Properties

Label 280.2.n.b.139.8
Level $280$
Weight $2$
Character 280.139
Analytic conductor $2.236$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [280,2,Mod(139,280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("280.139"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.n (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.23581125660\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.8
Character \(\chi\) \(=\) 280.139
Dual form 280.2.n.b.139.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.20452 + 0.741038i) q^{2} +2.57969 q^{3} +(0.901725 - 1.78519i) q^{4} +(0.460102 + 2.18822i) q^{5} +(-3.10728 + 1.91165i) q^{6} +(2.31487 - 1.28116i) q^{7} +(0.236748 + 2.81850i) q^{8} +3.65479 q^{9} +(-2.17576 - 2.29480i) q^{10} -3.59890 q^{11} +(2.32617 - 4.60522i) q^{12} +1.33525i q^{13} +(-1.83892 + 3.25858i) q^{14} +(1.18692 + 5.64492i) q^{15} +(-2.37378 - 3.21949i) q^{16} +2.88506 q^{17} +(-4.40225 + 2.70834i) q^{18} -5.38901i q^{19} +(4.32127 + 1.15180i) q^{20} +(5.97165 - 3.30498i) q^{21} +(4.33494 - 2.66693i) q^{22} -4.45993 q^{23} +(0.610736 + 7.27085i) q^{24} +(-4.57661 + 2.01361i) q^{25} +(-0.989473 - 1.60834i) q^{26} +1.68914 q^{27} +(-0.199723 - 5.28773i) q^{28} +1.88494i q^{29} +(-5.61277 - 5.91986i) q^{30} +7.70769 q^{31} +(5.24503 + 2.11887i) q^{32} -9.28405 q^{33} +(-3.47511 + 2.13794i) q^{34} +(3.86853 + 4.47599i) q^{35} +(3.29561 - 6.52448i) q^{36} -4.64826 q^{37} +(3.99346 + 6.49116i) q^{38} +3.44453i q^{39} +(-6.05857 + 1.81486i) q^{40} +0.606622i q^{41} +(-4.74384 + 8.40613i) q^{42} +12.1167i q^{43} +(-3.24522 + 6.42472i) q^{44} +(1.68157 + 7.99747i) q^{45} +(5.37207 - 3.30498i) q^{46} -6.92126i q^{47} +(-6.12362 - 8.30529i) q^{48} +(3.71728 - 5.93143i) q^{49} +(4.02045 - 5.81687i) q^{50} +7.44256 q^{51} +(2.38368 + 1.20403i) q^{52} -6.31531 q^{53} +(-2.03460 + 1.25172i) q^{54} +(-1.65586 - 7.87519i) q^{55} +(4.15898 + 6.22116i) q^{56} -13.9020i q^{57} +(-1.39682 - 2.27045i) q^{58} -1.39031i q^{59} +(11.1475 + 2.97129i) q^{60} -3.80122 q^{61} +(-9.28405 + 5.71169i) q^{62} +(8.46037 - 4.68235i) q^{63} +(-7.88790 + 1.33455i) q^{64} +(-2.92183 + 0.614353i) q^{65} +(11.1828 - 6.87983i) q^{66} -13.6816i q^{67} +(2.60153 - 5.15038i) q^{68} -11.5052 q^{69} +(-7.97659 - 2.52468i) q^{70} -8.19810i q^{71} +(0.865264 + 10.3010i) q^{72} -11.4433 q^{73} +(5.59890 - 3.44453i) q^{74} +(-11.8062 + 5.19448i) q^{75} +(-9.62040 - 4.85941i) q^{76} +(-8.33101 + 4.61076i) q^{77} +(-2.55253 - 4.14900i) q^{78} -10.3062i q^{79} +(5.95278 - 6.67566i) q^{80} -6.60690 q^{81} +(-0.449530 - 0.730687i) q^{82} +13.5735 q^{83} +(-0.515222 - 13.6407i) q^{84} +(1.32742 + 6.31315i) q^{85} +(-8.97897 - 14.5948i) q^{86} +4.86257i q^{87} +(-0.852034 - 10.1435i) q^{88} -7.04915i q^{89} +(-7.95192 - 