Properties

Label 280.6.g.a.169.16
Level $280$
Weight $6$
Character 280.169
Analytic conductor $44.907$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [280,6,Mod(169,280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 0])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("280.169"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 280.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.9074695476\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 2997 x^{18} + 3735306 x^{16} + 2520827714 x^{14} + 1008202629141 x^{12} + 246520004342481 x^{10} + \cdots + 81\!\cdots\!00 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{25}\cdot 5^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 169.16
Root \(14.6692i\) of defining polynomial
Character \(\chi\) \(=\) 280.169
Dual form 280.6.g.a.169.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+14.6692i q^{3} +(-55.0879 - 9.50366i) q^{5} -49.0000i q^{7} +27.8149 q^{9} +341.248 q^{11} +439.638i q^{13} +(139.411 - 808.095i) q^{15} +602.434i q^{17} +649.259 q^{19} +718.790 q^{21} +191.245i q^{23} +(2944.36 + 1047.07i) q^{25} +3972.63i q^{27} -614.500 q^{29} -8957.89 q^{31} +5005.83i q^{33} +(-465.679 + 2699.31i) q^{35} +5406.81i q^{37} -6449.13 q^{39} -7440.24 q^{41} -5330.00i q^{43} +(-1532.27 - 264.343i) q^{45} +5230.38i q^{47} -2401.00 q^{49} -8837.22 q^{51} -18342.2i q^{53} +(-18798.6 - 3243.10i) q^{55} +9524.10i q^{57} -19693.0 q^{59} +834.097 q^{61} -1362.93i q^{63} +(4178.17 - 24218.7i) q^{65} -8377.91i q^{67} -2805.41 q^{69} -25484.4 q^{71} -25333.9i q^{73} +(-15359.7 + 43191.4i) q^{75} -16721.2i q^{77} -52783.7 q^{79} -51516.3 q^{81} +34973.5i q^{83} +(5725.33 - 33186.9i) q^{85} -9014.22i q^{87} -26289.1 q^{89} +21542.3 q^{91} -131405. i q^{93} +(-35766.3 - 6170.33i) q^{95} +67525.5i q^{97} +9491.78 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 14 q^{5} - 1134 q^{9} + 822 q^{11} + 1322 q^{15} + 3000 q^{19} - 882 q^{21} - 1944 q^{25} + 10406 q^{29} - 8532 q^{31} - 2058 q^{35} + 71066 q^{39} - 28880 q^{41} - 3922 q^{45} - 48020 q^{49} + 34770 q^{51}+ \cdots - 630244 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 14.6692i 0.941029i 0.882392 + 0.470514i \(0.155932\pi\)
−0.882392 + 0.470514i \(0.844068\pi\)
\(4\) 0 0
\(5\) −55.0879 9.50366i −0.985443 0.170007i
\(6\) 0 0
\(7\) 49.0000i 0.377964i
\(8\) 0 0
\(9\) 27.8149 0.114465
\(10\) 0 0
\(11\) 341.248 0.850332 0.425166 0.905115i \(-0.360216\pi\)
0.425166 + 0.905115i \(0.360216\pi\)
\(12\) 0 0
\(13\) 439.638i 0.721501i 0.932662 + 0.360750i \(0.117479\pi\)
−0.932662 + 0.360750i \(0.882521\pi\)
\(14\) 0 0
\(15\) 139.411 808.095i 0.159981 0.927330i
\(16\) 0 0
\(17\) 602.434i 0.505577i 0.967522 + 0.252789i \(0.0813477\pi\)
−0.967522 + 0.252789i \(0.918652\pi\)
\(18\) 0 0
\(19\) 649.259 0.412604 0.206302 0.978488i \(-0.433857\pi\)
0.206302 + 0.978488i \(0.433857\pi\)
\(20\) 0 0
\(21\) 718.790 0.355675
\(22\) 0 0
\(23\) 191.245i 0.0753826i 0.999289 + 0.0376913i \(0.0120004\pi\)
−0.999289 + 0.0376913i \(0.988000\pi\)
\(24\) 0 0
\(25\) 2944.36 + 1047.07i 0.942196 + 0.335064i
\(26\) 0 0
\(27\) 3972.63i 1.04874i
\(28\) 0 0
\(29\) −614.500 −0.135683 −0.0678417 0.997696i \(-0.521611\pi\)
−0.0678417 + 0.997696i \(0.521611\pi\)
\(30\) 0 0
\(31\) −8957.89 −1.67418 −0.837089 0.547067i \(-0.815744\pi\)
−0.837089 + 0.547067i \(0.815744\pi\)
\(32\) 0 0
\(33\) 5005.83i 0.800187i
\(34\) 0 0
\(35\) −465.679 + 2699.31i −0.0642564 + 0.372462i
\(36\) 0 0
\(37\) 5406.81i 0.649287i 0.945836 + 0.324644i \(0.105244\pi\)
−0.945836 + 0.324644i \(0.894756\pi\)
\(38\) 0 0
\(39\) −6449.13 −0.678953
\(40\) 0 0
\(41\) −7440.24 −0.691238 −0.345619 0.938375i \(-0.612331\pi\)
−0.345619 + 0.938375i \(0.612331\pi\)
\(42\) 0 0
\(43\) 5330.00i 0.439598i −0.975545 0.219799i \(-0.929460\pi\)
0.975545 0.219799i \(-0.0705402\pi\)
\(44\) 0 0
\(45\) −1532.27 264.343i −0.112798 0.0194597i
\(46\) 0 0
\(47\) 5230.38i 0.345373i 0.984977 + 0.172687i \(0.0552448\pi\)
−0.984977 + 0.172687i \(0.944755\pi\)
\(48\) 0 0
\(49\) −2401.00 −0.142857
\(50\) 0 0
\(51\) −8837.22 −0.475763
\(52\) 0 0
\(53\) 18342.2i 0.896938i −0.893798 0.448469i \(-0.851969\pi\)
0.893798 0.448469i \(-0.148031\pi\)
\(54\) 0 0
\(55\) −18798.6 3243.10i −0.837953 0.144562i
\(56\) 0 0
\(57\) 9524.10i 0.388272i
\(58\) 0 0
\(59\) −19693.0 −0.736515 −0.368258 0.929724i \(-0.620046\pi\)
−0.368258 + 0.929724i \(0.620046\pi\)
\(60\) 0 0
\(61\) 834.097 0.0287007 0.0143503 0.999897i \(-0.495432\pi\)
0.0143503 + 0.999897i \(0.495432\pi\)
\(62\) 0 0
\(63\) 1362.93i 0.0432636i
\(64\) 0 0
\(65\) 4178.17 24218.7i 0.122660 0.710998i
\(66\) 0 0
