.961645 + 0.274296i \(0.911555\pi\)
\(282\) 0 0
\(283\) 1.19985e6i 0.890553i −0.895393 0.445276i \(-0.853105\pi\)
0.895393 0.445276i \(-0.146895\pi\)
\(284\) 0 0
\(285\) −195503. + 374344.i −0.142574 + 0.272997i
\(286\) 0 0
\(287\) 100408.i 0.0719552i
\(288\) 0 0
\(289\) 1.41763e6 0.998434
\(290\) 0 0
\(291\) 594236. 0.411364
\(292\) 0 0
\(293\) 735490.i 0.500504i 0.968181 + 0.250252i \(0.0805135\pi\)
−0.968181 + 0.250252i \(0.919487\pi\)
\(294\) 0 0
\(295\) −592506. 309439.i −0.396404 0.207024i
\(296\) 0 0
\(297\) 1.09284e6i 0.718893i
\(298\) 0 0
\(299\) 372052. 0.240672
\(300\) 0 0
\(301\) 424551. 0.270093
\(302\) 0 0
\(303\) 175901.i 0.110068i
\(304\) 0 0
\(305\) 813112. + 424652.i 0.500496 + 0.261386i
\(306\) 0 0
\(307\) 1.14803e6i 0.695193i −0.937644 0.347597i \(-0.886998\pi\)
0.937644 0.347597i \(-0.113002\pi\)
\(308\) 0 0
\(309\) 818302. 0.487548
\(310\) 0 0
\(311\) −1.58159e6 −0.927242 −0.463621 0.886034i \(-0.653450\pi\)
−0.463621 + 0.886034i \(0.653450\pi\)
\(312\) 0 0
\(313\) 523976.i 0.302309i −0.988510 0.151154i \(-0.951701\pi\)
0.988510 0.151154i \(-0.0482991\pi\)
\(314\) 0 0
\(315\) 265338. 508062.i 0.150669 0.288497i
\(316\) 0 0
\(317\) 2.67738e6i 1.49645i 0.663446 + 0.748224i \(0.269093\pi\)
−0.663446 + 0.748224i \(0.730907\pi\)
\(318\) 0 0
\(319\) 3.04319e6 1.67437
\(320\) 0 0
\(321\) −326277. −0.176736
\(322\) 0 0
\(323\) 61315.8i 0.0327014i
\(324\) 0 0
\(325\) 1.07501e6 748484.i 0.564551 0.393074i
\(326\) 0 0
\(327\) 120361.i 0.0622468i
\(328\) 0 0
\(329\) −604803. −0.308052
\(330\) 0 0
\(331\) −1.23887e6 −0.621520 −0.310760 0.950488i \(-0.600583\pi\)
−0.310760 + 0.950488i \(0.600583\pi\)
\(332\) 0 0
\(333\) 798114.i 0.394416i
\(334\) 0 0
\(335\) 748739. 1.43367e6i 0.364518 0.697969i
\(336\) 0 0
\(337\) 3.52169e6i 1.68918i −0.535414 0.844590i \(-0.679844\pi\)
0.535414 0.844590i \(-0.320156\pi\)
\(338\) 0 0
\(339\) 436449. 0.206269
\(340\) 0 0
\(341\) −1.29247e6 −0.601913
\(342\) 0 0
\(343\) 117649.i 0.0539949i
\(344\) 0 0
\(345\) 255503. + 133437.i 0.115571 + 0.0603573i
\(346\) 0 0
\(347\) 2.07966e6i 0.927191i 0.886047 + 0.463595i \(0.153441\pi\)
−0.886047 + 0.463595i \(0.846559\pi\)
\(348\) 0 0
\(349\) −256053. −0.112529 −0.0562647 0.998416i \(-0.517919\pi\)
−0.0562647 + 0.998416i \(0.517919\pi\)
\(350\) 0 0
\(351\) −1.10129e6 −0.477127
\(352\) 0 0
\(353\) 2.84978e6i 1.21724i −0.793463 0.608618i \(-0.791724\pi\)
0.793463 0.608618i \(-0.208276\pi\)
\(354\) 0 0
\(355\) 3.23112e6 + 1.68747e6i 1.36076 + 0.710665i
\(356\) 0 0
\(357\) 13421.8i 0.00557368i
\(358\) 0 0
\(359\) 3.56014e6 1.45791 0.728956 0.684561i \(-0.240006\pi\)
0.728956 + 0.684561i \(0.240006\pi\)
\(360\) 0 0
\(361\) −784985. −0.317025
\(362\) 0 0
\(363\) 69519.0i 0.0276909i
\(364\) 0 0
\(365\) 1.41614e6 2.71159e6i 0.556384 1.06535i
\(366\) 0 0
\(367\) 230540.i 0.0893472i 0.999002 + 0.0446736i \(0.0142248\pi\)
−0.999002 + 0.0446736i \(0.985775\pi\)
\(368\) 0 0
\(369\) 428784. 0.163935
\(370\) 0 0
\(371\) −602709. −0.227339
\(372\) 0 0
\(373\) 2.77989e6i 1.03456i −0.855817 0.517279i \(-0.826945\pi\)