8.38699i) q^{90} +(1.71067 + 3.09094i) q^{91} +(-4.02163 + 7.96181i) q^{92} +19.8834 q^{93} +(5.12891 + 8.33677i) q^{94} +(11.7923 - 2.47950i) q^{95} +(13.5305 + 5.46603i) q^{96} +6.26335 q^{97} +(-0.0821172 + 9.89915i) q^{98} -13.1532 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{4} + 40 q^{9} - 12 q^{14} - 28 q^{16} + 16 q^{25} - 28 q^{30} + 16 q^{35} - 28 q^{36} - 8 q^{44} - 32 q^{46} + 8 q^{49} + 4 q^{50} - 32 q^{51} - 4 q^{56} + 12 q^{60} - 84 q^{64} - 24 q^{65}+ \cdots - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20452 + 0.741038i −0.851723 + 0.523993i
\(3\) 2.57969 1.48938 0.744692 0.667409i \(-0.232597\pi\)
0.744692 + 0.667409i \(0.232597\pi\)
\(4\) 0.901725 1.78519i 0.450862 0.892593i
\(5\) 0.460102 + 2.18822i 0.205764 + 0.978602i
\(6\) −3.10728 + 1.91165i −1.26854 + 0.780426i
\(7\) 2.31487 1.28116i 0.874940 0.484231i
\(8\) 0.236748 + 2.81850i 0.0837031 + 0.996491i
\(9\) 3.65479 1.21826
\(10\) −2.17576 2.29480i −0.688034 0.725678i
\(11\) −3.59890 −1.08511 −0.542555 0.840020i \(-0.682543\pi\)
−0.542555 + 0.840020i \(0.682543\pi\)
\(12\) 2.32617 4.60522i 0.671507 1.32941i
\(13\) 1.33525i 0.370332i 0.982707 + 0.185166i \(0.0592824\pi\)
−0.982707 + 0.185166i \(0.940718\pi\)
\(14\) −1.83892 + 3.25858i −0.491472 + 0.870893i
\(15\) 1.18692 + 5.64492i 0.306461 + 1.45751i
\(16\) −2.37378 3.21949i −0.593446 0.804874i
\(17\) 2.88506 0.699730 0.349865 0.936800i \(-0.386227\pi\)
0.349865 + 0.936800i \(0.386227\pi\)
\(18\) −4.40225 + 2.70834i −1.03762 + 0.638361i
\(19\) 5.38901i 1.23632i −0.786051 0.618162i \(-0.787877\pi\)
0.786051 0.618162i \(-0.212123\pi\)
\(20\) 4.32127 + 1.15180i 0.966265 + 0.257551i
\(21\) 5.97165 3.30498i 1.30312 0.721206i
\(22\) 4.33494 2.66693i 0.924213 0.568590i
\(23\) −4.45993 −0.929960 −0.464980 0.885321i \(-0.653939\pi\)
−0.464980 + 0.885321i \(0.653939\pi\)
\(24\) 0.610736 + 7.27085i 0.124666 + 1.48416i
\(25\) −4.57661 + 2.01361i −0.915322 + 0.402722i
\(26\) −0.989473 1.60834i −0.194052 0.315421i
\(27\) 1.68914 0.325075
\(28\) −0.199723 5.28773i −0.0377440 0.999287i
\(29\) 1.88494i 0.350025i 0.984566 + 0.175013i \(0.0559967\pi\)
−0.984566 + 0.175013i \(0.944003\pi\)
\(30\) −5.61277 5.91986i −1.02475 1.08081i
\(31\) 7.70769 1.38434 0.692171 0.721734i \(-0.256654\pi\)
0.692171 + 0.721734i \(0.256654\pi\)
\(32\) 5.24503 + 2.11887i 0.927200 + 0.374567i
\(33\) −9.28405 −1.61615
\(34\) −3.47511 + 2.13794i −0.595976 + 0.366654i
\(35\) 3.86853 + 4.47599i 0.653901 + 0.756580i
\(36\) 3.29561 6.52448i 0.549269 1.08741i
\(37\) −4.64826 −0.764168 −0.382084 0.924128i \(-0.624794\pi\)
−0.382084 + 0.924128i \(0.624794\pi\)
\(38\) 3.99346 + 6.49116i 0.647825 + 1.05301i
\(39\) 3.44453i 0.551567i
\(40\) −6.05857 + 1.81486i −0.957944 + 0.286954i
\(41\) 0.606622i 0.0947385i 0.998877 + 0.0473693i \(0.0150837\pi\)