\(67\) 8377.91i 0.228007i −0.993480 0.114004i \(-0.963632\pi\)
0.993480 0.114004i \(-0.0363675\pi\)
\(68\) 0 0
\(69\) −2805.41 −0.0709372
\(70\) 0 0
\(71\) −25484.4 −0.599968 −0.299984 0.953944i \(-0.596981\pi\)
−0.299984 + 0.953944i \(0.596981\pi\)
\(72\) 0 0
\(73\) 25333.9i 0.556410i −0.960522 0.278205i \(-0.910261\pi\)
0.960522 0.278205i \(-0.0897395\pi\)
\(74\) 0 0
\(75\) −15359.7 + 43191.4i −0.315304 + 0.886633i
\(76\) 0 0
\(77\) 16721.2i 0.321395i
\(78\) 0 0
\(79\) −52783.7 −0.951551 −0.475776 0.879567i \(-0.657833\pi\)
−0.475776 + 0.879567i \(0.657833\pi\)
\(80\) 0 0
\(81\) −51516.3 −0.872433
\(82\) 0 0
\(83\) 34973.5i 0.557242i 0.960401 + 0.278621i \(0.0898773\pi\)
−0.960401 + 0.278621i \(0.910123\pi\)
\(84\) 0 0
\(85\) 5725.33 33186.9i 0.0859514 0.498217i
\(86\) 0 0
\(87\) 9014.22i 0.127682i
\(88\) 0 0
\(89\) −26289.1 −0.351804 −0.175902 0.984408i \(-0.556284\pi\)
−0.175902 + 0.984408i \(0.556284\pi\)
\(90\) 0 0
\(91\) 21542.3 0.272702
\(92\) 0 0
\(93\) 131405.i 1.57545i
\(94\) 0 0
\(95\) −35766.3 6170.33i −0.406598 0.0701454i
\(96\) 0 0
\(97\) 67525.5i 0.728682i 0.931266 + 0.364341i \(0.118706\pi\)
−0.931266 + 0.364341i \(0.881294\pi\)
\(98\) 0 0
\(99\) 9491.78 0.0973329
\(100\) 0 0
\(101\) −93789.1 −0.914848 −0.457424 0.889249i \(-0.651228\pi\)
−0.457424 + 0.889249i \(0.651228\pi\)
\(102\) 0 0
\(103\) 150808.i 1.40066i 0.713820 + 0.700329i \(0.246963\pi\)
−0.713820 + 0.700329i \(0.753037\pi\)
\(104\) 0 0
\(105\) −39596.7 6831.14i −0.350498 0.0604672i
\(106\) 0 0
\(107\) 179343.i 1.51435i 0.653213 + 0.757174i \(0.273420\pi\)
−0.653213 + 0.757174i \(0.726580\pi\)
\(108\) 0 0
\(109\) −211337. −1.70376 −0.851881 0.523736i \(-0.824538\pi\)
−0.851881 + 0.523736i \(0.824538\pi\)
\(110\) 0 0
\(111\) −79313.5 −0.610998
\(112\) 0 0
\(113\) 90264.5i 0.664999i 0.943103 + 0.332499i \(0.107892\pi\)
−0.943103 + 0.332499i \(0.892108\pi\)
\(114\) 0 0
\(115\) 1817.53 10535.3i 0.0128155 0.0742853i
\(116\) 0 0
\(117\) 12228.5i 0.0825863i
\(118\) 0 0
\(119\) 29519.3 0.191090
\(120\) 0 0
\(121\) −44600.8 −0.276936
\(122\) 0 0
\(123\) 109142.i 0.650474i
\(124\) 0 0
\(125\) −152248. 85663.3i −0.871517 0.490365i
\(126\) 0 0
\(127\) 286965.i 1.57877i 0.613896 + 0.789387i \(0.289602\pi\)
−0.613896 + 0.789387i \(0.710398\pi\)
\(128\) 0 0
\(129\) 78186.7 0.413674
\(130\) 0 0
\(131\) 166317. 0.846758 0.423379 0.905953i \(-0.360844\pi\)
0.423379 + 0.905953i \(0.360844\pi\)
\(132\) 0 0
\(133\) 31813.7i 0.155950i
\(134\) 0 0
\(135\) 37754.6 218844.i 0.178293 1.03348i
\(136\) 0 0
\(137\) 79463.7i 0.361716i 0.983509 + 0.180858i \(0.0578874\pi\)
−0.983509 + 0.180858i \(0.942113\pi\)
\(138\) 0 0
\(139\) −215530. −0.946172 −0.473086 0.881016i \(-0.656860\pi\)
−0.473086 + 0.881016i \(0.656860\pi\)
\(140\) 0 0
\(141\) −76725.4 −0.325006
\(142\) 0 0
\(143\) 150026.i 0.613515i
\(144\) 0 0
\(145\) 33851.5 + 5840.00i 0.133708 + 0.0230671i
\(146\) 0 0
\(147\) 35220.7i 0.134433i
\(148\) 0 0
\(149\) 412265. 1.52128 0.760642 0.649171i \(-0.224884\pi\)
0.760642 + 0.649171i \(0.224884\pi\)
\(150\) 0 0
\(151\) −119643. −0.427018 −0.213509 0.976941i \(-0.568489\pi\)
−0.213509 + 0.976941i \(0.568489\pi\)
\(152\) 0 0
\(153\) 16756.7i 0.0578707i
\(154\) 0 0
\(155\) 493472. + 85132.7i 1.64981 + 0.284621i
\(156\) 0 0
\(157\) 27450.5i 0.0888795i 0.999012 + 0.0444397i \(0.0141503\pi\)
−0.999012 + 0.0444397i \(0.985850\pi\)
\(158\) 0 0
\(159\) 269066. 0.844045
\(160\) 0 0
\(161\) 9371.02 0.0284920
\(162\) 0 0
\(163\) 175366.i 0.516982i −0.966014 0.258491i \(-0.916775\pi\)
0.966014 0.258491i \(-0.0832253\pi\)
\(164\) 0 0
\(165\) 47573.7 275761.i 0.136037 0.788538i
\(166\) 0 0
\(167\) 358292.i 0.994137i 0.867711 + 0.497068i \(0.165590\pi\)
−0.867711 + 0.497068i \(0.834410\pi\)
\(168\) 0 0
\(169\) 178011. 0.479437
\(170\) 0 0
\(171\) 18059.1 0.0472286
\(172\) 0 0
\(173\) 426234.i 1.08276i −0.840777 0.541381i \(-0.817902\pi\)
0.840777 0.541381i \(-0.182098\pi\)
\(174\) 0 0
\(175\) 51306.6 144274.i 0.126642 0.356116i
\(176\) 0 0
\(177\) 288880.i 0.693082i
\(178\) 0 0
\(179\) 385606. 0.899522 0.449761 0.893149i \(-0.351509\pi\)
0.449761 + 0.893149i \(0.351509\pi\)
\(180\) 0 0
\(181\) −672846. −1.52658 −0.763290 0.646056i \(-0.776417\pi\)
−0.763290 + 0.646056i \(0.776417\pi\)
\(182\) 0 0
\(183\) 12235.5i 0.0270081i
\(184\) 0 0
\(185\) 51384.5 297850.i 0.110383 0.639835i
\(186\) 0 0
\(187\) 205580.i 0.429908i
\(188\) 0 0
\(189\) 194659. 0.396388
\(190\) 0 0
\(191\) 91941.4 0.182359 0.0911796 0.995834i \(-0.470936\pi\)
0.0911796 + 0.995834i \(0.470936\pi\)
\(192\) 0 0
\(193\) 471730.i 0.911591i −0.890084 0.455796i \(-0.849355\pi\)
0.890084 0.455796i \(-0.150645\pi\)
\(194\) 0 0
