L(s) = 1 | + 5·3-s − 5·5-s − 7·7-s − 2·9-s − 39·11-s − 19·13-s − 25·15-s − 37·17-s − 18·19-s − 35·21-s − 90·23-s + 25·25-s − 145·27-s + 99·29-s − 32·31-s − 195·33-s + 35·35-s + 46·37-s − 95·39-s − 248·41-s + 178·43-s + 10·45-s + 429·47-s + 49·49-s − 185·51-s − 652·53-s + 195·55-s + ⋯ |
L(s) = 1 | + 0.962·3-s − 0.447·5-s − 0.377·7-s − 0.0740·9-s − 1.06·11-s − 0.405·13-s − 0.430·15-s − 0.527·17-s − 0.217·19-s − 0.363·21-s − 0.815·23-s + 1/5·25-s − 1.03·27-s + 0.633·29-s − 0.185·31-s − 1.02·33-s + 0.169·35-s + 0.204·37-s − 0.390·39-s − 0.944·41-s + 0.631·43-s + 0.0331·45-s + 1.33·47-s + 1/7·49-s − 0.507·51-s − 1.68·53-s + 0.478·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + p T \) |
| 7 | \( 1 + p T \) |
good | 3 | \( 1 - 5 T + p^{3} T^{2} \) |
| 11 | \( 1 + 39 T + p^{3} T^{2} \) |
| 13 | \( 1 + 19 T + p^{3} T^{2} \) |
| 17 | \( 1 + 37 T + p^{3} T^{2} \) |
| 19 | \( 1 + 18 T + p^{3} T^{2} \) |
| 23 | \( 1 + 90 T + p^{3} T^{2} \) |
| 29 | \( 1 - 99 T + p^{3} T^{2} \) |
| 31 | \( 1 + 32 T + p^{3} T^{2} \) |
| 37 | \( 1 - 46 T + p^{3} T^{2} \) |
| 41 | \( 1 + 248 T + p^{3} T^{2} \) |
| 43 | \( 1 - 178 T + p^{3} T^{2} \) |
| 47 | \( 1 - 429 T + p^{3} T^{2} \) |
| 53 | \( 1 + 652 T + p^{3} T^{2} \) |
| 59 | \( 1 - 40 T + p^{3} T^{2} \) |
| 61 | \( 1 + 36 T + p^{3} T^{2} \) |
| 67 | \( 1 + 348 T + p^{3} T^{2} \) |
| 71 | \( 1 - 72 T + p^{3} T^{2} \) |
| 73 | \( 1 + 1190 T + p^{3} T^{2} \) |
| 79 | \( 1 - 699 T + p^{3} T^{2} \) |
| 83 | \( 1 + 116 T + p^{3} T^{2} \) |
| 89 | \( 1 + 704 T + p^{3} T^{2} \) |
| 97 | \( 1 - 223 T + p^{3} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85807128038266009033052703774, −9.924280586619671233858387021700, −8.894426376484409265211896668341, −8.101483247563490623037085510329, −7.29045539679415014504954709158, −5.92643287318221414175419946596, −4.55106746459371896866176193665, −3.26983464500270728974426123480, −2.29715497555402290593762246632, 0,
2.29715497555402290593762246632, 3.26983464500270728974426123480, 4.55106746459371896866176193665, 5.92643287318221414175419946596, 7.29045539679415014504954709158, 8.101483247563490623037085510329, 8.894426376484409265211896668341, 9.924280586619671233858387021700, 10.85807128038266009033052703774