0.855817 0.517279i \(-0.173055\pi\)
\(374\) 0 0
\(375\) 1.00670e6 128459.i 0.369675 0.0471722i
\(376\) 0 0
\(377\) 3.06673e6i 1.11128i
\(378\) 0 0
\(379\) 620903. 0.222037 0.111019 0.993818i \(-0.464589\pi\)
0.111019 + 0.993818i \(0.464589\pi\)
\(380\) 0 0
\(381\) −1.33580e6 −0.471444
\(382\) 0 0
\(383\) 2.85178e6i 0.993390i 0.867925 + 0.496695i \(0.165453\pi\)
−0.867925 + 0.496695i \(0.834547\pi\)
\(384\) 0 0
\(385\) 527445. 1.00994e6i 0.181353 0.347251i
\(386\) 0 0
\(387\) 1.81301e6i 0.615352i
\(388\) 0 0
\(389\) 2.23838e6 0.749996 0.374998 0.927026i \(-0.377643\pi\)
0.374998 + 0.927026i \(0.377643\pi\)
\(390\) 0 0
\(391\) −41850.2 −0.0138438
\(392\) 0 0
\(393\) 813084.i 0.265555i
\(394\) 0 0
\(395\) 1.38258e6 + 722057.i 0.445858 + 0.232851i
\(396\) 0 0
\(397\) 693032.i 0.220687i 0.993894 + 0.110344i \(0.0351951\pi\)
−0.993894 + 0.110344i \(0.964805\pi\)
\(398\) 0 0
\(399\) 370180. 0.116407
\(400\) 0 0
\(401\) −4.37580e6 −1.35893 −0.679464 0.733709i \(-0.737788\pi\)
−0.679464 + 0.733709i \(0.737788\pi\)
\(402\) 0 0
\(403\) 1.30247e6i 0.399488i
\(404\) 0 0
\(405\) 1.76328e6 + 920879.i 0.534174 + 0.278975i
\(406\) 0 0
\(407\) 1.58651e6i 0.474741i
\(408\) 0 0
\(409\) −104194. −0.0307987 −0.0153994 0.999881i \(-0.504902\pi\)
−0.0153994 + 0.999881i \(0.504902\pi\)
\(410\) 0 0
\(411\) 226217. 0.0660572
\(412\) 0 0
\(413\) 585916.i 0.169029i
\(414\) 0 0
\(415\) 2.41376e6 4.62180e6i 0.687976 1.31732i
\(416\) 0 0
\(417\) 6660.99i 0.00187585i
\(418\) 0 0
\(419\) 4.05780e6 1.12916 0.564580 0.825379i \(-0.309038\pi\)
0.564580 + 0.825379i \(0.309038\pi\)
\(420\) 0 0
\(421\) 3.26799e6 0.898617 0.449309 0.893377i \(-0.351670\pi\)
0.449309 + 0.893377i \(0.351670\pi\)
\(422\) 0 0
\(423\) 2.58277e6i 0.701835i
\(424\) 0 0
\(425\) −120922. + 84193.1i −0.0324738 + 0.0226102i
\(426\) 0 0
\(427\) 804068.i 0.213414i
\(428\) 0 0
\(429\) −1.01290e6 −0.265720
\(430\) 0 0
\(431\) 1.00601e6 0.260861 0.130431 0.991457i \(-0.458364\pi\)
0.130431 + 0.991457i \(0.458364\pi\)
\(432\) 0 0
\(433\) 6.73152e6i 1.72541i −0.505704 0.862707i \(-0.668767\pi\)
0.505704 0.862707i \(-0.331233\pi\)
\(434\) 0 0
\(435\) 1.09989e6 2.10605e6i 0.278694 0.533636i
\(436\) 0 0
\(437\) 1.15424e6i 0.289131i
\(438\) 0 0
\(439\) 3.96293e6 0.981420 0.490710 0.871323i \(-0.336737\pi\)
0.490710 + 0.871323i \(0.336737\pi\)
\(440\) 0 0
\(441\) −502412. −0.123016
\(442\) 0 0
\(443\) 3.58330e6i 0.867508i 0.901031 + 0.433754i \(0.142811\pi\)
−0.901031 + 0.433754i \(0.857189\pi\)
\(444\) 0 0
\(445\) 6.31849e6 + 3.29986e6i 1.51256 + 0.789943i
\(446\) 0 0
\(447\) 552287.i 0.130736i
\(448\) 0 0
\(449\) −5.97996e6 −1.39985 −0.699927 0.714214i \(-0.746784\pi\)
−0.699927 + 0.714214i \(0.746784\pi\)
\(450\) 0 0
\(451\) 852346. 0.197322
\(452\) 0 0
\(453\) 2.47625e6i 0.566955i
\(454\) 0 0
\(455\) −1.01775e6 531525.i −0.230469 0.120364i
\(456\) 0 0
\(457\) 3.26554e6i 0.731417i −0.930730 0.365708i \(-0.880827\pi\)
0.930730 0.365708i \(-0.119173\pi\)
\(458\) 0 0
\(459\) 123878. 0.0274450
\(460\) 0 0
\(461\) −6.57854e6 −1.44171 −0.720854 0.693087i \(-0.756250\pi\)
−0.720854 + 0.693087i \(0.756250\pi\)