\(195\) 355269. + 61290.3i 0.669069 + 0.115426i
\(196\) 0 0
\(197\) 768387.i 1.41063i −0.708892 0.705317i \(-0.750805\pi\)
0.708892 0.705317i \(-0.249195\pi\)
\(198\) 0 0
\(199\) −929517. −1.66389 −0.831945 0.554858i \(-0.812773\pi\)
−0.831945 + 0.554858i \(0.812773\pi\)
\(200\) 0 0
\(201\) 122897. 0.214561
\(202\) 0 0
\(203\) 30110.5i 0.0512835i
\(204\) 0 0
\(205\) 409867. + 70709.5i 0.681175 + 0.117515i
\(206\) 0 0
\(207\) 5319.47i 0.00862865i
\(208\) 0 0
\(209\) 221558. 0.350850
\(210\) 0 0
\(211\) 748945. 1.15809 0.579047 0.815294i \(-0.303425\pi\)
0.579047 + 0.815294i \(0.303425\pi\)
\(212\) 0 0
\(213\) 373835.i 0.564587i
\(214\) 0 0
\(215\) −50654.5 + 293618.i −0.0747346 + 0.433199i
\(216\) 0 0
\(217\) 438937.i 0.632780i
\(218\) 0 0
\(219\) 371628. 0.523598
\(220\) 0 0
\(221\) −264853. −0.364774
\(222\) 0 0
\(223\) 634384.i 0.854261i 0.904190 + 0.427130i \(0.140475\pi\)
−0.904190 + 0.427130i \(0.859525\pi\)
\(224\) 0 0
\(225\) 81897.1 + 29124.3i 0.107848 + 0.0383529i
\(226\) 0 0
\(227\) 1.00381e6i 1.29297i 0.762928 + 0.646484i \(0.223761\pi\)
−0.762928 + 0.646484i \(0.776239\pi\)
\(228\) 0 0
\(229\) 1.17402e6 1.47941 0.739704 0.672932i \(-0.234966\pi\)
0.739704 + 0.672932i \(0.234966\pi\)
\(230\) 0 0
\(231\) 245286. 0.302442
\(232\) 0 0
\(233\) 572322.i 0.690638i 0.938485 + 0.345319i \(0.112229\pi\)
−0.938485 + 0.345319i \(0.887771\pi\)
\(234\) 0 0
\(235\) 49707.7 288131.i 0.0587157 0.340346i
\(236\) 0 0
\(237\) 774294.i 0.895437i
\(238\) 0 0
\(239\) 197064. 0.223158 0.111579 0.993756i \(-0.464409\pi\)
0.111579 + 0.993756i \(0.464409\pi\)
\(240\) 0 0
\(241\) 648792. 0.719553 0.359777 0.933038i \(-0.382853\pi\)
0.359777 + 0.933038i \(0.382853\pi\)
\(242\) 0 0
\(243\) 209648.i 0.227759i
\(244\) 0 0
\(245\) 132266. + 22818.3i 0.140778 + 0.0242867i
\(246\) 0 0
\(247\) 285439.i 0.297694i
\(248\) 0 0
\(249\) −513033. −0.524381
\(250\) 0 0
\(251\) −424915. −0.425714 −0.212857 0.977083i \(-0.568277\pi\)
−0.212857 + 0.977083i \(0.568277\pi\)
\(252\) 0 0
\(253\) 65262.1i 0.0641003i
\(254\) 0 0
\(255\) 486824. + 83985.9i 0.468837 + 0.0808828i
\(256\) 0 0
\(257\) 1.67677e6i 1.58358i −0.610792 0.791791i \(-0.709149\pi\)
0.610792 0.791791i \(-0.290851\pi\)
\(258\) 0 0
\(259\) 264934. 0.245407
\(260\) 0 0
\(261\) −17092.3 −0.0155310
\(262\) 0 0
\(263\) 293550.i 0.261694i −0.991403 0.130847i \(-0.958230\pi\)
0.991403 0.130847i \(-0.0417696\pi\)
\(264\) 0 0
\(265\) −174318. + 1.01044e6i −0.152485 + 0.883881i
\(266\) 0 0
\(267\) 385640.i 0.331058i
\(268\) 0 0
\(269\) 1.93470e6 1.63017 0.815086 0.579340i \(-0.196690\pi\)
0.815086 + 0.579340i \(0.196690\pi\)
\(270\) 0 0
\(271\) −1.40684e6 −1.16365 −0.581825 0.813314i \(-0.697661\pi\)
−0.581825 + 0.813314i \(0.697661\pi\)
\(272\) 0 0
\(273\) 316007.i 0.256620i
\(274\) 0 0
\(275\) 1.00476e6 + 357312.i 0.801179 + 0.284915i
\(276\) 0 0
\(277\) 1.16389e6i 0.911406i 0.890132 + 0.455703i \(0.150612\pi\)
−0.890132 + 0.455703i \(0.849388\pi\)
\(278\) 0 0
\(279\) −249163. −0.191634
\(280\) 0 0
\(281\) 199201. 0.150496 0.0752482 0.997165i \(-0.476025\pi\)
0.0752482 + 0.997165i \(0.476025\pi\)
\(282\) 0 0
\(283\) 107163.i 0.0795389i 0.999209 + 0.0397694i \(0.0126623\pi\)
−0.999209 + 0.0397694i \(0.987338\pi\)
\(284\) 0 0
\(285\) 90513.7 524663.i 0.0660089 0.382620i
\(286\) 0 0
\(287\) 364572.i 0.261263i
\(288\) 0 0
\(289\) 1.05693e6 0.744392
\(290\) 0 0
\(291\) −990544. −0.685711
\(292\) 0 0
\(293\) 553524.i 0.376675i 0.982104 + 0.188338i \(0.0603099\pi\)
−0.982104 + 0.188338i \(0.939690\pi\)
\(294\) 0 0
\(295\) 1.08485e6 + 187156.i 0.725794 + 0.125212i
\(296\) 0 0
\(297\) 1.35565e6i 0.891780i
\(298\) 0 0
\(299\) −84078.7 −0.0543886
\(300\) 0 0
\(301\) −261170. −0.166152
\(302\) 0 0
\(303\) 1.37581e6i 0.860899i
\(304\) 0 0
\(305\) −45948.7 7926.97i −0.0282829 0.00487930i
\(306\) 0 0
\(307\) 315776.i 0.191220i 0.995419 + 0.0956100i \(0.0304802\pi\)
−0.995419 + 0.0956100i \(0.969520\pi\)
\(308\) 0 0
\(309\) −2.21223e6 −1.31806
\(310\) 0 0
\(311\) −1.48740e6 −0.872023 −0.436011 0.899941i \(-0.643609\pi\)
−0.436011 + 0.899941i \(0.643609\pi\)
\(312\) 0 0
\(313\) 1.99829e6i 1.15291i −0.817128 0.576457i \(-0.804435\pi\)
0.817128 0.576457i \(-0.195565\pi\)
\(314\) 0 0
\(315\) −12952.8 + 75081.0i −0.00735509 + 0.0426338i
\(316\) 0 0
\(317\) 319663.i 0.178667i −0.996002 0.0893334i \(-0.971526\pi\)
0.996002 0.0893334i \(-0.0284737\pi\)
\(318\) 0 0
\(319\) −209697. −0.115376
\(320\) 0 0
\(321\) −2.63082e6 −1.42504
\(322\) 0 0
\(323\) 391136.i 0.208603i
\(324\) 0 0
\(325\) −460333. + 1.29445e6i −0.241749 + 0.679795i
\(326\) 0 0
\(327\) 3.10014e6i 1.60329i
\(328\) 0 0
\(329\) 256289. 0.130539
