Properties

Label 280.6.g.a.169.7
Level $280$
Weight $6$
Character 280.169
Analytic conductor $44.907$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [280,6,Mod(169,280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("280.169"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 280.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.9074695476\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 2997 x^{18} + 3735306 x^{16} + 2520827714 x^{14} + 1008202629141 x^{12} + 246520004342481 x^{10} + \cdots + 81\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{25}\cdot 5^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 169.7
Root \(-12.7619i\) of defining polynomial
Character \(\chi\) \(=\) 280.169
Dual form 280.6.g.a.169.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-12.7619i q^{3} +(3.33191 - 55.8023i) q^{5} +49.0000i q^{7} +80.1346 q^{9} -501.355 q^{11} -19.2939i q^{13} +(-712.142 - 42.5214i) q^{15} +1308.13i q^{17} -989.445 q^{19} +625.332 q^{21} +1316.61i q^{23} +(-3102.80 - 371.857i) q^{25} -4123.80i q^{27} -4496.56 q^{29} -2726.50 q^{31} +6398.23i q^{33} +(2734.31 + 163.264i) q^{35} +962.659i q^{37} -246.226 q^{39} +12225.2 q^{41} +12086.6i q^{43} +(267.001 - 4471.70i) q^{45} +7532.17i q^{47} -2401.00 q^{49} +16694.2 q^{51} -56.2085i q^{53} +(-1670.47 + 27976.8i) q^{55} +12627.2i q^{57} -5748.75 q^{59} +21159.2 q^{61} +3926.60i q^{63} +(-1076.64 - 64.2854i) q^{65} +17484.8i q^{67} +16802.3 q^{69} -40905.9 q^{71} +18739.2i q^{73} +(-4745.59 + 39597.5i) q^{75} -24566.4i q^{77} +4249.94 q^{79} -33154.7 q^{81} +78472.0i q^{83} +(72996.9 + 4358.58i) q^{85} +57384.5i q^{87} +49177.9 q^{89} +945.399 q^{91} +34795.3i q^{93} +(-3296.74 + 55213.3i) q^{95} +84998.7i q^{97} -40175.9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 14 q^{5} - 1134 q^{9} + 822 q^{11} + 1322 q^{15} + 3000 q^{19} - 882 q^{21} - 1944 q^{25} + 10406 q^{29} - 8532 q^{31} - 2058 q^{35} + 71066 q^{39} - 28880 q^{41} - 3922 q^{45} - 48020 q^{49} + 34770 q^{51}+ \cdots - 630244 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 12.7619i 0.818675i −0.912383 0.409337i \(-0.865760\pi\)
0.912383 0.409337i \(-0.134240\pi\)
\(4\) 0 0
\(5\) 3.33191 55.8023i 0.0596030 0.998222i
\(6\) 0 0
\(7\) 49.0000i 0.377964i
\(8\) 0 0
\(9\) 80.1346 0.329772
\(10\) 0 0
\(11\) −501.355 −1.24929 −0.624646 0.780908i \(-0.714757\pi\)
−0.624646 + 0.780908i \(0.714757\pi\)
\(12\) 0 0
\(13\) 19.2939i 0.0316636i −0.999875 0.0158318i \(-0.994960\pi\)
0.999875 0.0158318i \(-0.00503963\pi\)
\(14\) 0 0
\(15\) −712.142 42.5214i −0.817219 0.0487955i
\(16\) 0 0
\(17\) 1308.13i 1.09782i 0.835883 + 0.548908i \(0.184956\pi\)
−0.835883 + 0.548908i \(0.815044\pi\)
\(18\) 0 0
\(19\) −989.445 −0.628793 −0.314396 0.949292i \(-0.601802\pi\)
−0.314396 + 0.949292i \(0.601802\pi\)
\(20\) 0 0
\(21\) 625.332 0.309430
\(22\) 0 0
\(23\) 1316.61i 0.518962i 0.965748 + 0.259481i \(0.0835516\pi\)
−0.965748 + 0.259481i \(0.916448\pi\)
\(24\) 0 0
\(25\) −3102.80 371.857i −0.992895 0.118994i
\(26\) 0 0
\(27\) 4123.80i 1.08865i
\(28\) 0 0
\(29\) −4496.56 −0.992854 −0.496427 0.868078i \(-0.665355\pi\)
−0.496427 + 0.868078i \(0.665355\pi\)
\(30\) 0 0
\(31\) −2726.50 −0.509567 −0.254784 0.966998i \(-0.582004\pi\)
−0.254784 + 0.966998i \(0.582004\pi\)
\(32\) 0 0
\(33\) 6398.23i 1.02276i
\(34\) 0 0
\(35\) 2734.31 + 163.264i 0.377293 + 0.0225278i
\(36\) 0 0
\(37\) 962.659i 0.115603i 0.998328 + 0.0578014i \(0.0184090\pi\)
−0.998328 + 0.0578014i \(0.981591\pi\)
\(38\) 0 0
\(39\) −246.226 −0.0259222
\(40\) 0 0
\(41\) 12225.2 1.13578 0.567892 0.823103i \(-0.307759\pi\)
0.567892 + 0.823103i \(0.307759\pi\)
\(42\) 0 0
\(43\) 12086.6i 0.996855i 0.866931 + 0.498427i \(0.166089\pi\)
−0.866931 + 0.498427i \(0.833911\pi\)
\(44\) 0 0
\(45\) 267.001 4471.70i 0.0196554 0.329186i
\(46\) 0 0
\(47\) 7532.17i 0.497365i 0.968585 + 0.248683i \(0.0799976\pi\)
−0.968585 + 0.248683i \(0.920002\pi\)
\(48\) 0 0
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) 16694.2 0.898754
\(52\) 0 0
\(53\) 56.2085i 0.00274861i −0.999999 0.00137430i \(-0.999563\pi\)
0.999999 0.00137430i \(-0.000437454\pi\)
\(54\) 0 0
\(55\) −1670.47 + 27976.8i −0.0744616 + 1.24707i
\(56\) 0 0
\(57\) 12627.2i 0.514777i
\(58\) 0 0
\(59\) −5748.75 −0.215003 −0.107501 0.994205i \(-0.534285\pi\)
−0.107501 + 0.994205i \(0.534285\pi\)
\(60\) 0 0
\(61\) 21159.2 0.728071 0.364035 0.931385i \(-0.381399\pi\)
0.364035 + 0.931385i \(0.381399\pi\)
\(62\) 0 0
\(63\) 3926.60i 0.124642i
\(64\) 0 0
\(65\) −1076.64 64.2854i −0.0316073 0.00188725i
\(66\) 0 0
\(67\) 17484.8i 0.475854i 0.971283 + 0.237927i \(0.0764679\pi\)