\(462\) 0 0
\(463\) 5.32610e6i 1.15467i 0.816508 + 0.577334i \(0.195907\pi\)
−0.816508 + 0.577334i \(0.804093\pi\)
\(464\) 0 0
\(465\) −467133. + 894454.i −0.100186 + 0.191834i
\(466\) 0 0
\(467\) 6.19078e6i 1.31357i 0.754078 + 0.656785i \(0.228084\pi\)
−0.754078 + 0.656785i \(0.771916\pi\)
\(468\) 0 0
\(469\) −1.41772e6 −0.297618
\(470\) 0 0
\(471\) 281177. 0.0584019
\(472\) 0 0
\(473\) 3.60395e6i 0.740672i
\(474\) 0 0
\(475\) −2.32208e6 3.33508e6i −0.472219 0.678222i
\(476\) 0 0
\(477\) 2.57383e6i 0.517945i
\(478\) 0 0
\(479\) −7.26722e6 −1.44720 −0.723601 0.690218i \(-0.757515\pi\)
−0.723601 + 0.690218i \(0.757515\pi\)
\(480\) 0 0
\(481\) 1.59878e6 0.315084
\(482\) 0 0
\(483\) 252661.i 0.0492799i
\(484\) 0 0
\(485\) −2.64706e6 + 5.06853e6i −0.510987 + 0.978425i
\(486\) 0 0
\(487\) 8.70984e6i 1.66413i 0.554676 + 0.832066i \(0.312842\pi\)
−0.554676 + 0.832066i \(0.687158\pi\)
\(488\) 0 0
\(489\) −871824. −0.164876
\(490\) 0 0
\(491\) −7.03903e6 −1.31768 −0.658839 0.752284i \(-0.728952\pi\)
−0.658839 + 0.752284i \(0.728952\pi\)
\(492\) 0 0
\(493\) 344961.i 0.0639223i
\(494\) 0 0
\(495\) 4.31287e6 + 2.25242e6i 0.791140 + 0.413177i
\(496\) 0 0
\(497\) 3.19519e6i 0.580237i
\(498\) 0 0
\(499\) −5.43089e6 −0.976381 −0.488191 0.872737i \(-0.662343\pi\)
−0.488191 + 0.872737i \(0.662343\pi\)
\(500\) 0 0
\(501\) −1.94909e6 −0.346927
\(502\) 0 0
\(503\) 4.36641e6i 0.769492i −0.923022 0.384746i \(-0.874289\pi\)
0.923022 0.384746i \(-0.125711\pi\)
\(504\) 0 0
\(505\) 1.50034e6 + 783562.i 0.261796 + 0.136724i
\(506\) 0 0
\(507\) 1.13625e6i 0.196315i
\(508\) 0 0
\(509\) 2.02571e6 0.346564 0.173282 0.984872i \(-0.444563\pi\)
0.173282 + 0.984872i \(0.444563\pi\)
\(510\) 0 0
\(511\) −2.68143e6 −0.454271
\(512\) 0 0
\(513\) 3.41662e6i 0.573196i
\(514\) 0 0
\(515\) −3.64518e6 + 6.97970e6i −0.605621 + 1.15963i
\(516\) 0 0
\(517\) 5.13409e6i 0.844767i
\(518\) 0 0
\(519\) 2.53988e6 0.413900
\(520\) 0 0
\(521\) −8.38319e6 −1.35305 −0.676527 0.736418i \(-0.736516\pi\)
−0.676527 + 0.736418i \(0.736516\pi\)
\(522\) 0 0
\(523\) 255511.i 0.0408466i −0.999791 0.0204233i \(-0.993499\pi\)
0.999791 0.0204233i \(-0.00650139\pi\)
\(524\) 0 0
\(525\) −508296. 730039.i −0.0804857 0.115597i
\(526\) 0 0
\(527\) 146508.i 0.0229791i
\(528\) 0 0
\(529\) 5.64853e6 0.877599
\(530\) 0 0
\(531\) −2.50211e6 −0.385097
\(532\) 0 0
\(533\) 858940.i 0.130962i
\(534\) 0 0
\(535\) 1.45342e6 2.78298e6i 0.219537 0.420364i
\(536\) 0 0
\(537\) 719884.i 0.107728i
\(538\) 0 0
\(539\) −998705. −0.148069
\(540\) 0 0
\(541\) −6.67280e6 −0.980201 −0.490100 0.871666i \(-0.663040\pi\)
−0.490100 + 0.871666i \(0.663040\pi\)
\(542\) 0 0
\(543\) 2.92311e6i 0.425448i
\(544\) 0 0
\(545\) 1.02662e6 + 536157.i 0.148053 + 0.0773216i
\(546\) 0 0
\(547\) 4.14191e6i 0.591879i 0.955207 + 0.295939i \(0.0956327\pi\)
−0.955207 + 0.295939i \(0.904367\pi\)
\(548\) 0 0
\(549\) 3.43372e6 0.486221
\(550\) 0 0
\(551\) −9.51416e6 −1.33503
\(552\) 0 0
\(553\) 1.36720e6i 0.190116i
\(554\) 0 0
\(555\) 1.09795e6 + 573408.i 0.151303 + 0.0790189i
\(556\) 0 0
