Properties

Label 2-280-1.1-c3-0-16
Degree $2$
Conductor $280$
Sign $-1$
Analytic cond. $16.5205$
Root an. cond. $4.06454$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·3-s − 5·5-s − 7·7-s − 2·9-s − 39·11-s − 19·13-s − 25·15-s − 37·17-s − 18·19-s − 35·21-s − 90·23-s + 25·25-s − 145·27-s + 99·29-s − 32·31-s − 195·33-s + 35·35-s + 46·37-s − 95·39-s − 248·41-s + 178·43-s + 10·45-s + 429·47-s + 49·49-s − 185·51-s − 652·53-s + 195·55-s + ⋯
L(s)  = 1  + 0.962·3-s − 0.447·5-s − 0.377·7-s − 0.0740·9-s − 1.06·11-s − 0.405·13-s − 0.430·15-s − 0.527·17-s − 0.217·19-s − 0.363·21-s − 0.815·23-s + 1/5·25-s − 1.03·27-s + 0.633·29-s − 0.185·31-s − 1.02·33-s + 0.169·35-s + 0.204·37-s − 0.390·39-s − 0.944·41-s + 0.631·43-s + 0.0331·45-s + 1.33·47-s + 1/7·49-s − 0.507·51-s − 1.68·53-s + 0.478·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 280 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(280\)    =    \(2^{3} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(16.5205\)
Root analytic conductor: \(4.06454\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 280,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + p T \)
7 \( 1 + p T \)
good3 \( 1 - 5 T + p^{3} T^{2} \)
11 \( 1 + 39 T + p^{3} T^{2} \)
13 \( 1 + 19 T + p^{3} T^{2} \)
17 \( 1 + 37 T + p^{3} T^{2} \)
19 \( 1 + 18 T + p^{3} T^{2} \)
23 \( 1 + 90 T + p^{3} T^{2} \)
29 \( 1 - 99 T + p^{3} T^{2} \)
31 \( 1 + 32 T + p^{3} T^{2} \)
37 \( 1 - 46 T + p^{3} T^{2} \)
41 \( 1 + 248 T + p^{3} T^{2} \)
43 \( 1 - 178 T + p^{3} T^{2} \)
47 \( 1 - 429 T + p^{3} T^{2} \)
53 \( 1 + 652 T + p^{3} T^{2} \)
59 \( 1 - 40 T + p^{3} T^{2} \)
61 \( 1 + 36 T + p^{3} T^{2} \)
67 \( 1 + 348 T + p^{3} T^{2} \)
71 \( 1 - 72 T + p^{3} T^{2} \)
73 \( 1 + 1190 T + p^{3} T^{2} \)
79 \( 1 - 699 T + p^{3} T^{2} \)
83 \( 1 + 116 T + p^{3} T^{2} \)
89 \( 1 + 704 T + p^{3} T^{2} \)
97 \( 1 - 223 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85807128038266009033052703774, −9.924280586619671233858387021700, −8.894426376484409265211896668341, −8.101483247563490623037085510329, −7.29045539679415014504954709158, −5.92643287318221414175419946596, −4.55106746459371896866176193665, −3.26983464500270728974426123480, −2.29715497555402290593762246632, 0, 2.29715497555402290593762246632, 3.26983464500270728974426123480, 4.55106746459371896866176193665, 5.92643287318221414175419946596, 7.29045539679415014504954709158, 8.101483247563490623037085510329, 8.894426376484409265211896668341, 9.924280586619671233858387021700, 10.85807128038266009033052703774

Graph of the $Z$-function along the critical line