−0.971283 + 0.237927i \(0.923532\pi\)
\(68\) 0 0
\(69\) 16802.3 0.424861
\(70\) 0 0
\(71\) −40905.9 −0.963031 −0.481515 0.876438i \(-0.659913\pi\)
−0.481515 + 0.876438i \(0.659913\pi\)
\(72\) 0 0
\(73\) 18739.2i 0.411570i 0.978597 + 0.205785i \(0.0659747\pi\)
−0.978597 + 0.205785i \(0.934025\pi\)
\(74\) 0 0
\(75\) −4745.59 + 39597.5i −0.0974175 + 0.812858i
\(76\) 0 0
\(77\) 24566.4i 0.472188i
\(78\) 0 0
\(79\) 4249.94 0.0766151 0.0383076 0.999266i \(-0.487803\pi\)
0.0383076 + 0.999266i \(0.487803\pi\)
\(80\) 0 0
\(81\) −33154.7 −0.561478
\(82\) 0 0
\(83\) 78472.0i 1.25032i 0.780498 + 0.625158i \(0.214965\pi\)
−0.780498 + 0.625158i \(0.785035\pi\)
\(84\) 0 0
\(85\) 72996.9 + 4358.58i 1.09586 + 0.0654332i
\(86\) 0 0
\(87\) 57384.5i 0.812825i
\(88\) 0 0
\(89\) 49177.9 0.658104 0.329052 0.944312i \(-0.393271\pi\)
0.329052 + 0.944312i \(0.393271\pi\)
\(90\) 0 0
\(91\) 945.399 0.0119677
\(92\) 0 0
\(93\) 34795.3i 0.417170i
\(94\) 0 0
\(95\) −3296.74 + 55213.3i −0.0374779 + 0.627675i
\(96\) 0 0
\(97\) 84998.7i 0.917240i 0.888632 + 0.458620i \(0.151656\pi\)
−0.888632 + 0.458620i \(0.848344\pi\)
\(98\) 0 0
\(99\) −40175.9 −0.411982
\(100\) 0 0
\(101\) −124429. −1.21372 −0.606861 0.794808i \(-0.707571\pi\)
−0.606861 + 0.794808i \(0.707571\pi\)
\(102\) 0 0
\(103\) 179896.i 1.67081i 0.549634 + 0.835406i \(0.314767\pi\)
−0.549634 + 0.835406i \(0.685233\pi\)
\(104\) 0 0
\(105\) 2083.55 34895.0i 0.0184430 0.308880i
\(106\) 0 0
\(107\) 188900.i 1.59505i −0.603288 0.797524i \(-0.706143\pi\)
0.603288 0.797524i \(-0.293857\pi\)
\(108\) 0 0
\(109\) 153193. 1.23502 0.617509 0.786564i \(-0.288142\pi\)
0.617509 + 0.786564i \(0.288142\pi\)
\(110\) 0 0
\(111\) 12285.3 0.0946410
\(112\) 0 0
\(113\) 142026.i 1.04634i 0.852229 + 0.523170i \(0.175251\pi\)
−0.852229 + 0.523170i \(0.824749\pi\)
\(114\) 0 0
\(115\) 73469.6 + 4386.81i 0.518040 + 0.0309317i
\(116\) 0 0
\(117\) 1546.11i 0.0104418i
\(118\) 0 0
\(119\) −64098.5 −0.414935
\(120\) 0 0
\(121\) 90306.2 0.560731
\(122\) 0 0
\(123\) 156016.i 0.929838i
\(124\) 0 0
\(125\) −31088.7 + 171904.i −0.177962 + 0.984037i
\(126\) 0 0
\(127\) 85958.2i 0.472909i −0.971643 0.236455i \(-0.924015\pi\)
0.971643 0.236455i \(-0.0759855\pi\)
\(128\) 0 0
\(129\) 154247. 0.816100
\(130\) 0 0
\(131\) −186106. −0.947506 −0.473753 0.880658i \(-0.657101\pi\)
−0.473753 + 0.880658i \(0.657101\pi\)
\(132\) 0 0
\(133\) 48482.8i 0.237661i
\(134\) 0 0
\(135\) −230118. 13740.1i −1.08672 0.0648869i
\(136\) 0 0
\(137\) 62849.6i 0.286089i 0.989716 + 0.143045i \(0.0456892\pi\)
−0.989716 + 0.143045i \(0.954311\pi\)
\(138\) 0 0
\(139\) −337229. −1.48043 −0.740215 0.672371i \(-0.765276\pi\)
−0.740215 + 0.672371i \(0.765276\pi\)
\(140\) 0 0
\(141\) 96124.6 0.407180
\(142\) 0 0
\(143\) 9673.08i 0.0395571i
\(144\) 0 0
\(145\) −14982.1 + 250919.i −0.0591771 + 0.991089i
\(146\) 0 0
\(147\) 30641.3i 0.116954i
\(148\) 0 0
\(149\) −135566. −0.500248 −0.250124 0.968214i \(-0.580471\pi\)
−0.250124 + 0.968214i \(0.580471\pi\)
\(150\) 0 0
\(151\) −98649.4 −0.352089 −0.176044 0.984382i \(-0.556330\pi\)
−0.176044 + 0.984382i \(0.556330\pi\)
\(152\) 0 0
\(153\) 104827.i 0.362029i
\(154\) 0 0
\(155\) −9084.46 + 152145.i −0.0303718 + 0.508661i
\(156\) 0 0
\(157\) 360552.i 1.16740i −0.811970 0.583699i \(-0.801605\pi\)
0.811970 0.583699i \(-0.198395\pi\)
\(158\) 0 0
\(159\) −717.326 −0.00225021
\(160\) 0 0
\(161\) −64513.7 −0.196149
\(162\) 0 0
\(163\) 338233.i 0.997120i −0.866855 0.498560i \(-0.833862\pi\)
0.866855 0.498560i \(-0.166138\pi\)
\(164\) 0 0
\(165\) 357036. + 21318.3i 1.02095 + 0.0609598i
\(166\) 0 0
\(167\) 25703.4i 0.0713181i 0.999364 + 0.0356590i \(0.0113530\pi\)
−0.999364 + 0.0356590i \(0.988647\pi\)
\(168\) 0 0
\(169\) 370921. 0.998997
\(170\) 0 0
\(171\) −79288.7 −0.207358
\(172\) 0 0
\(173\) 166733.i 0.423553i −0.977318 0.211776i \(-0.932075\pi\)
0.977318 0.211776i \(-0.0679248\pi\)
\(174\) 0 0
\(175\) 18221.0 152037.i 0.0449756 0.375279i
\(176\) 0 0
\(177\) 73364.9i 0.176017i
\(178\) 0 0
\(179\) −332531. −0.775711 −0.387855 0.921720i \(-0.626784\pi\)
−0.387855 + 0.921720i \(0.626784\pi\)
\(180\) 0 0
\(181\) 315882. 0.716686 0.358343 0.933590i \(-0.383342\pi\)
0.358343 + 0.933590i \(0.383342\pi\)
\(182\) 0 0
\(183\) 270030.i 0.596053i
\(184\) 0 0
\(185\) 53718.6 + 3207.49i 0.115397 + 0.00689027i
\(186\) 0 0
\(187\) 655840.i 1.37149i
\(188\) 0 0
\(189\) 202066. 0.411471
\(190\) 0 0
\(191\) 193935. 0.384656 0.192328 0.981331i \(-0.438396\pi\)
0.192328 + 0.981331i \(0.438396\pi\)
\(192\) 0 0
\(193\) 258933.i 0.500374i −0.968198 0.250187i \(-0.919508\pi\)
0.968198 0.250187i \(-0.0804921\pi\)
\(194\) 0 0