\(557\) 1.88106e6i 0.256900i −0.991716 0.128450i \(-0.959000\pi\)
0.991716 0.128450i \(-0.0410002\pi\)
\(558\) 0 0
\(559\) 3.63183e6 0.491582
\(560\) 0 0
\(561\) 113936. 0.0152846
\(562\) 0 0
\(563\) 8.65163e6i 1.15034i −0.818033 0.575171i \(-0.804936\pi\)
0.818033 0.575171i \(-0.195064\pi\)
\(564\) 0 0
\(565\) −1.94419e6 + 3.72269e6i −0.256223 + 0.490609i
\(566\) 0 0
\(567\) 1.74366e6i 0.227775i
\(568\) 0 0
\(569\) 5.79055e6 0.749789 0.374894 0.927068i \(-0.377679\pi\)
0.374894 + 0.927068i \(0.377679\pi\)
\(570\) 0 0
\(571\) −160058. −0.0205441 −0.0102720 0.999947i \(-0.503270\pi\)
−0.0102720 + 0.999947i \(0.503270\pi\)
\(572\) 0 0
\(573\) 3.66038e6i 0.465735i
\(574\) 0 0
\(575\) −2.27631e6 + 1.58490e6i −0.287118 + 0.199909i
\(576\) 0 0
\(577\) 9.18883e6i 1.14900i −0.818504 0.574501i \(-0.805196\pi\)
0.818504 0.574501i \(-0.194804\pi\)
\(578\) 0 0
\(579\) 5.99553e6 0.743243
\(580\) 0 0
\(581\) −4.57040e6 −0.561712
\(582\) 0 0
\(583\) 5.11631e6i 0.623427i
\(584\) 0 0
\(585\) 2.26984e6 4.34623e6i 0.274224 0.525078i
\(586\) 0 0
\(587\) 815904.i 0.0977335i −0.998805 0.0488668i \(-0.984439\pi\)
0.998805 0.0488668i \(-0.0155610\pi\)
\(588\) 0 0
\(589\) 4.04074e6 0.479924
\(590\) 0 0
\(591\) 831667. 0.0979446
\(592\) 0 0
\(593\) 6.86745e6i 0.801972i 0.916084 + 0.400986i \(0.131332\pi\)
−0.916084 + 0.400986i \(0.868668\pi\)
\(594\) 0 0
\(595\) 114481. + 59788.5i 0.0132569 + 0.00692349i
\(596\) 0 0
\(597\) 3.18308e6i 0.365521i
\(598\) 0 0
\(599\) −9.32027e6 −1.06136 −0.530679 0.847573i \(-0.678063\pi\)
−0.530679 + 0.847573i \(0.678063\pi\)
\(600\) 0 0
\(601\) −1.25201e7 −1.41391 −0.706955 0.707258i \(-0.749932\pi\)
−0.706955 + 0.707258i \(0.749932\pi\)
\(602\) 0 0
\(603\) 6.05428e6i 0.678062i
\(604\) 0 0
\(605\) 592962. + 309677.i 0.0658625 + 0.0343970i
\(606\) 0 0
\(607\) 1.54322e7i 1.70002i 0.526764 + 0.850012i \(0.323405\pi\)
−0.526764 + 0.850012i \(0.676595\pi\)
\(608\) 0 0
\(609\) −2.08262e6 −0.227545
\(610\) 0 0
\(611\) −5.17381e6 −0.560670
\(612\) 0 0
\(613\) 1.68625e7i 1.81247i 0.422770 + 0.906237i \(0.361058\pi\)
−0.422770 + 0.906237i \(0.638942\pi\)
\(614\) 0 0
\(615\) 308061. 589868.i 0.0328435 0.0628879i
\(616\) 0 0
\(617\) 1.29684e6i 0.137143i −0.997646 0.0685713i \(-0.978156\pi\)
0.997646 0.0685713i \(-0.0218441\pi\)
\(618\) 0 0
\(619\) −1.26790e7 −1.33002 −0.665011 0.746834i \(-0.731573\pi\)
−0.665011 + 0.746834i \(0.731573\pi\)
\(620\) 0 0
\(621\) 2.33196e6 0.242657
\(622\) 0 0
\(623\) 6.24821e6i 0.644964i
\(624\) 0 0
\(625\) −3.38870e6 + 9.15883e6i −0.347003 + 0.937864i
\(626\) 0 0
\(627\) 3.14240e6i 0.319222i
\(628\) 0 0
\(629\) −179839. −0.0181241
\(630\) 0 0
\(631\) −1.73861e7 −1.73832 −0.869160 0.494531i \(-0.835340\pi\)
−0.869160 + 0.494531i \(0.835340\pi\)
\(632\) 0 0
\(633\) 1.31176e6i 0.130121i
\(634\) 0 0
\(635\) 5.95043e6 1.13937e7i 0.585617 1.12133i
\(636\) 0 0
\(637\) 1.00643e6i 0.0982733i
\(638\) 0 0
\(639\) 1.36448e7 1.32195
\(640\) 0 0
\(641\) 4.83240e6 0.464535 0.232267 0.972652i \(-0.425386\pi\)
0.232267 + 0.972652i \(0.425386\pi\)
\(642\) 0 0
\(643\) 2.67017e6i 0.254690i −0.991859 0.127345i \(-0.959355\pi\)