\(330\) 0 0
\(331\) −1.86050e6 −0.933383 −0.466691 0.884420i \(-0.654554\pi\)
−0.466691 + 0.884420i \(0.654554\pi\)
\(332\) 0 0
\(333\) 150390.i 0.0743204i
\(334\) 0 0
\(335\) −79620.7 + 461522.i −0.0387627 + 0.224688i
\(336\) 0 0
\(337\) 272158.i 0.130541i 0.997868 + 0.0652705i \(0.0207910\pi\)
−0.997868 + 0.0652705i \(0.979209\pi\)
\(338\) 0 0
\(339\) −1.32411e6 −0.625783
\(340\) 0 0
\(341\) −3.05686e6 −1.42361
\(342\) 0 0
\(343\) 117649.i 0.0539949i
\(344\) 0 0
\(345\) 154544. + 26661.7i 0.0699046 + 0.0120598i
\(346\) 0 0
\(347\) 3.84561e6i 1.71451i −0.514889 0.857257i \(-0.672167\pi\)
0.514889 0.857257i \(-0.327833\pi\)
\(348\) 0 0
\(349\) 159406. 0.0700555 0.0350277 0.999386i \(-0.488848\pi\)
0.0350277 + 0.999386i \(0.488848\pi\)
\(350\) 0 0
\(351\) −1.74652e6 −0.756669
\(352\) 0 0
\(353\) 3.05511e6i 1.30494i 0.757815 + 0.652470i \(0.226267\pi\)
−0.757815 + 0.652470i \(0.773733\pi\)
\(354\) 0 0
\(355\) 1.40388e6 + 242195.i 0.591234 + 0.101998i
\(356\) 0 0
\(357\) 433024.i 0.179821i
\(358\) 0 0
\(359\) −2.23826e6 −0.916589 −0.458295 0.888800i \(-0.651540\pi\)
−0.458295 + 0.888800i \(0.651540\pi\)
\(360\) 0 0
\(361\) −2.05456e6 −0.829758
\(362\) 0 0
\(363\) 654257.i 0.260605i
\(364\) 0 0
\(365\) −240765. + 1.39559e6i −0.0945934 + 0.548310i
\(366\) 0 0
\(367\) 995191.i 0.385693i −0.981229 0.192846i \(-0.938228\pi\)
0.981229 0.192846i \(-0.0617719\pi\)
\(368\) 0 0
\(369\) −206950. −0.0791223
\(370\) 0 0
\(371\) −898769. −0.339011
\(372\) 0 0
\(373\) 1.46662e6i 0.545816i 0.962040 + 0.272908i \(0.0879855\pi\)
−0.962040 + 0.272908i \(0.912014\pi\)
\(374\) 0 0
\(375\) 1.25661e6 2.23335e6i 0.461448 0.820123i
\(376\) 0 0
\(377\) 270158.i 0.0978957i
\(378\) 0 0
\(379\) 1.13954e6 0.407505 0.203752 0.979022i \(-0.434686\pi\)
0.203752 + 0.979022i \(0.434686\pi\)
\(380\) 0 0
\(381\) −4.20955e6 −1.48567
\(382\) 0 0
\(383\) 3.21168e6i 1.11876i 0.828913 + 0.559378i \(0.188960\pi\)
−0.828913 + 0.559378i \(0.811040\pi\)
\(384\) 0 0
\(385\) −158912. + 921134.i −0.0546393 + 0.316717i
\(386\) 0 0
\(387\) 148253.i 0.0503184i
\(388\) 0 0
\(389\) 1.91138e6 0.640432 0.320216 0.947345i \(-0.396245\pi\)
0.320216 + 0.947345i \(0.396245\pi\)
\(390\) 0 0
\(391\) −115213. −0.0381117
\(392\) 0 0
\(393\) 2.43974e6i 0.796824i
\(394\) 0 0
\(395\) 2.90775e6 + 501638.i 0.937699 + 0.161770i
\(396\) 0 0
\(397\) 5.18750e6i 1.65189i −0.563749 0.825946i \(-0.690642\pi\)
0.563749 0.825946i \(-0.309358\pi\)
\(398\) 0 0
\(399\) 466681. 0.146753
\(400\) 0 0
\(401\) −2.36540e6 −0.734586 −0.367293 0.930105i \(-0.619715\pi\)
−0.367293 + 0.930105i \(0.619715\pi\)
\(402\) 0 0
\(403\) 3.93823e6i 1.20792i
\(404\) 0 0
\(405\) 2.83793e6 + 489593.i 0.859733 + 0.148319i
\(406\) 0 0
\(407\) 1.84506e6i 0.552110i
\(408\) 0 0
\(409\) 2.41270e6 0.713172 0.356586 0.934263i \(-0.383941\pi\)
0.356586 + 0.934263i \(0.383941\pi\)
\(410\) 0 0
\(411\) −1.16567e6 −0.340385
\(412\) 0 0
\(413\) 964957.i 0.278377i
\(414\) 0 0
\(415\) 332376. 1.92662e6i 0.0947348 0.549130i
\(416\) 0 0
\(417\) 3.16165e6i 0.890375i
\(418\) 0 0
\(419\) 2.17863e6 0.606244 0.303122 0.952952i \(-0.401971\pi\)
0.303122 + 0.952952i \(0.401971\pi\)
\(420\) 0 0
\(421\) −4.59686e6 −1.26402 −0.632012 0.774958i \(-0.717771\pi\)
−0.632012 + 0.774958i \(0.717771\pi\)
\(422\) 0 0
\(423\) 145483.i 0.0395330i
\(424\) 0 0
\(425\) −630793. + 1.77378e6i −0.169400 + 0.476353i
\(426\) 0 0
\(427\) 40870.7i 0.0108478i
\(428\) 0 0
\(429\) −2.20075e6 −0.577335
\(430\) 0 0
\(431\) −236140. −0.0612317 −0.0306158 0.999531i \(-0.509747\pi\)
−0.0306158 + 0.999531i \(0.509747\pi\)
\(432\) 0 0
\(433\) 6.41329e6i 1.64385i 0.569599 + 0.821923i \(0.307098\pi\)
−0.569599 + 0.821923i \(0.692902\pi\)
\(434\) 0 0
\(435\) −85668.0 + 496575.i −0.0217068 + 0.125823i
\(436\) 0 0
\(437\) 124168.i 0.0311032i
\(438\) 0 0
\(439\) −3.52684e6 −0.873422 −0.436711 0.899602i \(-0.643857\pi\)
−0.436711 + 0.899602i \(0.643857\pi\)
\(440\) 0 0
\(441\) −66783.6 −0.0163521
\(442\) 0 0
\(443\) 4.85321e6i 1.17495i −0.809242 0.587475i \(-0.800122\pi\)
0.809242 0.587475i \(-0.199878\pi\)
\(444\) 0 0
\(445\) 1.44821e6 + 249843.i 0.346683 + 0.0598091i
\(446\) 0 0
\(447\) 6.04759e6i 1.43157i
\(448\) 0 0
\(449\) 1.45115e6 0.339700 0.169850 0.985470i \(-0.445672\pi\)
0.169850 + 0.985470i \(0.445672\pi\)
\(450\) 0 0
\(451\) −2.53897e6 −0.587781
\(452\) 0 0
\(453\) 1.75507e6i 0.401837i
\(454\) 0 0
\(455\) −1.18672e6 204730.i −0.268732 0.0463611i
\(456\) 0 0
\(457\) 4.50725e6i 1.00953i 0.863255 + 0.504767i \(0.168422\pi\)
−0.863255 + 0.504767i \(0.831578\pi\)
\(458\) 0 0
\(459\) −2.39325e6 −0.530221
\(460\) 0 0
\(461\) 8.83196e6 1.93555 0.967776 0.251814i \(-0.0810272\pi\)