\(195\) −820.402 + 13740.0i −0.00154504 + 0.0258761i
\(196\) 0 0
\(197\) 1.03919e6i 1.90778i −0.300153 0.953891i \(-0.597038\pi\)
0.300153 0.953891i \(-0.402962\pi\)
\(198\) 0 0
\(199\) 171300. 0.306638 0.153319 0.988177i \(-0.451004\pi\)
0.153319 + 0.988177i \(0.451004\pi\)
\(200\) 0 0
\(201\) 223139. 0.389569
\(202\) 0 0
\(203\) 220331.i 0.375264i
\(204\) 0 0
\(205\) 40733.2 682194.i 0.0676962 1.13377i
\(206\) 0 0
\(207\) 105506.i 0.171139i
\(208\) 0 0
\(209\) 496063. 0.785546
\(210\) 0 0
\(211\) −574831. −0.888861 −0.444430 0.895813i \(-0.646594\pi\)
−0.444430 + 0.895813i \(0.646594\pi\)
\(212\) 0 0
\(213\) 522036.i 0.788409i
\(214\) 0 0
\(215\) 674459. + 40271.4i 0.995083 + 0.0594156i
\(216\) 0 0
\(217\) 133599.i 0.192598i
\(218\) 0 0
\(219\) 239147. 0.336941
\(220\) 0 0
\(221\) 25238.9 0.0347608
\(222\) 0 0
\(223\) 1.08708e6i 1.46386i 0.681378 + 0.731932i \(0.261381\pi\)
−0.681378 + 0.731932i \(0.738619\pi\)
\(224\) 0 0
\(225\) −248641. 29798.6i −0.327429 0.0392409i
\(226\) 0 0
\(227\) 250824.i 0.323076i 0.986867 + 0.161538i \(0.0516454\pi\)
−0.986867 + 0.161538i \(0.948355\pi\)
\(228\) 0 0
\(229\) 799016. 1.00685 0.503427 0.864038i \(-0.332072\pi\)
0.503427 + 0.864038i \(0.332072\pi\)
\(230\) 0 0
\(231\) −313513. −0.386568
\(232\) 0 0
\(233\) 1.15788e6i 1.39725i −0.715490 0.698623i \(-0.753796\pi\)
0.715490 0.698623i \(-0.246204\pi\)
\(234\) 0 0
\(235\) 420312. + 25096.5i 0.496481 + 0.0296445i
\(236\) 0 0
\(237\) 54237.1i 0.0627229i
\(238\) 0 0
\(239\) −1.73551e6 −1.96531 −0.982656 0.185436i \(-0.940630\pi\)
−0.982656 + 0.185436i \(0.940630\pi\)
\(240\) 0 0
\(241\) −1.71193e6 −1.89864 −0.949321 0.314308i \(-0.898227\pi\)
−0.949321 + 0.314308i \(0.898227\pi\)
\(242\) 0 0
\(243\) 578967.i 0.628982i
\(244\) 0 0
\(245\) −7999.92 + 133981.i −0.00851472 + 0.142603i
\(246\) 0 0
\(247\) 19090.2i 0.0199099i
\(248\) 0 0
\(249\) 1.00145e6 1.02360
\(250\) 0 0
\(251\) −1.49387e6 −1.49668 −0.748342 0.663313i \(-0.769150\pi\)
−0.748342 + 0.663313i \(0.769150\pi\)
\(252\) 0 0
\(253\) 660087.i 0.648336i
\(254\) 0 0
\(255\) 55623.7 931577.i 0.0535685 0.897156i
\(256\) 0 0
\(257\) 2.04206e6i 1.92858i −0.264858 0.964288i \(-0.585325\pi\)
0.264858 0.964288i \(-0.414675\pi\)
\(258\) 0 0
\(259\) −47170.3 −0.0436937
\(260\) 0 0
\(261\) −360330. −0.327416
\(262\) 0 0
\(263\) 671803.i 0.598898i 0.954112 + 0.299449i \(0.0968028\pi\)
−0.954112 + 0.299449i \(0.903197\pi\)
\(264\) 0 0
\(265\) −3136.57 187.282i −0.00274372 0.000163825i
\(266\) 0 0
\(267\) 627602.i 0.538773i
\(268\) 0 0
\(269\) −993623. −0.837223 −0.418611 0.908165i \(-0.637483\pi\)
−0.418611 + 0.908165i \(0.637483\pi\)
\(270\) 0 0
\(271\) −2.09638e6 −1.73399 −0.866996 0.498314i \(-0.833953\pi\)
−0.866996 + 0.498314i \(0.833953\pi\)
\(272\) 0 0
\(273\) 12065.1i 0.00979767i
\(274\) 0 0
\(275\) 1.55560e6 + 186432.i 1.24042 + 0.148658i
\(276\) 0 0
\(277\) 2.13109e6i 1.66880i 0.551162 + 0.834398i \(0.314184\pi\)
−0.551162 + 0.834398i \(0.685816\pi\)
\(278\) 0 0
\(279\) −218487. −0.168041
\(280\) 0 0
\(281\) −263911. −0.199385 −0.0996924 0.995018i \(-0.531786\pi\)
−0.0996924 + 0.995018i \(0.531786\pi\)
\(282\) 0 0
\(283\) 158115.i 0.117356i −0.998277 0.0586782i \(-0.981311\pi\)
0.998277 0.0586782i \(-0.0186886\pi\)
\(284\) 0 0
\(285\) 704625. + 42072.6i 0.513861 + 0.0306822i
\(286\) 0 0
\(287\) 599034.i 0.429286i
\(288\) 0 0
\(289\) −291355. −0.205200
\(290\) 0 0
\(291\) 1.08474e6 0.750921
\(292\) 0 0
\(293\) 315168.i 0.214473i −0.994234 0.107237i \(-0.965800\pi\)
0.994234 0.107237i \(-0.0342003\pi\)
\(294\) 0 0
\(295\) −19154.3 + 320794.i −0.0128148 + 0.214620i
\(296\) 0 0
\(297\) 2.06749e6i 1.36004i
\(298\) 0 0
\(299\) 25402.4 0.0164322
\(300\) 0 0
\(301\) −592242. −0.376776
\(302\) 0 0
\(303\) 1.58795e6i 0.993643i
\(304\) 0 0
\(305\) 70500.4 1.18073e6i 0.0433952 0.726777i
\(306\) 0 0
\(307\) 406602.i 0.246220i 0.992393 + 0.123110i \(0.0392868\pi\)
−0.992393 + 0.123110i \(0.960713\pi\)
\(308\) 0 0
\(309\) 2.29580e6 1.36785
\(310\) 0 0
\(311\) 555573. 0.325717 0.162859 0.986649i \(-0.447929\pi\)
0.162859 + 0.986649i \(0.447929\pi\)
\(312\) 0 0
\(313\) 491547.i 0.283599i 0.989895 + 0.141799i \(0.0452888\pi\)
−0.989895 + 0.141799i \(0.954711\pi\)
\(314\) 0 0
\(315\) 219113. + 13083.1i 0.124421 + 0.00742905i
\(316\) 0 0
\(317\) 2.56154e6i 1.43170i 0.698253 + 0.715851i \(0.253961\pi\)
−0.698253 + 0.715851i \(0.746039\pi\)
\(318\) 0 0
\(319\) 2.25438e6 1.24036
\(320\) 0 0
\(321\) −2.41072e6 −1.30582
\(322\) 0 0
\(323\) 1.29433e6i 0.690299i
\(324\) 0 0
\(325\) −7174.55 + 59864.9i −0.00376779 + 0.0314387i
\(326\) 0 0
\(327\) 1.95503e6i 1.01108i
\(328\) 0 0