−0.998877 + 0.0473693i \(0.984916\pi\)
\(42\) −4.74384 + 8.40613i −0.731991 + 1.29709i
\(43\) 12.1167i 1.84779i 0.382652 + 0.923893i \(0.375011\pi\)
−0.382652 + 0.923893i \(0.624989\pi\)
\(44\) −3.24522 + 6.42472i −0.489236 + 0.968563i
\(45\) 1.68157 + 7.99747i 0.250674 + 1.19219i
\(46\) 5.37207 3.30498i 0.792068 0.487293i
\(47\) 6.92126i 1.00957i −0.863245 0.504784i \(-0.831572\pi\)
0.863245 0.504784i \(-0.168428\pi\)
\(48\) −6.12362 8.30529i −0.883869 1.19877i
\(49\) 3.71728 5.93143i 0.531040 0.847347i
\(50\) 4.02045 5.81687i 0.568577 0.822630i
\(51\) 7.44256 1.04217
\(52\) 2.38368 + 1.20403i 0.330556 + 0.166969i
\(53\) −6.31531 −0.867474 −0.433737 0.901039i \(-0.642805\pi\)
−0.433737 + 0.901039i \(0.642805\pi\)
\(54\) −2.03460 + 1.25172i −0.276874 + 0.170337i
\(55\) −1.65586 7.87519i −0.223277 1.06189i
\(56\) 4.15898 + 6.22116i 0.555767 + 0.831338i
\(57\) 13.9020i 1.84136i
\(58\) −1.39682 2.27045i −0.183411 0.298125i
\(59\) 1.39031i 0.181002i −0.995896 0.0905012i \(-0.971153\pi\)
0.995896 0.0905012i \(-0.0288469\pi\)
\(60\) 11.1475 + 2.97129i 1.43914 + 0.383592i
\(61\) −3.80122 −0.486696 −0.243348 0.969939i \(-0.578246\pi\)
−0.243348 + 0.969939i \(0.578246\pi\)
\(62\) −9.28405 + 5.71169i −1.17908 + 0.725386i
\(63\) 8.46037 4.68235i 1.06591 0.589920i
\(64\) −7.88790 + 1.33455i −0.985988 + 0.166819i
\(65\) −2.92183 + 0.614353i −0.362408 + 0.0762011i
\(66\) 11.1828 6.87983i 1.37651 0.846849i
\(67\) 13.6816i 1.67148i −0.549127 0.835739i \(-0.685040\pi\)
0.549127 0.835739i \(-0.314960\pi\)
\(68\) 2.60153 5.15038i 0.315482 0.624575i
\(69\) −11.5052 −1.38507
\(70\) −7.97659 2.52468i −0.953385 0.301757i
\(71\) 8.19810i 0.972935i −0.873699 0.486467i \(-0.838285\pi\)
0.873699 0.486467i \(-0.161715\pi\)
\(72\) 0.865264 + 10.3010i 0.101972 + 1.21399i
\(73\) −11.4433 −1.33934 −0.669671 0.742658i \(-0.733565\pi\)
−0.669671 + 0.742658i \(0.733565\pi\)
\(74\) 5.59890 3.44453i 0.650859 0.400419i
\(75\) −11.8062 + 5.19448i −1.36327 + 0.599807i
\(76\) −9.62040 4.85941i −1.10354 0.557412i
\(77\) −8.33101 + 4.61076i −0.949407 + 0.525444i
\(78\) −2.55253 4.14900i −0.289017 0.469782i
\(79\) 10.3062i 1.15954i −0.814782 0.579768i \(-0.803143\pi\)
0.814782 0.579768i \(-0.196857\pi\)
\(80\) 5.95278 6.67566i 0.665541 0.746361i
\(81\) −6.60690 −0.734100
\(82\) −0.449530 0.730687i −0.0496423 0.0806909i
\(83\) 13.5735 1.48989 0.744943 0.667129i \(-0.232477\pi\)
0.744943 + 0.667129i \(0.232477\pi\)
\(84\) −0.515222 13.6407i −0.0562153 1.48832i
\(85\) 1.32742 + 6.31315i 0.143979 + 0.684757i
\(86\) −8.97897 14.5948i −0.968227 1.57380i
\(87\) 4.86257i 0.521322i
\(88\) −0.852034 10.1435i −0.0908271 1.08130i
\(89\) 7.04915i 0.747208i −0.927588 0.373604i \(-0.878122\pi\)
0.927588 0.373604i \(-0.121878\pi\)