0.967776 + 0.251814i \(0.0810272\pi\)
\(462\) 0 0
\(463\) 3.07452e6i 0.666537i 0.942832 + 0.333268i \(0.108152\pi\)
−0.942832 + 0.333268i \(0.891848\pi\)
\(464\) 0 0
\(465\) −1.24883e6 + 7.23883e6i −0.267837 + 1.55252i
\(466\) 0 0
\(467\) 5.14269e6i 1.09119i 0.838051 + 0.545593i \(0.183695\pi\)
−0.838051 + 0.545593i \(0.816305\pi\)
\(468\) 0 0
\(469\) −410517. −0.0861786
\(470\) 0 0
\(471\) −402677. −0.0836382
\(472\) 0 0
\(473\) 1.81885e6i 0.373804i
\(474\) 0 0
\(475\) 1.91165e6 + 679821.i 0.388754 + 0.138249i
\(476\) 0 0
\(477\) 510188.i 0.102668i
\(478\) 0 0
\(479\) 9.10692e6 1.81356 0.906782 0.421600i \(-0.138532\pi\)
0.906782 + 0.421600i \(0.138532\pi\)
\(480\) 0 0
\(481\) −2.37704e6 −0.468461
\(482\) 0 0
\(483\) 137465.i 0.0268118i
\(484\) 0 0
\(485\) 641739. 3.71984e6i 0.123881 0.718075i
\(486\) 0 0
\(487\) 8.05908e6i 1.53980i −0.638167 0.769898i \(-0.720307\pi\)
0.638167 0.769898i \(-0.279693\pi\)
\(488\) 0 0
\(489\) 2.57247e6 0.486495
\(490\) 0 0
\(491\) −3.90044e6 −0.730147 −0.365073 0.930979i \(-0.618956\pi\)
−0.365073 + 0.930979i \(0.618956\pi\)
\(492\) 0 0
\(493\) 370196.i 0.0685985i
\(494\) 0 0
\(495\) −522883. 90206.7i −0.0959161 0.0165472i
\(496\) 0 0
\(497\) 1.24873e6i 0.226767i
\(498\) 0 0
\(499\) −9.64079e6 −1.73325 −0.866625 0.498960i \(-0.833715\pi\)
−0.866625 + 0.498960i \(0.833715\pi\)
\(500\) 0 0
\(501\) −5.25585e6 −0.935511
\(502\) 0 0
\(503\) 1.16340e6i 0.205026i −0.994732 0.102513i \(-0.967312\pi\)
0.994732 0.102513i \(-0.0326883\pi\)
\(504\) 0 0
\(505\) 5.16665e6 + 891340.i 0.901531 + 0.155530i
\(506\) 0 0
\(507\) 2.61128e6i 0.451164i
\(508\) 0 0
\(509\) 7.73793e6 1.32382 0.661912 0.749582i \(-0.269745\pi\)
0.661912 + 0.749582i \(0.269745\pi\)
\(510\) 0 0
\(511\) −1.24136e6 −0.210303
\(512\) 0 0
\(513\) 2.57927e6i 0.432716i
\(514\) 0 0
\(515\) 1.43323e6 8.30771e6i 0.238121 1.38027i
\(516\) 0 0
\(517\) 1.78486e6i 0.293682i
\(518\) 0 0
\(519\) 6.25251e6 1.01891
\(520\) 0 0
\(521\) −248838. −0.0401627 −0.0200813 0.999798i \(-0.506393\pi\)
−0.0200813 + 0.999798i \(0.506393\pi\)
\(522\) 0 0
\(523\) 5.45353e6i 0.871813i −0.899992 0.435906i \(-0.856428\pi\)
0.899992 0.435906i \(-0.143572\pi\)
\(524\) 0 0
\(525\) 2.11638e6 + 752626.i 0.335116 + 0.119174i
\(526\) 0 0
\(527\) 5.39654e6i 0.846426i
\(528\) 0 0
\(529\) 6.39977e6 0.994317
\(530\) 0 0
\(531\) −547759. −0.0843050
\(532\) 0 0
\(533\) 3.27101e6i 0.498728i
\(534\) 0 0
\(535\) 1.70442e6 9.87965e6i 0.257449 1.49230i
\(536\) 0 0
\(537\) 5.65653e6i 0.846476i
\(538\) 0 0
\(539\) −819336. −0.121476
\(540\) 0 0
\(541\) 4.32656e6 0.635550 0.317775 0.948166i \(-0.397064\pi\)
0.317775 + 0.948166i \(0.397064\pi\)
\(542\) 0 0
\(543\) 9.87011e6i 1.43656i
\(544\) 0 0
\(545\) 1.16421e7 + 2.00847e6i 1.67896 + 0.289651i
\(546\) 0 0
\(547\) 9.03707e6i 1.29140i 0.763593 + 0.645698i \(0.223434\pi\)
−0.763593 + 0.645698i \(0.776566\pi\)
\(548\) 0 0
\(549\) 23200.3 0.00328521
\(550\) 0 0
\(551\) −398969. −0.0559836
\(552\) 0 0
\(553\) 2.58640e6i 0.359653i
\(554\) 0 0
\(555\) 4.36922e6 + 753768.i 0.602104 + 0.103874i
\(556\) 0 0
\(557\) 1.33231e7i 1.81956i −0.415092 0.909779i \(-0.636251\pi\)
0.415092 0.909779i \(-0.363749\pi\)
\(558\) 0 0
\(559\) 2.34327e6 0.317170
\(560\) 0 0
\(561\) −3.01568e6 −0.404556
\(562\) 0 0
\(563\) 1.87300e6i 0.249039i 0.992217 + 0.124519i \(0.0397389\pi\)
−0.992217 + 0.124519i \(0.960261\pi\)
\(564\) 0 0
\(565\) 857843. 4.97249e6i 0.113054 0.655318i
\(566\) 0 0
\(567\) 2.52430e6i 0.329749i
\(568\) 0 0
\(569\) 1.04724e6 0.135602 0.0678008 0.997699i \(-0.478402\pi\)
0.0678008 + 0.997699i \(0.478402\pi\)
\(570\) 0 0
\(571\) −8.44858e6 −1.08441 −0.542205 0.840246i \(-0.682410\pi\)
−0.542205 + 0.840246i \(0.682410\pi\)
\(572\) 0 0
\(573\) 1.34871e6i 0.171605i
\(574\) 0 0
\(575\) −200248. + 563095.i −0.0252580 + 0.0710252i
\(576\) 0 0
\(577\) 2.10637e6i 0.263387i 0.991290 + 0.131693i \(0.0420415\pi\)
−0.991290 + 0.131693i \(0.957959\pi\)
\(578\) 0 0
\(579\) 6.91990e6 0.857834
\(580\) 0 0
\(581\) 1.71370e6 0.210618
\(582\) 0 0
\(583\) 6.25925e6i 0.762695i
\(584\) 0 0
\(585\) 116215. 673642.i 0.0140402 0.0813841i
\(586\) 0 0
\(587\) 5.90675e6i 0.707543i 0.935332 + 0.353772i \(0.115101\pi\)
−0.935332 + 0.353772i \(0.884899\pi\)
\(588\) 0 0
\(589\) −5.81599e6 −0.690773
\(590\) 0 0
\(591\) 1.12716e7 1.32745
\(592\) 0 0
\(593\) 3.75821e6i 0.438878i −0.975626 0.219439i \(-0.929577\pi\)
0.975626 0.219439i \(-0.0704228\pi\)
\(594\) 0 0
\(595\) −1.62616e6 280541.i −0.188308 0.0324866i
\(596\) 0 0
\(597\) 1.36353e7i 1.56577i
\(598\) 0 0
\(599\) 1.58162e7 1.80109 0.900545 0.434762i \(-0.143168\pi\)