0.991859 0.127345i \(-0.0406455\pi\)
\(644\) 0 0
\(645\) 2.49412e6 + 1.30257e6i 0.236058 + 0.123282i
\(646\) 0 0
\(647\) 1.27082e7i 1.19351i −0.802425 0.596753i \(-0.796457\pi\)
0.802425 0.596753i \(-0.203543\pi\)
\(648\) 0 0
\(649\) −4.97376e6 −0.463525
\(650\) 0 0
\(651\) 884506. 0.0817990
\(652\) 0 0
\(653\) 1.59003e7i 1.45922i 0.683863 + 0.729611i \(0.260299\pi\)
−0.683863 + 0.729611i \(0.739701\pi\)
\(654\) 0 0
\(655\) 6.93519e6 + 3.62194e6i 0.631619 + 0.329866i
\(656\) 0 0
\(657\) 1.14509e7i 1.03496i
\(658\) 0 0
\(659\) −1.50434e7 −1.34937 −0.674687 0.738104i \(-0.735721\pi\)
−0.674687 + 0.738104i \(0.735721\pi\)
\(660\) 0 0
\(661\) −9.78584e6 −0.871153 −0.435577 0.900152i \(-0.643456\pi\)
−0.435577 + 0.900152i \(0.643456\pi\)
\(662\) 0 0
\(663\) 114818.i 0.0101444i
\(664\) 0 0
\(665\) −1.64899e6 + 3.15745e6i −0.144599 + 0.276874i
\(666\) 0 0
\(667\) 6.49375e6i 0.565172i
\(668\) 0 0
\(669\) 3.11629e6 0.269198
\(670\) 0 0
\(671\) 6.82562e6 0.585242
\(672\) 0 0
\(673\) 2.26085e7i 1.92413i −0.272820 0.962065i \(-0.587956\pi\)
0.272820 0.962065i \(-0.412044\pi\)
\(674\) 0 0
\(675\) 6.73797e6 4.69138e6i 0.569207 0.396316i
\(676\) 0 0
\(677\) 2.18844e7i 1.83512i 0.397600 + 0.917559i \(0.369843\pi\)
−0.397600 + 0.917559i \(0.630157\pi\)
\(678\) 0 0
\(679\) 5.01215e6 0.417205
\(680\) 0 0
\(681\) 6.64671e6 0.549211
\(682\) 0 0
\(683\) 2.06203e7i 1.69139i 0.533666 + 0.845696i \(0.320814\pi\)
−0.533666 + 0.845696i \(0.679186\pi\)
\(684\) 0 0
\(685\) −1.00770e6 + 1.92951e6i −0.0820547 + 0.157116i
\(686\) 0 0
\(687\) 3.89957e6i 0.315228i
\(688\) 0 0
\(689\) −5.15589e6 −0.413767
\(690\) 0 0
\(691\) 2.10211e7 1.67479 0.837396 0.546596i \(-0.184077\pi\)
0.837396 + 0.546596i \(0.184077\pi\)
\(692\) 0 0
\(693\) 4.26490e6i 0.337346i
\(694\) 0 0
\(695\) −56814.8 29671.8i −0.00446169 0.00233014i
\(696\) 0 0
\(697\) 96617.7i 0.00753312i
\(698\) 0 0
\(699\) −1.69882e6 −0.131509
\(700\) 0 0
\(701\) 1.38535e7 1.06479 0.532397 0.846495i \(-0.321291\pi\)
0.532397 + 0.846495i \(0.321291\pi\)
\(702\) 0 0
\(703\) 4.96002e6i 0.378526i
\(704\) 0 0
\(705\) −3.55306e6 1.85560e6i −0.269234 0.140609i
\(706\) 0 0
\(707\) 1.48366e6i 0.111631i
\(708\) 0 0
\(709\) 1.10869e7 0.828315 0.414158 0.910205i \(-0.364076\pi\)
0.414158 + 0.910205i \(0.364076\pi\)
\(710\) 0 0
\(711\) 5.83852e6 0.433141
\(712\) 0 0
\(713\) 2.75794e6i 0.203171i
\(714\) 0 0
\(715\) 4.51204e6 8.63954e6i 0.330072 0.632012i
\(716\) 0 0
\(717\) 2.74594e6i 0.199477i
\(718\) 0 0
\(719\) −6.30329e6 −0.454721 −0.227360 0.973811i \(-0.573010\pi\)
−0.227360 + 0.973811i \(0.573010\pi\)
\(720\) 0 0
\(721\) 6.90207e6 0.494472
\(722\) 0 0
\(723\) 3.34383e6i 0.237902i
\(724\) 0 0
\(725\) 1.30640e7 + 1.87631e7i 0.923060 + 1.32574i
\(726\) 0 0
\(727\) 9.10582e6i 0.638974i −0.947591 0.319487i \(-0.896489\pi\)
0.947591 0.319487i \(-0.103511\pi\)
\(728\) 0 0
\(729\) 3.73728e6 0.260457
\(730\) 0 0
\(731\) −408526. −0.0282765
\(732\) 0 0
\(733\) 6.09212e6i 0.418802i 0.977830 + 0.209401i \(0.0671514\pi\)
−0.977830 + 0.209401i \(0.932849\pi\)
\(734\) 0 0