\(329\) −369076. −0.187986
\(330\) 0 0
\(331\) 591755. 0.296874 0.148437 0.988922i \(-0.452576\pi\)
0.148437 + 0.988922i \(0.452576\pi\)
\(332\) 0 0
\(333\) 77142.3i 0.0381225i
\(334\) 0 0
\(335\) 975692. + 58257.8i 0.475008 + 0.0283623i
\(336\) 0 0
\(337\) 2.78632e6i 1.33646i 0.743954 + 0.668231i \(0.232948\pi\)
−0.743954 + 0.668231i \(0.767052\pi\)
\(338\) 0 0
\(339\) 1.81252e6 0.856611
\(340\) 0 0
\(341\) 1.36695e6 0.636598
\(342\) 0 0
\(343\) 117649.i 0.0539949i
\(344\) 0 0
\(345\) 55983.9 937610.i 0.0253230 0.424106i
\(346\) 0 0
\(347\) 387553.i 0.172786i 0.996261 + 0.0863929i \(0.0275340\pi\)
−0.996261 + 0.0863929i \(0.972466\pi\)
\(348\) 0 0
\(349\) 325051. 0.142853 0.0714263 0.997446i \(-0.477245\pi\)
0.0714263 + 0.997446i \(0.477245\pi\)
\(350\) 0 0
\(351\) −79564.1 −0.0344706
\(352\) 0 0
\(353\) 828937.i 0.354067i 0.984205 + 0.177033i \(0.0566500\pi\)
−0.984205 + 0.177033i \(0.943350\pi\)
\(354\) 0 0
\(355\) −136295. + 2.28264e6i −0.0573996 + 0.961319i
\(356\) 0 0
\(357\) 818017.i 0.339697i
\(358\) 0 0
\(359\) 847241. 0.346953 0.173477 0.984838i \(-0.444500\pi\)
0.173477 + 0.984838i \(0.444500\pi\)
\(360\) 0 0
\(361\) −1.49710e6 −0.604620
\(362\) 0 0
\(363\) 1.15248e6i 0.459056i
\(364\) 0 0
\(365\) 1.04569e6 + 62437.2i 0.410838 + 0.0245308i
\(366\) 0 0
\(367\) 1.25278e6i 0.485522i 0.970086 + 0.242761i \(0.0780531\pi\)
−0.970086 + 0.242761i \(0.921947\pi\)
\(368\) 0 0
\(369\) 979661. 0.374550
\(370\) 0 0
\(371\) 2754.22 0.00103888
\(372\) 0 0
\(373\) 1.69236e6i 0.629828i 0.949120 + 0.314914i \(0.101976\pi\)
−0.949120 + 0.314914i \(0.898024\pi\)
\(374\) 0 0
\(375\) 2.19382e6 + 396750.i 0.805606 + 0.145693i
\(376\) 0 0
\(377\) 86756.0i 0.0314374i
\(378\) 0 0
\(379\) −826577. −0.295587 −0.147793 0.989018i \(-0.547217\pi\)
−0.147793 + 0.989018i \(0.547217\pi\)
\(380\) 0 0
\(381\) −1.09699e6 −0.387159
\(382\) 0 0
\(383\) 1.89387e6i 0.659709i 0.944032 + 0.329855i \(0.107000\pi\)
−0.944032 + 0.329855i \(0.893000\pi\)
\(384\) 0 0
\(385\) −1.37086e6 81853.1i −0.471349 0.0281438i
\(386\) 0 0
\(387\) 968552.i 0.328735i
\(388\) 0 0
\(389\) 4.37435e6 1.46568 0.732840 0.680401i \(-0.238194\pi\)
0.732840 + 0.680401i \(0.238194\pi\)
\(390\) 0 0
\(391\) −1.72229e6 −0.569725
\(392\) 0 0
\(393\) 2.37506e6i 0.775699i
\(394\) 0 0
\(395\) 14160.4 237156.i 0.00456649 0.0764789i
\(396\) 0 0
\(397\) 2.59203e6i 0.825399i 0.910867 + 0.412699i \(0.135414\pi\)
−0.910867 + 0.412699i \(0.864586\pi\)
\(398\) 0 0
\(399\) −618731. −0.194567
\(400\) 0 0
\(401\) −5.17451e6 −1.60697 −0.803487 0.595323i \(-0.797024\pi\)
−0.803487 + 0.595323i \(0.797024\pi\)
\(402\) 0 0
\(403\) 52604.7i 0.0161348i
\(404\) 0 0
\(405\) −110469. + 1.85011e6i −0.0334658 + 0.560480i
\(406\) 0 0
\(407\) 482634.i 0.144422i
\(408\) 0 0
\(409\) −5.89146e6 −1.74146 −0.870732 0.491758i \(-0.836354\pi\)
−0.870732 + 0.491758i \(0.836354\pi\)
\(410\) 0 0
\(411\) 802079. 0.234214
\(412\) 0 0
\(413\) 281689.i 0.0812633i
\(414\) 0 0
\(415\) 4.37892e6 + 261462.i 1.24809 + 0.0745226i
\(416\) 0 0
\(417\) 4.30367e6i 1.21199i
\(418\) 0 0
\(419\) −5.58215e6 −1.55334 −0.776670 0.629908i \(-0.783093\pi\)
−0.776670 + 0.629908i \(0.783093\pi\)
\(420\) 0 0
\(421\) −6.01010e6 −1.65263 −0.826317 0.563205i \(-0.809568\pi\)
−0.826317 + 0.563205i \(0.809568\pi\)
\(422\) 0 0
\(423\) 603587.i 0.164017i
\(424\) 0 0
\(425\) 486438. 4.05887e6i 0.130634 1.09002i
\(426\) 0 0
\(427\) 1.03680e6i 0.275185i
\(428\) 0 0
\(429\) 123447. 0.0323844
\(430\) 0 0
\(431\) 4.04322e6 1.04842 0.524209 0.851590i \(-0.324361\pi\)
0.524209 + 0.851590i \(0.324361\pi\)
\(432\) 0 0
\(433\) 2.28104e6i 0.584673i −0.956316 0.292336i \(-0.905567\pi\)
0.956316 0.292336i \(-0.0944327\pi\)
\(434\) 0 0
\(435\) 3.20219e6 + 191200.i 0.811379 + 0.0484468i
\(436\) 0 0
\(437\) 1.30271e6i 0.326320i
\(438\) 0 0
\(439\) 4.80560e6 1.19011 0.595054 0.803686i \(-0.297131\pi\)
0.595054 + 0.803686i \(0.297131\pi\)
\(440\) 0 0
\(441\) −192403. −0.0471103
\(442\) 0 0
\(443\) 1.15791e6i 0.280327i −0.990128 0.140163i \(-0.955237\pi\)
0.990128 0.140163i \(-0.0447628\pi\)
\(444\) 0 0
\(445\) 163856. 2.74424e6i 0.0392250 0.656934i
\(446\) 0 0
\(447\) 1.73008e6i 0.409541i
\(448\) 0 0
\(449\) −2.34434e6 −0.548788 −0.274394 0.961617i \(-0.588477\pi\)
−0.274394 + 0.961617i \(0.588477\pi\)
\(450\) 0 0
\(451\) −6.12916e6 −1.41893
\(452\) 0 0
\(453\) 1.25895e6i 0.288246i
\(454\) 0 0
\(455\) 3149.98 52755.5i 0.000713313 0.0119464i
\(456\) 0 0
\(457\) 2.17240e6i 0.486575i −0.969954 0.243288i \(-0.921774\pi\)
0.969954 0.243288i \(-0.0782259\pi\)
\(458\) 0 0
\(459\) 5.39448e6 1.19514
\(460\) 0 0