\(90\) −7.95192 8.38699i −0.838206 0.884066i
\(91\) 1.71067 + 3.09094i 0.179327 + 0.324019i
\(92\) −4.02163 + 7.96181i −0.419284 + 0.830076i
\(93\) 19.8834 2.06182
\(94\) 5.12891 + 8.33677i 0.529007 + 0.859873i
\(95\) 11.7923 2.47950i 1.20987 0.254391i
\(96\) 13.5305 + 5.46603i 1.38096 + 0.557874i
\(97\) 6.26335 0.635946 0.317973 0.948100i \(-0.396998\pi\)
0.317973 + 0.948100i \(0.396998\pi\)
\(98\) −0.0821172 + 9.89915i −0.00829509 + 0.999966i
\(99\) −13.1532 −1.32195
\(100\) −0.532176 + 9.98583i −0.0532176 + 0.998583i
\(101\) −4.83035 −0.480638 −0.240319 0.970694i \(-0.577252\pi\)
−0.240319 + 0.970694i \(0.577252\pi\)
\(102\) −8.96469 + 5.51522i −0.887637 + 0.546088i
\(103\) 13.4501i 1.32528i 0.748938 + 0.662640i \(0.230564\pi\)
−0.748938 + 0.662640i \(0.769436\pi\)
\(104\) −3.76341 + 0.316119i −0.369033 + 0.0309980i
\(105\) 9.97959 + 11.5467i 0.973908 + 1.12684i
\(106\) 7.60690 4.67988i 0.738847 0.454551i
\(107\) 8.42571i 0.814544i 0.913307 + 0.407272i \(0.133520\pi\)
−0.913307 + 0.407272i \(0.866480\pi\)
\(108\) 1.52314 3.01543i 0.146564 0.290160i
\(109\) 12.1174i 1.16064i 0.814388 + 0.580320i \(0.197073\pi\)
−0.814388 + 0.580320i \(0.802927\pi\)
\(110\) 7.83034 + 8.25875i 0.746593 + 0.787441i
\(111\) −11.9910 −1.13814
\(112\) −9.61968 4.41154i −0.908975 0.416851i
\(113\) 10.3315i 0.971907i −0.873985 0.485953i \(-0.838472\pi\)
0.873985 0.485953i \(-0.161528\pi\)
\(114\) 10.3019 + 16.7452i 0.964860 + 1.56833i
\(115\) −2.05202 9.75931i −0.191352 0.910061i
\(116\) 3.36498 + 1.69970i 0.312430 + 0.157813i
\(117\) 4.88006i 0.451162i
\(118\) 1.03027 + 1.67465i 0.0948440 + 0.154164i
\(119\) 6.67855 3.69621i 0.612222 0.338831i
\(120\) −15.6292 + 4.68176i −1.42675 + 0.427384i
\(121\) 1.95211 0.177465
\(122\) 4.57863 2.81685i 0.414530 0.255025i
\(123\) 1.56490i 0.141102i
\(124\) 6.95022 13.7597i 0.624148 1.23565i
\(125\) −6.51193 9.08817i −0.582445 0.812870i
\(126\) −6.72086 + 11.9094i −0.598742 + 1.06098i
\(127\) −9.65843 −0.857047 −0.428524 0.903531i \(-0.640966\pi\)
−0.428524 + 0.903531i \(0.640966\pi\)
\(128\) 8.51216 7.45272i 0.752376 0.658734i
\(129\) 31.2574i 2.75206i
\(130\) 3.06413 2.90518i 0.268742 0.254801i
\(131\) 20.2931i 1.77302i 0.462711 + 0.886509i \(0.346877\pi\)
−0.462711 + 0.886509i \(0.653123\pi\)
\(132\) −8.37166 + 16.5738i −0.728659 + 1.44256i
\(133\) −6.90416 12.4749i −0.598667 1.08171i
\(134\) 10.1386 + 16.4798i 0.875843 + 1.42364i
\(135\) 0.777178 + 3.69621i 0.0668888 + 0.318119i
\(136\) 0.683033 + 8.13155i 0.0585696 + 0.697275i
\(137\) 12.2326i 1.04510i 0.852608 + 0.522551i \(0.175019\pi\)
−0.852608 + 0.522551i \(0.824981\pi\)
\(138\) 13.8583 8.52581i 1.17969 0.725766i
\(139\) 0.177061i 0.0150181i −0.999972 0.00750907i \(-0.997610\pi\)
0.999972 0.00750907i \(-0.00239023\pi\)