\(735\) −360959. + 691156.i −0.0246456 + 0.0471908i
\(736\) 0 0
\(737\) 1.20348e7i 0.816153i
\(738\) 0 0
\(739\) 2.44066e7 1.64398 0.821990 0.569502i \(-0.192864\pi\)
0.821990 + 0.569502i \(0.192864\pi\)
\(740\) 0 0
\(741\) 3.16671e6 0.211867
\(742\) 0 0
\(743\) 1.53795e7i 1.02205i −0.859566 0.511024i \(-0.829266\pi\)
0.859566 0.511024i \(-0.170734\pi\)
\(744\) 0 0
\(745\) −4.71073e6 2.46020e6i −0.310955 0.162398i
\(746\) 0 0
\(747\) 1.95176e7i 1.27975i
\(748\) 0 0
\(749\) −2.75202e6 −0.179245
\(750\) 0 0
\(751\) 4.56800e6 0.295547 0.147773 0.989021i \(-0.452789\pi\)
0.147773 + 0.989021i \(0.452789\pi\)
\(752\) 0 0
\(753\) 5.13315e6i 0.329911i
\(754\) 0 0
\(755\) −2.11211e7 1.10306e7i −1.34850 0.704258i
\(756\) 0 0
\(757\) 1.80153e7i 1.14262i −0.820735 0.571309i \(-0.806436\pi\)
0.820735 0.571309i \(-0.193564\pi\)
\(758\) 0 0
\(759\) 2.14480e6 0.135140
\(760\) 0 0
\(761\) −1.55682e7 −0.974489 −0.487245 0.873266i \(-0.661998\pi\)
−0.487245 + 0.873266i \(0.661998\pi\)
\(762\) 0 0
\(763\) 1.01520e6i 0.0631307i
\(764\) 0 0
\(765\) −255323. + 488885.i −0.0157738 + 0.0302032i
\(766\) 0 0
\(767\) 5.01223e6i 0.307640i
\(768\) 0 0
\(769\) −1.36689e6 −0.0833525 −0.0416762 0.999131i \(-0.513270\pi\)
−0.0416762 + 0.999131i \(0.513270\pi\)
\(770\) 0 0
\(771\) −7.90919e6 −0.479177
\(772\) 0 0
\(773\) 2.19934e7i 1.32386i 0.749564 + 0.661932i \(0.230263\pi\)
−0.749564 + 0.661932i \(0.769737\pi\)
\(774\) 0 0
\(775\) −5.54836e6 7.96881e6i −0.331826 0.476584i
\(776\) 0 0
\(777\) 1.08574e6i 0.0645166i
\(778\) 0 0
\(779\) −2.66475e6 −0.157331
\(780\) 0 0
\(781\) 2.71235e7 1.59117
\(782\) 0 0
\(783\) 1.92218e7i 1.12044i
\(784\) 0 0
\(785\) −1.25252e6 + 2.39829e6i −0.0725455 + 0.138908i
\(786\) 0 0
\(787\) 1.21961e6i 0.0701915i 0.999384 + 0.0350957i \(0.0111736\pi\)
−0.999384 + 0.0350957i \(0.988826\pi\)
\(788\) 0 0
\(789\) 2.96798e6 0.169734
\(790\) 0 0
\(791\) 3.68128e6 0.209198
\(792\) 0 0
\(793\) 6.87842e6i 0.388424i
\(794\) 0 0
\(795\) −3.54075e6 1.84918e6i −0.198691 0.103767i
\(796\) 0 0
\(797\) 4.81890e6i 0.268722i 0.990932 + 0.134361i \(0.0428981\pi\)
−0.990932 + 0.134361i \(0.957102\pi\)
\(798\) 0 0
\(799\) 581974. 0.0322505
\(800\) 0 0
\(801\) 2.66825e7 1.46942
\(802\) 0 0
\(803\) 2.27623e7i 1.24574i
\(804\) 0 0
\(805\) 2.15507e6 + 1.12549e6i 0.117212 + 0.0612144i
\(806\) 0 0
\(807\) 9.48788e6i 0.512844i
\(808\) 0 0
\(809\) 2.17239e6 0.116699 0.0583495 0.998296i \(-0.481416\pi\)
0.0583495 + 0.998296i \(0.481416\pi\)
\(810\) 0 0
\(811\) 1.19038e7 0.635529 0.317764 0.948170i \(-0.397068\pi\)
0.317764 + 0.948170i \(0.397068\pi\)
\(812\) 0 0
\(813\) 3.72426e6i 0.197612i
\(814\) 0 0
\(815\) 3.88360e6 7.43621e6i 0.204805 0.392155i
\(816\) 0 0
\(817\) 1.12673e7i 0.590561i
\(818\) 0 0
\(819\) −4.29789e6 −0.223896
\(820\) 0 0
\(821\) 1.71728e7 0.889168 0.444584 0.895737i \(-0.353351\pi\)
0.444584 + 0.895737i \(0.353351\pi\)
\(822\) 0 0
\(823\) 1.32227e7i 0.680489i −0.940337 0.340244i \(-0.889490\pi\)
0.940337 0.340244i \(-0.110510\pi\)
\(824\) 0 0
\(825\) 6.19719e6 4.31486e6i 0.317001 0.220715i
\(826\) 0 0