\(461\) −6.07435e6 −1.33121 −0.665606 0.746303i \(-0.731827\pi\)
−0.665606 + 0.746303i \(0.731827\pi\)
\(462\) 0 0
\(463\) 3.25155e6i 0.704917i 0.935827 + 0.352458i \(0.114654\pi\)
−0.935827 + 0.352458i \(0.885346\pi\)
\(464\) 0 0
\(465\) 1.94166e6 + 115935.i 0.416428 + 0.0248646i
\(466\) 0 0
\(467\) 3.96756e6i 0.841844i 0.907097 + 0.420922i \(0.138293\pi\)
−0.907097 + 0.420922i \(0.861707\pi\)
\(468\) 0 0
\(469\) −856755. −0.179856
\(470\) 0 0
\(471\) −4.60132e6 −0.955720
\(472\) 0 0
\(473\) 6.05967e6i 1.24536i
\(474\) 0 0
\(475\) 3.07005e6 + 367932.i 0.624325 + 0.0748226i
\(476\) 0 0
\(477\) 4504.25i 0.000906413i
\(478\) 0 0
\(479\) 3.23390e6 0.644003 0.322002 0.946739i \(-0.395644\pi\)
0.322002 + 0.946739i \(0.395644\pi\)
\(480\) 0 0
\(481\) 18573.4 0.00366040
\(482\) 0 0
\(483\) 823315.i 0.160583i
\(484\) 0 0
\(485\) 4.74313e6 + 283208.i 0.915610 + 0.0546703i
\(486\) 0 0
\(487\) 9.62313e6i 1.83863i −0.393523 0.919315i \(-0.628744\pi\)
0.393523 0.919315i \(-0.371256\pi\)
\(488\) 0 0
\(489\) −4.31649e6 −0.816316
\(490\) 0 0
\(491\) −8.52958e6 −1.59670 −0.798351 0.602193i \(-0.794294\pi\)
−0.798351 + 0.602193i \(0.794294\pi\)
\(492\) 0 0
\(493\) 5.88210e6i 1.08997i
\(494\) 0 0
\(495\) −133863. + 2.24191e6i −0.0245553 + 0.411249i
\(496\) 0 0
\(497\) 2.00439e6i 0.363991i
\(498\) 0 0
\(499\) 7.08560e6 1.27387 0.636935 0.770917i \(-0.280202\pi\)
0.636935 + 0.770917i \(0.280202\pi\)
\(500\) 0 0
\(501\) 328024. 0.0583863
\(502\) 0 0
\(503\) 7.61574e6i 1.34212i −0.741402 0.671061i \(-0.765839\pi\)
0.741402 0.671061i \(-0.234161\pi\)
\(504\) 0 0
\(505\) −414587. + 6.94344e6i −0.0723415 + 1.21156i
\(506\) 0 0
\(507\) 4.73364e6i 0.817854i
\(508\) 0 0
\(509\) 9.17677e6 1.56998 0.784992 0.619506i \(-0.212667\pi\)
0.784992 + 0.619506i \(0.212667\pi\)
\(510\) 0 0
\(511\) −918219. −0.155559
\(512\) 0 0
\(513\) 4.08027e6i 0.684535i
\(514\) 0 0
\(515\) 1.00386e7 + 599396.i 1.66784 + 0.0995854i
\(516\) 0 0
\(517\) 3.77629e6i 0.621354i
\(518\) 0 0
\(519\) −2.12783e6 −0.346752
\(520\) 0 0
\(521\) −6.73255e6 −1.08664 −0.543320 0.839526i \(-0.682833\pi\)
−0.543320 + 0.839526i \(0.682833\pi\)
\(522\) 0 0
\(523\) 5.53809e6i 0.885331i 0.896687 + 0.442665i \(0.145967\pi\)
−0.896687 + 0.442665i \(0.854033\pi\)
\(524\) 0 0
\(525\) −1.94028e6 232534.i −0.307231 0.0368203i
\(526\) 0 0
\(527\) 3.56663e6i 0.559411i
\(528\) 0 0
\(529\) 4.70289e6 0.730678
\(530\) 0 0
\(531\) −460674. −0.0709018
\(532\) 0 0
\(533\) 235871.i 0.0359631i
\(534\) 0 0
\(535\) −1.05411e7 629399.i −1.59221 0.0950696i
\(536\) 0 0
\(537\) 4.24372e6i 0.635055i
\(538\) 0 0
\(539\) 1.20375e6 0.178470
\(540\) 0 0
\(541\) 1.08520e7 1.59410 0.797052 0.603911i \(-0.206392\pi\)
0.797052 + 0.603911i \(0.206392\pi\)
\(542\) 0 0
\(543\) 4.03125e6i 0.586733i
\(544\) 0 0
\(545\) 510426. 8.54854e6i 0.0736109 1.23282i
\(546\) 0 0
\(547\) 2.14366e6i 0.306328i −0.988201 0.153164i \(-0.951054\pi\)
0.988201 0.153164i \(-0.0489463\pi\)
\(548\) 0 0
\(549\) 1.69558e6 0.240097
\(550\) 0 0
\(551\) 4.44910e6 0.624299
\(552\) 0 0
\(553\) 208247.i 0.0289578i
\(554\) 0 0
\(555\) 40933.6 685550.i 0.00564089 0.0944728i
\(556\) 0 0
\(557\) 1.19370e7i 1.63026i −0.579277 0.815131i \(-0.696665\pi\)
0.579277 0.815131i \(-0.303335\pi\)
\(558\) 0 0
\(559\) 233197. 0.0315640
\(560\) 0 0
\(561\) −8.36974e6 −1.12281
\(562\) 0 0
\(563\) 316392.i 0.0420683i 0.999779 + 0.0210341i \(0.00669587\pi\)
−0.999779 + 0.0210341i \(0.993304\pi\)
\(564\) 0 0
\(565\) 7.92539e6 + 473219.i 1.04448 + 0.0623650i
\(566\) 0 0
\(567\) 1.62458e6i 0.212219i
\(568\) 0 0
\(569\) −1.05638e7 −1.36785 −0.683927 0.729551i \(-0.739729\pi\)
−0.683927 + 0.729551i \(0.739729\pi\)
\(570\) 0 0
\(571\) 1.04764e7 1.34469 0.672343 0.740240i \(-0.265288\pi\)
0.672343 + 0.740240i \(0.265288\pi\)
\(572\) 0 0
\(573\) 2.47497e6i 0.314908i
\(574\) 0 0
\(575\) 489588. 4.08516e6i 0.0617535 0.515275i
\(576\) 0 0
\(577\) 1.04055e6i 0.130114i −0.997882 0.0650568i \(-0.979277\pi\)
0.997882 0.0650568i \(-0.0207228\pi\)
\(578\) 0 0
\(579\) −3.30447e6 −0.409643
\(580\) 0 0
\(581\) −3.84513e6 −0.472575
\(582\) 0 0
\(583\) 28180.4i 0.00343381i
\(584\) 0 0
\(585\) −86276.3 5151.48i −0.0104232 0.000622362i
\(586\) 0 0
\(587\) 7.32194e6i 0.877063i −0.898716 0.438532i \(-0.855499\pi\)
0.898716 0.438532i \(-0.144501\pi\)
\(588\) 0 0
\(589\) 2.69772e6 0.320412
\(590\) 0 0
\(591\) −1.32620e7 −1.56185
\(592\) 0 0
\(593\) 7.78789e6i 0.909459i −0.890630 0.454729i \(-0.849736\pi\)
0.890630 0.454729i \(-0.150264\pi\)
\(594\) 0 0
\(595\) −213571. + 3.57685e6i −0.0247314 + 0.414198i
\(596\) 0 0
\(597\) 2.18611e6i 0.251037i
\(598\) 0 0
\(599\) 3.61688e6 0.411876 0.205938 0.978565i \(-0.433975\pi\)