0.900545 + 0.434762i \(0.143168\pi\)
\(600\) 0 0
\(601\) 1.79730e6 0.202971 0.101485 0.994837i \(-0.467640\pi\)
0.101485 + 0.994837i \(0.467640\pi\)
\(602\) 0 0
\(603\) 233031.i 0.0260988i
\(604\) 0 0
\(605\) 2.45697e6 + 423871.i 0.272904 + 0.0470809i
\(606\) 0 0
\(607\) 1.01472e7i 1.11783i 0.829226 + 0.558913i \(0.188782\pi\)
−0.829226 + 0.558913i \(0.811218\pi\)
\(608\) 0 0
\(609\) −441697. −0.0482593
\(610\) 0 0
\(611\) −2.29947e6 −0.249187
\(612\) 0 0
\(613\) 1.86067e7i 1.99994i −0.00764220 0.999971i \(-0.502433\pi\)
0.00764220 0.999971i \(-0.497567\pi\)
\(614\) 0 0
\(615\) −1.03725e6 + 6.01242e6i −0.110585 + 0.641005i
\(616\) 0 0
\(617\) 5.37524e6i 0.568441i 0.958759 + 0.284220i \(0.0917347\pi\)
−0.958759 + 0.284220i \(0.908265\pi\)
\(618\) 0 0
\(619\) 6.42372e6 0.673845 0.336922 0.941532i \(-0.390614\pi\)
0.336922 + 0.941532i \(0.390614\pi\)
\(620\) 0 0
\(621\) −759748. −0.0790571
\(622\) 0 0
\(623\) 1.28817e6i 0.132970i
\(624\) 0 0
\(625\) 7.57290e6 + 6.16593e6i 0.775465 + 0.631391i
\(626\) 0 0
\(627\) 3.25008e6i 0.330160i
\(628\) 0 0
\(629\) −3.25725e6 −0.328265
\(630\) 0 0
\(631\) 614335. 0.0614232 0.0307116 0.999528i \(-0.490223\pi\)
0.0307116 + 0.999528i \(0.490223\pi\)
\(632\) 0 0
\(633\) 1.09864e7i 1.08980i
\(634\) 0 0
\(635\) 2.72722e6 1.58083e7i 0.268402 1.55579i
\(636\) 0 0
\(637\) 1.05557e6i 0.103072i
\(638\) 0 0
\(639\) −708846. −0.0686751
\(640\) 0 0
\(641\) 7.86089e6 0.755660 0.377830 0.925875i \(-0.376670\pi\)
0.377830 + 0.925875i \(0.376670\pi\)
\(642\) 0 0
\(643\) 1.52696e7i 1.45646i 0.685330 + 0.728232i \(0.259658\pi\)
−0.685330 + 0.728232i \(0.740342\pi\)
\(644\) 0 0
\(645\) −4.30715e6 743060.i −0.407653 0.0703274i
\(646\) 0 0
\(647\) 1.82230e7i 1.71143i 0.517451 + 0.855713i \(0.326881\pi\)
−0.517451 + 0.855713i \(0.673119\pi\)
\(648\) 0 0
\(649\) −6.72020e6 −0.626282
\(650\) 0 0
\(651\) −6.43884e6 −0.595464
\(652\) 0 0
\(653\) 4.47978e6i 0.411125i −0.978644 0.205563i \(-0.934098\pi\)
0.978644 0.205563i \(-0.0659024\pi\)
\(654\) 0 0
\(655\) −9.16208e6 1.58062e6i −0.834432 0.143954i
\(656\) 0 0
\(657\) 704660.i 0.0636893i
\(658\) 0 0
\(659\) 1.10772e7 0.993611 0.496806 0.867862i \(-0.334506\pi\)
0.496806 + 0.867862i \(0.334506\pi\)
\(660\) 0 0
\(661\) −1.87751e7 −1.67139 −0.835695 0.549194i \(-0.814935\pi\)
−0.835695 + 0.549194i \(0.814935\pi\)
\(662\) 0 0
\(663\) 3.88518e6i 0.343263i
\(664\) 0 0
\(665\) −302346. + 1.75255e6i −0.0265125 + 0.153680i
\(666\) 0 0
\(667\) 117520.i 0.0102282i
\(668\) 0 0
\(669\) −9.30590e6 −0.803884
\(670\) 0 0
\(671\) 284634. 0.0244051
\(672\) 0 0
\(673\) 2.16795e7i 1.84507i 0.385918 + 0.922533i \(0.373885\pi\)
−0.385918 + 0.922533i \(0.626115\pi\)
\(674\) 0 0
\(675\) −4.15964e6 + 1.16969e7i −0.351396 + 0.988121i
\(676\) 0 0
\(677\) 1.78783e7i 1.49918i −0.661900 0.749592i \(-0.730250\pi\)
0.661900 0.749592i \(-0.269750\pi\)
\(678\) 0 0
\(679\) 3.30875e6 0.275416
\(680\) 0 0
\(681\) −1.47251e7 −1.21672
\(682\) 0 0
\(683\) 300512.i 0.0246496i 0.999924 + 0.0123248i \(0.00392320\pi\)
−0.999924 + 0.0123248i \(0.996077\pi\)
\(684\) 0 0
\(685\) 755196. 4.37749e6i 0.0614941 0.356450i
\(686\) 0 0
\(687\) 1.72220e7i 1.39217i
\(688\) 0 0
\(689\) 8.06394e6 0.647142
\(690\) 0 0
\(691\) −1.56756e7 −1.24890 −0.624452 0.781063i \(-0.714678\pi\)
−0.624452 + 0.781063i \(0.714678\pi\)
\(692\) 0 0
\(693\) 465097.i 0.0367884i
\(694\) 0 0
\(695\) 1.18731e7 + 2.04832e6i 0.932398 + 0.160855i
\(696\) 0 0
\(697\) 4.48226e6i 0.349474i
\(698\) 0 0
\(699\) −8.39549e6 −0.649910
\(700\) 0 0
\(701\) 7.51766e6 0.577813 0.288907 0.957357i \(-0.406708\pi\)
0.288907 + 0.957357i \(0.406708\pi\)
\(702\) 0 0
\(703\) 3.51042e6i 0.267899i
\(704\) 0 0
\(705\) 4.22665e6 + 729172.i 0.320275 + 0.0552532i
\(706\) 0 0
\(707\) 4.59567e6i 0.345780i
\(708\) 0 0
\(709\) −2.07266e7 −1.54850 −0.774252 0.632878i \(-0.781874\pi\)
−0.774252 + 0.632878i \(0.781874\pi\)
\(710\) 0 0
\(711\) −1.46817e6 −0.108919
\(712\) 0 0
\(713\) 1.71316e6i 0.126204i
\(714\) 0 0
\(715\) 1.42579e6 8.26460e6i 0.104302 0.604584i
\(716\) 0 0
\(717\) 2.89076e6i 0.209998i
\(718\) 0 0
\(719\) −6.05962e6 −0.437142 −0.218571 0.975821i \(-0.570140\pi\)
−0.218571 + 0.975821i \(0.570140\pi\)
\(720\) 0 0
\(721\) 7.38960e6 0.529399
\(722\) 0 0
\(723\) 9.51725e6i 0.677120i
\(724\) 0 0
\(725\) −1.80931e6 643427.i −0.127840 0.0454626i
\(726\) 0 0
\(727\) 8.76278e6i 0.614902i 0.951564 + 0.307451i \(0.0994761\pi\)
−0.951564 + 0.307451i \(0.900524\pi\)
\(728\) 0 0
\(729\) −1.55938e7 −1.08676
\(730\) 0 0
\(731\) 3.21097e6 0.222251
\(732\) 0 0
\(733\) 1.93206e7i 1.32819i −0.747649 0.664094i \(-0.768817\pi\)
0.747649 0.664094i \(-0.231183\pi\)