\(827\) 2.13177e7i 1.08387i 0.840421 + 0.541934i \(0.182308\pi\)
−0.840421 + 0.541934i \(0.817692\pi\)
\(828\) 0 0
\(829\) 2.14305e7 1.08304 0.541522 0.840686i \(-0.317848\pi\)
0.541522 + 0.840686i \(0.317848\pi\)
\(830\) 0 0
\(831\) 1.23527e7 0.620523
\(832\) 0 0
\(833\) 113208.i 0.00565282i
\(834\) 0 0
\(835\) 8.68237e6 1.66248e7i 0.430945 0.825163i
\(836\) 0 0
\(837\) 8.16364e6i 0.402782i
\(838\) 0 0
\(839\) −3.42279e7 −1.67871 −0.839355 0.543584i \(-0.817067\pi\)
−0.839355 + 0.543584i \(0.817067\pi\)
\(840\) 0 0
\(841\) 3.30153e7 1.60963
\(842\) 0 0
\(843\) 1.47891e7i 0.716757i
\(844\) 0 0
\(845\) 9.69160e6 + 5.06149e6i 0.466932 + 0.243858i
\(846\) 0 0
\(847\) 586367.i 0.0280841i
\(848\) 0 0
\(849\) −6.97038e6 −0.331884
\(850\) 0 0
\(851\) −3.38539e6 −0.160245
\(852\) 0 0
\(853\) 3.84312e6i 0.180847i −0.995903 0.0904234i \(-0.971178\pi\)
0.995903 0.0904234i \(-0.0288220\pi\)
\(854\) 0 0
\(855\) −1.34836e7 7.04190e6i −0.630801 0.329439i
\(856\) 0 0
\(857\) 2.34451e7i 1.09043i −0.838295 0.545217i \(-0.816447\pi\)
0.838295 0.545217i \(-0.183553\pi\)
\(858\) 0 0
\(859\) −2.85004e6 −0.131786 −0.0658928 0.997827i \(-0.520990\pi\)
−0.0658928 + 0.997827i \(0.520990\pi\)
\(860\) 0 0
\(861\) −583307. −0.0268157
\(862\) 0 0
\(863\) 2.37124e6i 0.108380i 0.998531 + 0.0541898i \(0.0172576\pi\)
−0.998531 + 0.0541898i \(0.982742\pi\)
\(864\) 0 0
\(865\) −1.13141e7 + 2.16639e7i −0.514137 + 0.984456i
\(866\) 0 0
\(867\) 8.23559e6i 0.372089i
\(868\) 0 0
\(869\) 1.16060e7 0.521352
\(870\) 0 0
\(871\) −1.21279e7 −0.541678
\(872\) 0 0
\(873\) 2.14040e7i 0.950518i
\(874\) 0 0
\(875\) 8.49110e6 1.08350e6i 0.374924 0.0478421i
\(876\) 0 0
\(877\) 7.63907e6i 0.335383i 0.985839 + 0.167692i \(0.0536313\pi\)
−0.985839 + 0.167692i \(0.946369\pi\)
\(878\) 0 0
\(879\) 4.27275e6 0.186524
\(880\) 0 0
\(881\) −3.83404e7 −1.66424 −0.832121 0.554594i \(-0.812874\pi\)
−0.832121 + 0.554594i \(0.812874\pi\)
\(882\) 0 0
\(883\) 7.69593e6i 0.332169i 0.986111 + 0.166085i \(0.0531125\pi\)
−0.986111 + 0.166085i \(0.946887\pi\)
\(884\) 0 0
\(885\) −1.79765e6 + 3.44210e6i −0.0771520 + 0.147729i
\(886\) 0 0
\(887\) 3.71033e7i 1.58345i 0.610880 + 0.791723i \(0.290816\pi\)
−0.610880 + 0.791723i \(0.709184\pi\)
\(888\) 0 0
\(889\) −1.12670e7 −0.478139
\(890\) 0 0
\(891\) 1.48017e7 0.624623
\(892\) 0 0
\(893\) 1.60511e7i 0.673559i
\(894\) 0 0
\(895\) 6.14024e6 + 3.20677e6i 0.256229 + 0.133817i
\(896\) 0 0
\(897\) 2.16139e6i 0.0896918i
\(898\) 0 0
\(899\) −2.27331e7 −0.938121
\(900\) 0 0
\(901\) 579959. 0.0238005
\(902\) 0 0
\(903\) 2.46638e6i 0.100656i
\(904\) 0 0
\(905\) −2.49327e7 1.30212e7i −1.01192 0.528481i
\(906\) 0 0
\(907\) 4.15393e7i 1.67664i 0.545175 + 0.838322i \(0.316463\pi\)
−0.545175 + 0.838322i \(0.683537\pi\)
\(908\) 0 0
\(909\) 6.33586e6 0.254329
\(910\) 0 0
\(911\) −2.96060e7 −1.18191 −0.590954 0.806705i \(-0.701249\pi\)
−0.590954 + 0.806705i \(0.701249\pi\)
\(912\) 0 0
\(913\) 3.87974e7i 1.54037i
\(914\) 0 0
\(915\) 2.46697e6 4.72368e6i 0.0974115 0.186521i
\(916\) 0 0
\(917\) 6.85806e6i 0.269326i
\(918\) 0 0