0.205938 + 0.978565i \(0.433975\pi\)
\(600\) 0 0
\(601\) −1.00550e7 −1.13553 −0.567763 0.823192i \(-0.692191\pi\)
−0.567763 + 0.823192i \(0.692191\pi\)
\(602\) 0 0
\(603\) 1.40114e6i 0.156923i
\(604\) 0 0
\(605\) 300892. 5.03930e6i 0.0334212 0.559734i
\(606\) 0 0
\(607\) 4.67650e6i 0.515168i −0.966256 0.257584i \(-0.917074\pi\)
0.966256 0.257584i \(-0.0829265\pi\)
\(608\) 0 0
\(609\) −2.81184e6 −0.307219
\(610\) 0 0
\(611\) 145325. 0.0157484
\(612\) 0 0
\(613\) 8.08638e6i 0.869166i 0.900632 + 0.434583i \(0.143104\pi\)
−0.900632 + 0.434583i \(0.856896\pi\)
\(614\) 0 0
\(615\) −8.70607e6 519832.i −0.928185 0.0554211i
\(616\) 0 0
\(617\) 1.10272e7i 1.16615i 0.812419 + 0.583074i \(0.198150\pi\)
−0.812419 + 0.583074i \(0.801850\pi\)
\(618\) 0 0
\(619\) 3.65723e6 0.383641 0.191821 0.981430i \(-0.438561\pi\)
0.191821 + 0.981430i \(0.438561\pi\)
\(620\) 0 0
\(621\) 5.42942e6 0.564969
\(622\) 0 0
\(623\) 2.40972e6i 0.248740i
\(624\) 0 0
\(625\) 9.48907e6 + 2.30759e6i 0.971681 + 0.236297i
\(626\) 0 0
\(627\) 6.33070e6i 0.643106i
\(628\) 0 0
\(629\) −1.25929e6 −0.126911
\(630\) 0 0
\(631\) 1.09862e7 1.09843 0.549215 0.835681i \(-0.314927\pi\)
0.549215 + 0.835681i \(0.314927\pi\)
\(632\) 0 0
\(633\) 7.33592e6i 0.727688i
\(634\) 0 0
\(635\) −4.79667e6 286405.i −0.472069 0.0281868i
\(636\) 0 0
\(637\) 46324.5i 0.00452338i
\(638\) 0 0
\(639\) −3.27798e6 −0.317581
\(640\) 0 0
\(641\) 4.58921e6 0.441157 0.220578 0.975369i \(-0.429206\pi\)
0.220578 + 0.975369i \(0.429206\pi\)
\(642\) 0 0
\(643\) 1.99793e7i 1.90569i 0.303456 + 0.952845i \(0.401859\pi\)
−0.303456 + 0.952845i \(0.598141\pi\)
\(644\) 0 0
\(645\) 513938. 8.60735e6i 0.0486420 0.814649i
\(646\) 0 0
\(647\) 1.73498e7i 1.62942i −0.579866 0.814712i \(-0.696895\pi\)
0.579866 0.814712i \(-0.303105\pi\)
\(648\) 0 0
\(649\) 2.88217e6 0.268601
\(650\) 0 0
\(651\) −1.70497e6 −0.157675
\(652\) 0 0
\(653\) 1.62393e7i 1.49034i −0.666875 0.745170i \(-0.732368\pi\)
0.666875 0.745170i \(-0.267632\pi\)
\(654\) 0 0
\(655\) −620088. + 1.03851e7i −0.0564742 + 0.945821i
\(656\) 0 0
\(657\) 1.50166e6i 0.135724i
\(658\) 0 0
\(659\) −7.37588e6 −0.661607 −0.330804 0.943700i \(-0.607320\pi\)
−0.330804 + 0.943700i \(0.607320\pi\)
\(660\) 0 0
\(661\) 4.46654e6 0.397620 0.198810 0.980038i \(-0.436292\pi\)
0.198810 + 0.980038i \(0.436292\pi\)
\(662\) 0 0
\(663\) 322096.i 0.0284578i
\(664\) 0 0
\(665\) −2.70545e6 161540.i −0.237239 0.0141653i
\(666\) 0 0
\(667\) 5.92020e6i 0.515254i
\(668\) 0 0
\(669\) 1.38732e7 1.19843
\(670\) 0 0
\(671\) −1.06083e7 −0.909573
\(672\) 0 0
\(673\) 507076.i 0.0431554i −0.999767 0.0215777i \(-0.993131\pi\)
0.999767 0.0215777i \(-0.00686894\pi\)
\(674\) 0 0
\(675\) −1.53346e6 + 1.27953e7i −0.129543 + 1.08092i
\(676\) 0 0
\(677\) 6.96739e6i 0.584250i 0.956380 + 0.292125i \(0.0943623\pi\)
−0.956380 + 0.292125i \(0.905638\pi\)
\(678\) 0 0
\(679\) −4.16494e6 −0.346684
\(680\) 0 0
\(681\) 3.20098e6 0.264494
\(682\) 0 0
\(683\) 8.59041e6i 0.704632i −0.935881 0.352316i \(-0.885394\pi\)
0.935881 0.352316i \(-0.114606\pi\)
\(684\) 0 0
\(685\) 3.50715e6 + 209409.i 0.285580 + 0.0170518i
\(686\) 0 0
\(687\) 1.01969e7i 0.824286i
\(688\) 0 0
\(689\) −1084.48 −8.70308e−5
\(690\) 0 0
\(691\) −2.24356e7 −1.78749 −0.893743 0.448578i \(-0.851930\pi\)
−0.893743 + 0.448578i \(0.851930\pi\)
\(692\) 0 0
\(693\) 1.96862e6i 0.155714i
\(694\) 0 0
\(695\) −1.12362e6 + 1.88181e7i −0.0882380 + 1.47780i
\(696\) 0 0
\(697\) 1.59922e7i 1.24688i
\(698\) 0 0
\(699\) −1.47767e7 −1.14389
\(700\) 0 0
\(701\) 1.99956e7 1.53688 0.768440 0.639921i \(-0.221033\pi\)
0.768440 + 0.639921i \(0.221033\pi\)
\(702\) 0 0
\(703\) 952498.i 0.0726901i
\(704\) 0 0
\(705\) 320278. 5.36397e6i 0.0242692 0.406456i
\(706\) 0 0
\(707\) 6.09703e6i 0.458744i
\(708\) 0 0
\(709\) −5.91142e6 −0.441648 −0.220824 0.975314i \(-0.570875\pi\)
−0.220824 + 0.975314i \(0.570875\pi\)
\(710\) 0 0
\(711\) 340567. 0.0252655
\(712\) 0 0
\(713\) 3.58973e6i 0.264446i
\(714\) 0 0
\(715\) 539780. + 32229.8i 0.0394868 + 0.00235772i
\(716\) 0 0
\(717\) 2.21483e7i 1.60895i
\(718\) 0 0
\(719\) 2.07736e7 1.49861 0.749306 0.662224i \(-0.230387\pi\)
0.749306 + 0.662224i \(0.230387\pi\)
\(720\) 0 0
\(721\) −8.81488e6 −0.631507
\(722\) 0 0
\(723\) 2.18474e7i 1.55437i
\(724\) 0 0
\(725\) 1.39519e7 + 1.67208e6i 0.985800 + 0.118144i
\(726\) 0 0
\(727\) 1.11990e7i 0.785860i 0.919568 + 0.392930i \(0.128538\pi\)
−0.919568 + 0.392930i \(0.871462\pi\)
\(728\) 0 0
\(729\) −1.54453e7 −1.07641
\(730\) 0 0
\(731\) −1.58108e7 −1.09436
\(732\) 0 0
\(733\) 2.06164e7i 1.41727i −0.705573 0.708637i \(-0.749310\pi\)
0.705573 0.708637i \(-0.250690\pi\)