\(734\) 0 0
\(735\) −334726. + 1.94024e6i −0.0228544 + 0.132476i
\(736\) 0 0
\(737\) 2.85894e6i 0.193882i
\(738\) 0 0
\(739\) 669807. 0.0451169 0.0225584 0.999746i \(-0.492819\pi\)
0.0225584 + 0.999746i \(0.492819\pi\)
\(740\) 0 0
\(741\) −4.18715e6 −0.280139
\(742\) 0 0
\(743\) 1.06451e7i 0.707418i −0.935356 0.353709i \(-0.884920\pi\)
0.935356 0.353709i \(-0.115080\pi\)
\(744\) 0 0
\(745\) −2.27108e7 3.91802e6i −1.49914 0.258628i
\(746\) 0 0
\(747\) 972785.i 0.0637845i
\(748\) 0 0
\(749\) 8.78782e6 0.572370
\(750\) 0 0
\(751\) 1.02189e7 0.661154 0.330577 0.943779i \(-0.392757\pi\)
0.330577 + 0.943779i \(0.392757\pi\)
\(752\) 0 0
\(753\) 6.23315e6i 0.400609i
\(754\) 0 0
\(755\) 6.59091e6 + 1.13705e6i 0.420802 + 0.0725959i
\(756\) 0 0
\(757\) 5.86387e6i 0.371916i −0.982558 0.185958i \(-0.940461\pi\)
0.982558 0.185958i \(-0.0595388\pi\)
\(758\) 0 0
\(759\) −957342. −0.0603202
\(760\) 0 0
\(761\) 1.39721e7 0.874579 0.437290 0.899321i \(-0.355938\pi\)
0.437290 + 0.899321i \(0.355938\pi\)
\(762\) 0 0
\(763\) 1.03555e7i 0.643961i
\(764\) 0 0
\(765\) 159250. 923090.i 0.00983840 0.0570283i
\(766\) 0 0
\(767\) 8.65779e6i 0.531396i
\(768\) 0 0
\(769\) −7.82547e6 −0.477193 −0.238597 0.971119i \(-0.576687\pi\)
−0.238597 + 0.971119i \(0.576687\pi\)
\(770\) 0 0
\(771\) 2.45969e7 1.49020
\(772\) 0 0
\(773\) 1.27309e7i 0.766322i 0.923682 + 0.383161i \(0.125165\pi\)
−0.923682 + 0.383161i \(0.874835\pi\)
\(774\) 0 0
\(775\) −2.63753e7 9.37957e6i −1.57740 0.560956i
\(776\) 0 0
\(777\) 3.88636e6i 0.230936i
\(778\) 0 0
\(779\) −4.83064e6 −0.285208
\(780\) 0 0
\(781\) −8.69649e6 −0.510172
\(782\) 0 0
\(783\) 2.44118e6i 0.142297i
\(784\) 0 0
\(785\) 260880. 1.51219e6i 0.0151101 0.0875857i
\(786\) 0 0
\(787\) 4.45153e6i 0.256196i −0.991762 0.128098i \(-0.959113\pi\)
0.991762 0.128098i \(-0.0408872\pi\)
\(788\) 0 0
\(789\) 4.30615e6 0.246261
\(790\) 0 0
\(791\) 4.42296e6 0.251346
\(792\) 0 0
\(793\) 366700.i 0.0207075i
\(794\) 0 0
\(795\) −1.48223e7 2.55711e6i −0.831758 0.143493i
\(796\) 0 0
\(797\) 3.47382e6i 0.193714i −0.995298 0.0968570i \(-0.969121\pi\)
0.995298 0.0968570i \(-0.0308790\pi\)
\(798\) 0 0
\(799\) −3.15096e6 −0.174613
\(800\) 0 0
\(801\) −731230. −0.0402692
\(802\) 0 0
\(803\) 8.64514e6i 0.473133i
\(804\) 0 0
\(805\) −516230. 89059.0i −0.0280772 0.00484382i
\(806\) 0 0
\(807\) 2.83805e7i 1.53404i
\(808\) 0 0
\(809\) −2.80278e7 −1.50563 −0.752814 0.658233i \(-0.771304\pi\)
−0.752814 + 0.658233i \(0.771304\pi\)
\(810\) 0 0
\(811\) −2.46216e7 −1.31451 −0.657256 0.753668i \(-0.728283\pi\)
−0.657256 + 0.753668i \(0.728283\pi\)
\(812\) 0 0
\(813\) 2.06372e7i 1.09503i
\(814\) 0 0
\(815\) −1.66662e6 + 9.66054e6i −0.0878904 + 0.509457i
\(816\) 0 0
\(817\) 3.46055e6i 0.181380i
\(818\) 0 0
\(819\) 599196. 0.0312147
\(820\) 0 0
\(821\) 3.44740e7 1.78498 0.892490 0.451066i \(-0.148956\pi\)
0.892490 + 0.451066i \(0.148956\pi\)
\(822\) 0 0
\(823\) 1.00349e6i 0.0516430i 0.999667 + 0.0258215i \(0.00822015\pi\)
−0.999667 + 0.0258215i \(0.991780\pi\)
\(824\) 0 0
\(825\) −5.24147e6 + 1.47390e7i −0.268113 + 0.753932i
\(826\) 0 0
\(827\) 1.17957e7i 0.599738i −0.953980 0.299869i \(-0.903057\pi\)
0.953980 0.299869i \(-0.0969429\pi\)
\(828\) 0 0
\(829\) 3.56920e6 0.180379 0.0901893 0.995925i \(-0.471253\pi\)
0.0901893 + 0.995925i \(0.471253\pi\)
\(830\) 0 0
\(831\) −1.70733e7 −0.857660
\(832\) 0 0
\(833\) 1.44644e6i 0.0722253i
\(834\) 0 0
\(835\) 3.40509e6 1.97376e7i 0.169010 0.979665i
\(836\) 0 0
\(837\) 3.55864e7i 1.75578i
\(838\) 0 0
\(839\) −3.39622e7 −1.66568 −0.832840 0.553514i \(-0.813286\pi\)
−0.832840 + 0.553514i \(0.813286\pi\)
\(840\) 0 0
\(841\) −2.01335e7 −0.981590
\(842\) 0 0
\(843\) 2.92212e6i 0.141621i
\(844\) 0 0
\(845\) −9.80628e6 1.69176e6i −0.472457 0.0815074i
\(846\) 0 0
\(847\) 2.18544e6i 0.104672i
\(848\) 0 0
\(849\) −1.57200e6 −0.0748484
\(850\) 0 0
\(851\) −1.03403e6 −0.0489450
\(852\) 0 0
\(853\) 3.91329e7i 1.84149i 0.390165 + 0.920745i \(0.372418\pi\)
−0.390165 + 0.920745i \(0.627582\pi\)
\(854\) 0 0
\(855\) −994837. 171627.i −0.0465411 0.00802917i
\(856\) 0 0
\(857\) 2.09215e7i 0.973061i −0.873664 0.486530i \(-0.838262\pi\)
0.873664 0.486530i \(-0.161738\pi\)
\(858\) 0 0
\(859\) 2.06467e7 0.954702 0.477351 0.878713i \(-0.341597\pi\)
0.477351 + 0.878713i \(0.341597\pi\)
\(860\) 0 0
\(861\) −5.34797e6 −0.245856
\(862\) 0 0
\(863\) 5.12173e6i 0.234094i 0.993126 + 0.117047i \(0.0373428\pi\)
−0.993126 + 0.117047i \(0.962657\pi\)
\(864\) 0 0
\(865\) −4.05078e6 + 2.34804e7i −0.184077 + 1.06700i
\(866\) 0 0
\(867\) 1.55043e7i 0.700494i
\(868\) 0 0
\(869\) −1.80123e7 −0.809134
\(870\) 0 0
\(871\) 3.68325e6 0.164507