\(919\) 3.67817e7 1.43662 0.718312 0.695721i \(-0.244915\pi\)
0.718312 + 0.695721i \(0.244915\pi\)
\(920\) 0 0
\(921\) −6.66933e6 −0.259079
\(922\) 0 0
\(923\) 2.73333e7i 1.05606i
\(924\) 0 0
\(925\) −9.78175e6 + 6.81064e6i −0.375891 + 0.261718i
\(926\) 0 0
\(927\) 2.94748e7i 1.12655i
\(928\) 0 0
\(929\) −1.53870e7 −0.584943 −0.292471 0.956274i \(-0.594478\pi\)
−0.292471 + 0.956274i \(0.594478\pi\)
\(930\) 0 0
\(931\) 3.12233e6 0.118060
\(932\) 0 0
\(933\) 9.18808e6i 0.345558i
\(934\) 0 0
\(935\) −507536. + 971817.i −0.0189862 + 0.0363543i
\(936\) 0 0
\(937\) 1.48496e6i 0.0552543i −0.999618 0.0276272i \(-0.991205\pi\)
0.999618 0.0276272i \(-0.00879512\pi\)
\(938\) 0 0
\(939\) −3.04398e6 −0.112662
\(940\) 0 0
\(941\) 2.99275e7 1.10178 0.550891 0.834577i \(-0.314288\pi\)
0.550891 + 0.834577i \(0.314288\pi\)
\(942\) 0 0
\(943\) 1.81879e6i 0.0666044i
\(944\) 0 0
\(945\) −6.37910e6 3.33152e6i −0.232370 0.121356i
\(946\) 0 0
\(947\) 2.52221e7i 0.913917i 0.889488 + 0.456958i \(0.151061\pi\)
−0.889488 + 0.456958i \(0.848939\pi\)
\(948\) 0 0
\(949\) −2.29384e7 −0.826794
\(950\) 0 0
\(951\) 1.55539e7 0.557685
\(952\) 0 0
\(953\) 1.88094e7i 0.670878i −0.942062 0.335439i \(-0.891115\pi\)
0.942062 0.335439i \(-0.108885\pi\)
\(954\) 0 0
\(955\) −3.12211e7 1.63054e7i −1.10775 0.578526i
\(956\) 0 0
\(957\) 1.76791e7i 0.623993i
\(958\) 0 0
\(959\) 1.90805e6 0.0669952
\(960\) 0 0
\(961\) −1.89742e7 −0.662759
\(962\) 0 0
\(963\) 1.17523e7i 0.408374i
\(964\) 0 0
\(965\) −2.67075e7 + 5.11388e7i −0.923240 + 1.76780i
\(966\) 0 0
\(967\) 1.20385e7i 0.414004i 0.978340 + 0.207002i \(0.0663707\pi\)
−0.978340 + 0.207002i \(0.933629\pi\)
\(968\) 0 0
\(969\) −356207. −0.0121869
\(970\) 0 0
\(971\) 3.10000e7 1.05515 0.527575 0.849508i \(-0.323101\pi\)
0.527575 + 0.849508i \(0.323101\pi\)
\(972\) 0 0
\(973\) 56182.9i 0.00190249i
\(974\) 0 0
\(975\) −4.34824e6 6.24514e6i −0.146488 0.210393i
\(976\) 0 0
\(977\) 2.02990e7i 0.680358i −0.940361 0.340179i \(-0.889512\pi\)
0.940361 0.340179i \(-0.110488\pi\)
\(978\) 0 0
\(979\) 5.30402e7 1.76868
\(980\) 0 0
\(981\) 4.33534e6 0.143831
\(982\) 0 0
\(983\) 4.49537e7i 1.48382i 0.670498 + 0.741911i \(0.266080\pi\)
−0.670498 + 0.741911i \(0.733920\pi\)
\(984\) 0 0
\(985\) −3.70471e6 + 7.09369e6i −0.121665 + 0.232960i
\(986\) 0 0
\(987\) 3.51354e6i 0.114803i
\(988\) 0 0
\(989\) −7.69033e6 −0.250008
\(990\) 0 0
\(991\) 3.23706e7 1.04705 0.523525 0.852011i \(-0.324617\pi\)
0.523525 + 0.852011i \(0.324617\pi\)
\(992\) 0 0
\(993\) 7.19706e6i 0.231623i
\(994\) 0 0
\(995\) −2.71501e7 1.41793e7i −0.869388 0.454042i
\(996\) 0 0
\(997\) 4.92250e7i 1.56837i −0.620529 0.784183i \(-0.713082\pi\)
0.620529 0.784183i \(-0.286918\pi\)
\(998\) 0 0
\(999\) 1.00209e7 0.317683
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 280.6.g.a.169.9 20
4.3 odd 2 560.6.g.g.449.12 20
5.4 even 2 inner 280.6.g.a.169.12 yes 20
20.19 odd 2 560.6.g.g.449.9 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.6.g.a.169.9 20 1.1 even 1 trivial
280.6.g.a.169.12 yes 20 5.4 even 2 inner
560.6.g.g.449.9 20 20.19 odd 2
560.6.g.g.449.12 20 4.3 odd 2