\(734\) 0 0
\(735\) 1.70985e6 + 102094.i 0.116746 + 0.00697078i
\(736\) 0 0
\(737\) 8.76610e6i 0.594480i
\(738\) 0 0
\(739\) 2.32124e7 1.56354 0.781771 0.623566i \(-0.214317\pi\)
0.781771 + 0.623566i \(0.214317\pi\)
\(740\) 0 0
\(741\) 243627. 0.0162997
\(742\) 0 0
\(743\) 2.38953e7i 1.58796i −0.607943 0.793981i \(-0.708005\pi\)
0.607943 0.793981i \(-0.291995\pi\)
\(744\) 0 0
\(745\) −451694. + 7.56491e6i −0.0298163 + 0.499359i
\(746\) 0 0
\(747\) 6.28832e6i 0.412319i
\(748\) 0 0
\(749\) 9.25612e6 0.602871
\(750\) 0 0
\(751\) 8.66074e6 0.560345 0.280172 0.959950i \(-0.409608\pi\)
0.280172 + 0.959950i \(0.409608\pi\)
\(752\) 0 0
\(753\) 1.90646e7i 1.22530i
\(754\) 0 0
\(755\) −328691. + 5.50487e6i −0.0209856 + 0.351463i
\(756\) 0 0
\(757\) 2.49562e7i 1.58285i 0.611269 + 0.791423i \(0.290659\pi\)
−0.611269 + 0.791423i \(0.709341\pi\)
\(758\) 0 0
\(759\) −8.42395e6 −0.530776
\(760\) 0 0
\(761\) −1.36077e6 −0.0851770 −0.0425885 0.999093i \(-0.513560\pi\)
−0.0425885 + 0.999093i \(0.513560\pi\)
\(762\) 0 0
\(763\) 7.50647e6i 0.466793i
\(764\) 0 0
\(765\) 5.84957e6 + 349273.i 0.361385 + 0.0215780i
\(766\) 0 0
\(767\) 110916.i 0.00680776i
\(768\) 0 0
\(769\) −2.11438e7 −1.28934 −0.644670 0.764461i \(-0.723005\pi\)
−0.644670 + 0.764461i \(0.723005\pi\)
\(770\) 0 0
\(771\) −2.60606e7 −1.57888
\(772\) 0 0
\(773\) 1.59665e7i 0.961085i 0.876972 + 0.480542i \(0.159560\pi\)
−0.876972 + 0.480542i \(0.840440\pi\)
\(774\) 0 0
\(775\) 8.45978e6 + 1.01387e6i 0.505947 + 0.0606355i
\(776\) 0 0
\(777\) 601981.i 0.0357709i
\(778\) 0 0
\(779\) −1.20961e7 −0.714173
\(780\) 0 0
\(781\) 2.05084e7 1.20311
\(782\) 0 0
\(783\) 1.85429e7i 1.08087i
\(784\) 0 0
\(785\) −2.01197e7 1.20133e6i −1.16532 0.0695805i
\(786\) 0 0
\(787\) 5.28802e6i 0.304338i −0.988354 0.152169i \(-0.951374\pi\)
0.988354 0.152169i \(-0.0486258\pi\)
\(788\) 0 0
\(789\) 8.57347e6 0.490302
\(790\) 0 0
\(791\) −6.95929e6 −0.395479
\(792\) 0 0
\(793\) 408242.i 0.0230534i
\(794\) 0 0
\(795\) −2390.07 + 40028.5i −0.000134120 + 0.00224621i
\(796\) 0 0
\(797\) 2.37918e7i 1.32672i 0.748299 + 0.663362i \(0.230871\pi\)
−0.748299 + 0.663362i \(0.769129\pi\)
\(798\) 0 0
\(799\) −9.85308e6 −0.546016
\(800\) 0 0
\(801\) 3.94085e6 0.217024
\(802\) 0 0
\(803\) 9.39498e6i 0.514171i
\(804\) 0 0
\(805\) −214954. + 3.60001e6i −0.0116911 + 0.195801i
\(806\) 0 0
\(807\) 1.26805e7i 0.685413i
\(808\) 0 0
\(809\) 2.52592e7 1.35690 0.678452 0.734645i \(-0.262651\pi\)
0.678452 + 0.734645i \(0.262651\pi\)
\(810\) 0 0
\(811\) 1.31418e7 0.701624 0.350812 0.936446i \(-0.385906\pi\)
0.350812 + 0.936446i \(0.385906\pi\)
\(812\) 0 0
\(813\) 2.67538e7i 1.41958i
\(814\) 0 0
\(815\) −1.88742e7 1.12696e6i −0.995347 0.0594313i
\(816\) 0 0
\(817\) 1.19590e7i 0.626815i
\(818\) 0 0
\(819\) 75759.2 0.00394662
\(820\) 0 0
\(821\) 3.67102e7 1.90077 0.950385 0.311077i \(-0.100690\pi\)
0.950385 + 0.311077i \(0.100690\pi\)
\(822\) 0 0
\(823\) 1.71569e7i 0.882955i 0.897272 + 0.441478i \(0.145545\pi\)
−0.897272 + 0.441478i \(0.854455\pi\)
\(824\) 0 0
\(825\) 2.37923e6 1.98524e7i 0.121703 1.01550i
\(826\) 0 0
\(827\) 3.78073e7i 1.92226i −0.276097 0.961130i \(-0.589041\pi\)
0.276097 0.961130i \(-0.410959\pi\)
\(828\) 0 0
\(829\) −5.24151e6 −0.264893 −0.132446 0.991190i \(-0.542283\pi\)
−0.132446 + 0.991190i \(0.542283\pi\)
\(830\) 0 0
\(831\) 2.71968e7 1.36620
\(832\) 0 0
\(833\) 3.14083e6i 0.156831i
\(834\) 0 0
\(835\) 1.43431e6 + 85641.4i 0.0711913 + 0.00425077i
\(836\) 0 0
\(837\) 1.12436e7i 0.554741i
\(838\) 0 0
\(839\) −1.11536e7 −0.547028 −0.273514 0.961868i \(-0.588186\pi\)
−0.273514 + 0.961868i \(0.588186\pi\)
\(840\) 0 0
\(841\) −292087. −0.0142404
\(842\) 0 0
\(843\) 3.36800e6i 0.163231i
\(844\) 0 0
\(845\) 1.23587e6 2.06982e7i 0.0595433 0.997221i
\(846\) 0 0
\(847\) 4.42500e6i 0.211936i
\(848\) 0 0
\(849\) −2.01784e6 −0.0960767
\(850\) 0 0
\(851\) −1.26744e6 −0.0599935
\(852\) 0 0
\(853\) 1.58246e7i 0.744664i −0.928100 0.372332i \(-0.878558\pi\)
0.928100 0.372332i \(-0.121442\pi\)
\(854\) 0 0
\(855\) −264183. + 4.42450e6i −0.0123592 + 0.206990i
\(856\) 0 0
\(857\) 2.01607e7i 0.937679i 0.883283 + 0.468839i \(0.155328\pi\)
−0.883283 + 0.468839i \(0.844672\pi\)
\(858\) 0 0
\(859\) 3.27621e7 1.51492 0.757458 0.652883i \(-0.226441\pi\)
0.757458 + 0.652883i \(0.226441\pi\)
\(860\) 0 0
\(861\) 7.64480e6 0.351446
\(862\) 0 0
\(863\) 7.18471e6i 0.328384i −0.986428 0.164192i \(-0.947498\pi\)
0.986428 0.164192i \(-0.0525017\pi\)
\(864\) 0 0
\(865\) −9.30411e6 555541.i −0.422800 0.0252450i
\(866\) 0 0
\(867\) 3.71824e6i 0.167992i
\(868\) 0 0
\(869\) −2.13073e6 −0.0957147
\(870\) 0 0