\(872\) 0 0
\(873\) 1.87822e6i 0.0834084i
\(874\) 0 0
\(875\) −4.19750e6 + 7.46014e6i −0.185341 + 0.329402i
\(876\) 0 0
\(877\) 2.87856e7i 1.26379i −0.775052 0.631897i \(-0.782277\pi\)
0.775052 0.631897i \(-0.217723\pi\)
\(878\) 0 0
\(879\) −8.11975e6 −0.354462
\(880\) 0 0
\(881\) 4.86756e6 0.211287 0.105643 0.994404i \(-0.466310\pi\)
0.105643 + 0.994404i \(0.466310\pi\)
\(882\) 0 0
\(883\) 3.46194e6i 0.149423i 0.997205 + 0.0747116i \(0.0238036\pi\)
−0.997205 + 0.0747116i \(0.976196\pi\)
\(884\) 0 0
\(885\) −2.74542e6 + 1.59138e7i −0.117829 + 0.682993i
\(886\) 0 0
\(887\) 1.36901e7i 0.584246i −0.956381 0.292123i \(-0.905638\pi\)
0.956381 0.292123i \(-0.0943617\pi\)
\(888\) 0 0
\(889\) 1.40613e7 0.596721
\(890\) 0 0
\(891\) −1.75798e7 −0.741858
\(892\) 0 0
\(893\) 3.39587e6i 0.142502i
\(894\) 0 0
\(895\) −2.12423e7 3.66467e6i −0.886427 0.152925i
\(896\) 0 0
\(897\) 1.23337e6i 0.0511813i
\(898\) 0 0
\(899\) 5.50463e6 0.227158
\(900\) 0 0
\(901\) 1.10500e7 0.453471
\(902\) 0 0
\(903\) 3.83115e6i 0.156354i
\(904\) 0 0
\(905\) 3.70657e7 + 6.39450e6i 1.50436 + 0.259529i
\(906\) 0 0
\(907\) 9.04499e6i 0.365081i 0.983198 + 0.182541i \(0.0584321\pi\)
−0.983198 + 0.182541i \(0.941568\pi\)
\(908\) 0 0
\(909\) −2.60874e6 −0.104718
\(910\) 0 0
\(911\) 2.85718e7 1.14062 0.570311 0.821429i \(-0.306823\pi\)
0.570311 + 0.821429i \(0.306823\pi\)
\(912\) 0 0
\(913\) 1.19346e7i 0.473840i
\(914\) 0 0
\(915\) 116282. 674029.i 0.00459156 0.0266150i
\(916\) 0 0
\(917\) 8.14955e6i 0.320044i
\(918\) 0 0
\(919\) −2.62607e7 −1.02569 −0.512846 0.858481i \(-0.671409\pi\)
−0.512846 + 0.858481i \(0.671409\pi\)
\(920\) 0 0
\(921\) −4.63218e6 −0.179944
\(922\) 0 0
\(923\) 1.12039e7i 0.432877i
\(924\) 0 0
\(925\) −5.66133e6 + 1.59196e7i −0.217552 + 0.611755i
\(926\) 0 0
\(927\) 4.19472e6i 0.160326i
\(928\) 0 0
\(929\) 4.01791e7 1.52743 0.763714 0.645555i \(-0.223374\pi\)
0.763714 + 0.645555i \(0.223374\pi\)
\(930\) 0 0
\(931\) −1.55887e6 −0.0589435
\(932\) 0 0
\(933\) 2.18190e7i 0.820599i
\(934\) 0 0
\(935\) 1.95376e6 1.13250e7i 0.0730872 0.423650i
\(936\) 0 0
\(937\) 1.16005e7i 0.431644i −0.976433 0.215822i \(-0.930757\pi\)
0.976433 0.215822i \(-0.0692431\pi\)
\(938\) 0 0
\(939\) 2.93132e7 1.08493
\(940\) 0 0
\(941\) 1.70775e7 0.628709 0.314354 0.949306i \(-0.398212\pi\)
0.314354 + 0.949306i \(0.398212\pi\)
\(942\) 0 0
\(943\) 1.42291e6i 0.0521073i
\(944\) 0 0
\(945\) −1.07234e7 1.84997e6i −0.390618 0.0673885i
\(946\) 0 0
\(947\) 3.73013e7i 1.35160i 0.737083 + 0.675802i \(0.236203\pi\)
−0.737083 + 0.675802i \(0.763797\pi\)
\(948\) 0 0
\(949\) 1.11377e7 0.401450
\(950\) 0 0
\(951\) 4.68919e6 0.168131
\(952\) 0 0
\(953\) 3.25762e7i 1.16190i 0.813940 + 0.580949i \(0.197318\pi\)
−0.813940 + 0.580949i \(0.802682\pi\)
\(954\) 0 0
\(955\) −5.06486e6 873779.i −0.179705 0.0310023i
\(956\) 0 0
\(957\) 3.07608e6i 0.108572i
\(958\) 0 0
\(959\) 3.89372e6 0.136716
\(960\) 0 0
\(961\) 5.16146e7 1.80287
\(962\) 0 0
\(963\) 4.98842e6i 0.173339i
\(964\) 0 0
\(965\) −4.48316e6 + 2.59866e7i −0.154977 + 0.898321i
\(966\) 0 0
\(967\) 1.67956e7i 0.577603i 0.957389 + 0.288801i \(0.0932567\pi\)
−0.957389 + 0.288801i \(0.906743\pi\)
\(968\) 0 0
\(969\) −5.73764e6 −0.196302
\(970\) 0 0
\(971\) 2.23930e7 0.762191 0.381095 0.924536i \(-0.375547\pi\)
0.381095 + 0.924536i \(0.375547\pi\)
\(972\) 0 0
\(973\) 1.05610e7i 0.357619i
\(974\) 0 0
\(975\) −1.89886e7 6.75272e6i −0.639707 0.227492i
\(976\) 0 0
\(977\) 3.37475e7i 1.13111i −0.824710 0.565556i \(-0.808662\pi\)
0.824710 0.565556i \(-0.191338\pi\)
\(978\) 0 0
\(979\) −8.97111e6 −0.299150
\(980\) 0 0
\(981\) −5.87831e6 −0.195021
\(982\) 0 0
\(983\) 1.53504e7i 0.506683i 0.967377 + 0.253342i \(0.0815296\pi\)
−0.967377 + 0.253342i \(0.918470\pi\)
\(984\) 0 0
\(985\) −7.30249e6 + 4.23289e7i −0.239817 + 1.39010i
\(986\) 0 0
\(987\) 3.75955e6i 0.122841i
\(988\) 0 0
\(989\) 1.01934e6 0.0331381
\(990\) 0 0
\(991\) 4.37551e7 1.41529 0.707644 0.706570i \(-0.249758\pi\)
0.707644 + 0.706570i \(0.249758\pi\)
\(992\) 0 0
\(993\) 2.72920e7i 0.878340i
\(994\) 0 0
\(995\) 5.12052e7 + 8.83381e6i 1.63967 + 0.282872i
\(996\) 0 0
\(997\) 2.40759e7i 0.767087i −0.923523 0.383544i \(-0.874704\pi\)
0.923523 0.383544i \(-0.125296\pi\)
\(998\) 0 0
\(999\) −2.14793e7 −0.680936
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 280.6.g.a.169.16 yes 20
4.3 odd 2 560.6.g.g.449.5 20
5.4 even 2 inner 280.6.g.a.169.5 20
20.19 odd 2 560.6.g.g.449.16 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.6.g.a.169.5 20 5.4 even 2 inner
280.6.g.a.169.16 yes 20 1.1 even 1 trivial
560.6.g.g.449.5 20 4.3 odd 2
560.6.g.g.449.16 20 20.19 odd 2