Properties

Label 280.4.a.c
Level $280$
Weight $4$
Character orbit 280.a
Self dual yes
Analytic conductor $16.521$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [280,4,Mod(1,280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("280.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 280.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,5,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(16.5205348016\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 5 q^{3} - 5 q^{5} - 7 q^{7} - 2 q^{9} - 39 q^{11} - 19 q^{13} - 25 q^{15} - 37 q^{17} - 18 q^{19} - 35 q^{21} - 90 q^{23} + 25 q^{25} - 145 q^{27} + 99 q^{29} - 32 q^{31} - 195 q^{33} + 35 q^{35} + 46 q^{37}+ \cdots + 78 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 5.00000 0 −5.00000 0 −7.00000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 280.4.a.c 1
4.b odd 2 1 560.4.a.e 1
5.b even 2 1 1400.4.a.d 1
5.c odd 4 2 1400.4.g.c 2
7.b odd 2 1 1960.4.a.d 1
8.b even 2 1 2240.4.a.j 1
8.d odd 2 1 2240.4.a.be 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.4.a.c 1 1.a even 1 1 trivial
560.4.a.e 1 4.b odd 2 1
1400.4.a.d 1 5.b even 2 1
1400.4.g.c 2 5.c odd 4 2
1960.4.a.d 1 7.b odd 2 1
2240.4.a.j 1 8.b even 2 1
2240.4.a.be 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 5 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(280))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 5 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T + 7 \) Copy content Toggle raw display
$11$ \( T + 39 \) Copy content Toggle raw display
$13$ \( T + 19 \) Copy content Toggle raw display
$17$ \( T + 37 \) Copy content Toggle raw display
$19$ \( T + 18 \) Copy content Toggle raw display
$23$ \( T + 90 \) Copy content Toggle raw display
$29$ \( T - 99 \) Copy content Toggle raw display
$31$ \( T + 32 \) Copy content Toggle raw display
$37$ \( T - 46 \) Copy content Toggle raw display
$41$ \( T + 248 \) Copy content Toggle raw display
$43$ \( T - 178 \) Copy content Toggle raw display
$47$ \( T - 429 \) Copy content Toggle raw display
$53$ \( T + 652 \) Copy content Toggle raw display
$59$ \( T - 40 \) Copy content Toggle raw display
$61$ \( T + 36 \) Copy content Toggle raw display
$67$ \( T + 348 \) Copy content Toggle raw display
$71$ \( T - 72 \) Copy content Toggle raw display
$73$ \( T + 1190 \) Copy content Toggle raw display
$79$ \( T - 699 \) Copy content Toggle raw display
$83$ \( T + 116 \) Copy content Toggle raw display
$89$ \( T + 704 \) Copy content Toggle raw display
$97$ \( T - 223 \) Copy content Toggle raw display
show more
show less