\(871\) 337349. 0.0150673
\(872\) 0 0
\(873\) 6.81134e6i 0.302480i
\(874\) 0 0
\(875\) −8.42331e6 1.52335e6i −0.371931 0.0672634i
\(876\) 0 0
\(877\) 7.95215e6i 0.349129i 0.984646 + 0.174564i \(0.0558517\pi\)
−0.984646 + 0.174564i \(0.944148\pi\)
\(878\) 0 0
\(879\) −4.02214e6 −0.175584
\(880\) 0 0
\(881\) 1.79413e7 0.778779 0.389389 0.921073i \(-0.372686\pi\)
0.389389 + 0.921073i \(0.372686\pi\)
\(882\) 0 0
\(883\) 6.00912e6i 0.259364i 0.991556 + 0.129682i \(0.0413956\pi\)
−0.991556 + 0.129682i \(0.958604\pi\)
\(884\) 0 0
\(885\) 4.09393e6 + 244445.i 0.175704 + 0.0104912i
\(886\) 0 0
\(887\) 1.90391e7i 0.812526i 0.913756 + 0.406263i \(0.133168\pi\)
−0.913756 + 0.406263i \(0.866832\pi\)
\(888\) 0 0
\(889\) 4.21195e6 0.178743
\(890\) 0 0
\(891\) 1.66223e7 0.701451
\(892\) 0 0
\(893\) 7.45266e6i 0.312740i
\(894\) 0 0
\(895\) −1.10796e6 + 1.85560e7i −0.0462347 + 0.774332i
\(896\) 0 0
\(897\) 324182.i 0.0134527i
\(898\) 0 0
\(899\) 1.22599e7 0.505926
\(900\) 0 0
\(901\) 73528.2 0.00301746
\(902\) 0 0
\(903\) 7.55812e6i 0.308457i
\(904\) 0 0
\(905\) 1.05249e6 1.76270e7i 0.0427167 0.715412i
\(906\) 0 0
\(907\) 3.04513e7i 1.22910i 0.788877 + 0.614551i \(0.210663\pi\)
−0.788877 + 0.614551i \(0.789337\pi\)
\(908\) 0 0
\(909\) −9.97109e6 −0.400251
\(910\) 0 0
\(911\) 1.10797e7 0.442314 0.221157 0.975238i \(-0.429017\pi\)
0.221157 + 0.975238i \(0.429017\pi\)
\(912\) 0 0
\(913\) 3.93424e7i 1.56201i
\(914\) 0 0
\(915\) −1.50683e7 899717.i −0.594993 0.0355266i
\(916\) 0 0
\(917\) 9.11919e6i 0.358124i
\(918\) 0 0
\(919\) −4.47897e7 −1.74940 −0.874700 0.484664i \(-0.838942\pi\)
−0.874700 + 0.484664i \(0.838942\pi\)
\(920\) 0 0
\(921\) 5.18900e6 0.201574
\(922\) 0 0
\(923\) 789233.i 0.0304930i
\(924\) 0 0
\(925\) 357971. 2.98693e6i 0.0137560 0.114781i
\(926\) 0 0
\(927\) 1.44159e7i 0.550987i
\(928\) 0 0
\(929\) −2.61361e7 −0.993576 −0.496788 0.867872i \(-0.665487\pi\)
−0.496788 + 0.867872i \(0.665487\pi\)
\(930\) 0 0
\(931\) 2.37566e6 0.0898275
\(932\) 0 0
\(933\) 7.09016e6i 0.266656i
\(934\) 0 0
\(935\) −3.65974e7 2.18520e6i −1.36905 0.0817451i
\(936\) 0 0
\(937\) 3.85137e7i 1.43306i 0.697554 + 0.716532i \(0.254272\pi\)
−0.697554 + 0.716532i \(0.745728\pi\)
\(938\) 0 0
\(939\) 6.27306e6 0.232175
\(940\) 0 0
\(941\) −1.19244e7 −0.439000 −0.219500 0.975613i \(-0.570443\pi\)
−0.219500 + 0.975613i \(0.570443\pi\)
\(942\) 0 0
\(943\) 1.60957e7i 0.589429i
\(944\) 0 0
\(945\) 673267. 1.12758e7i 0.0245249 0.410740i
\(946\) 0 0
\(947\) 4.18411e7i 1.51610i −0.652195 0.758051i \(-0.726152\pi\)
0.652195 0.758051i \(-0.273848\pi\)
\(948\) 0 0
\(949\) 361551. 0.0130318
\(950\) 0 0
\(951\) 3.26900e7 1.17210
\(952\) 0 0
\(953\) 1.62515e7i 0.579645i −0.957080 0.289822i \(-0.906404\pi\)
0.957080 0.289822i \(-0.0935962\pi\)
\(954\) 0 0
\(955\) 646173. 1.08220e7i 0.0229267 0.383972i
\(956\) 0 0
\(957\) 2.87700e7i 1.01546i
\(958\) 0 0
\(959\) −3.07963e6 −0.108131
\(960\) 0 0
\(961\) −2.11953e7 −0.740341
\(962\) 0 0
\(963\) 1.51375e7i 0.526002i
\(964\) 0 0
\(965\) −1.44491e7 862742.i −0.499484 0.0298238i
\(966\) 0 0
\(967\) 3.10364e7i 1.06735i −0.845690 0.533674i \(-0.820811\pi\)
0.845690 0.533674i \(-0.179189\pi\)
\(968\) 0 0
\(969\) −1.65180e7 −0.565130
\(970\) 0 0
\(971\) 6.62731e6 0.225574 0.112787 0.993619i \(-0.464022\pi\)
0.112787 + 0.993619i \(0.464022\pi\)
\(972\) 0 0
\(973\) 1.65242e7i 0.559550i
\(974\) 0 0
\(975\) 763988. + 91560.7i 0.0257380 + 0.00308459i
\(976\) 0 0
\(977\) 3.40946e7i 1.14275i −0.820691 0.571373i \(-0.806411\pi\)
0.820691 0.571373i \(-0.193589\pi\)
\(978\) 0 0
\(979\) −2.46556e7 −0.822164
\(980\) 0 0
\(981\) 1.22761e7 0.407275
\(982\) 0 0
\(983\) 3.70245e6i 0.122210i −0.998131 0.0611048i \(-0.980538\pi\)
0.998131 0.0611048i \(-0.0194624\pi\)
\(984\) 0 0
\(985\) −5.79891e7 3.46248e6i −1.90439 0.113710i
\(986\) 0 0
\(987\) 4.71010e6i 0.153900i
\(988\) 0 0
\(989\) −1.59132e7 −0.517330
\(990\) 0 0
\(991\) 1.07105e7 0.346438 0.173219 0.984883i \(-0.444583\pi\)
0.173219 + 0.984883i \(0.444583\pi\)
\(992\) 0 0
\(993\) 7.55191e6i 0.243043i
\(994\) 0 0
\(995\) 570758. 9.55896e6i 0.0182765 0.306093i
\(996\) 0 0
\(997\) 2.31495e7i 0.737572i 0.929514 + 0.368786i \(0.120226\pi\)
−0.929514 + 0.368786i \(0.879774\pi\)
\(998\) 0 0
\(999\) 3.96982e6 0.125851
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 280.6.g.a.169.7 20
4.3 odd 2 560.6.g.g.449.14 20
5.4 even 2 inner 280.6.g.a.169.14 yes 20
20.19 odd 2 560.6.g.g.449.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.6.g.a.169.7 20 1.1 even 1 trivial
280.6.g.a.169.14 yes 20 5.4 even 2 inner
560.6.g.g.449.7 20 20.19 odd 2
560.6.g.g.449.14 20 4.3 odd 2