\(140\) 11.4788 2.86993i 0.970138 0.242554i
\(141\) 17.8547i 1.50363i
\(142\) 6.07510 + 9.87475i 0.509811 + 0.828671i
\(143\) 4.80545i 0.401852i
\(144\) −8.67567 11.7666i −0.722973 0.980547i
\(145\) −4.12467 + 0.867267i −0.342535 + 0.0720226i
\(146\) 13.7837 8.47995i 1.14075 0.701806i
\(147\) 9.58942 15.3012i 0.790922 1.26202i
\(148\) −4.19145 + 8.29800i −0.344535 + 0.682092i
\(149\) 0.279108i 0.0228654i −0.999935 0.0114327i \(-0.996361\pi\)
0.999935 0.0114327i \(-0.00363923\pi\)
\(150\) 10.3715 15.0057i 0.846829 1.22521i
\(151\) 4.75356i 0.386839i 0.981116 + 0.193420i \(0.0619579\pi\)
−0.981116 + 0.193420i \(0.938042\pi\)
\(152\) 15.1889 1.27584i 1.23199 0.103484i
\(153\) 10.5443 0.852455
\(154\) 6.61810 11.7273i 0.533302 0.945015i
\(155\) 3.54632 + 16.8661i 0.284848 + 1.35472i
\(156\) 6.14914 + 3.10602i 0.492325 + 0.248681i
\(157\) 2.97219i 0.237206i −0.992942 0.118603i \(-0.962158\pi\)
0.992942 0.118603i \(-0.0378416\pi\)
\(158\) 7.63727 + 12.4140i 0.607588 + 0.987602i
\(159\) −16.2915 −1.29200
\(160\) −2.22331 + 12.4522i −0.175768 + 0.984432i
\(161\) −10.3242 + 5.71387i −0.813659 + 0.450316i
\(162\) 7.95813 4.89596i 0.625249 0.384663i
\(163\) 8.42571i 0.659953i −0.943989 0.329976i \(-0.892959\pi\)
0.943989 0.329976i \(-0.107041\pi\)
\(164\) 1.08293 + 0.547007i 0.0845630 + 0.0427140i
\(165\) −4.27161 20.3155i −0.332544 1.58156i
\(166\) −16.3495 + 10.0585i −1.26897 + 0.780690i
\(167\) 13.4501i 1.04080i −0.853922 0.520401i \(-0.825782\pi\)
0.853922 0.520401i \(-0.174218\pi\)
\(168\) 10.7289 + 16.0487i 0.827750 + 1.23818i
\(169\) 11.2171 0.862854
\(170\) −6.27719 6.62063i −0.481438 0.507779i
\(171\) 19.6957i 1.50617i
\(172\) 21.6306 + 10.9260i 1.64932 + 0.833097i
\(173\) 10.5918i 0.805276i 0.915359 + 0.402638i \(0.131907\pi\)
−0.915359 + 0.402638i \(0.868093\pi\)
\(174\) −3.60335 5.85705i −0.273169 0.444022i
\(175\) −8.01453 + 10.5246i −0.605842 + 0.795585i
\(176\) 8.54302 + 11.5867i 0.643955 + 0.873377i
\(177\) 3.58655i 0.269582i
\(178\) 5.22369 + 8.49083i 0.391532 + 0.636414i
\(179\) −1.93943 −0.144959 −0.0724797 0.997370i \(-0.523091\pi\)
−0.0724797 + 0.997370i \(0.523091\pi\)
\(180\) 15.7933 + 4.20960i 1.17716 + 0.313765i
\(181\) 11.9947 0.891561 0.445780 0.895142i \(-0.352926\pi\)
0.445780 + 0.895142i \(0.352926\pi\)
\(182\) −4.35103 2.45542i −0.322520 0.182008i
\(183\) −9.80596 −0.724877
\(184\) −1.05588 12.5703i −0.0778406 0.926697i
\(185\) −2.13867 10.1714i −0.157238 0.747816i
\(186\) −23.9499 + 14.7344i −1.75609 + 1.08038i
\(187\) −10.3831 −0.759285
\(188\) −12.3557 6.24107i −0.901135 0.455177i
\(189\) 3.91015 2.16405i 0.284422 0.157412i
\(190\) −12.3667 + 11.7252i −0.897174 + 0.850634i
\(191\) 10.3062i 0.745729i 0.927886 + 0.372864i \(0.121624\pi\)
−0.927886 + 0.372864i \(0.878376\pi\)
\(192\) −20.3483 + 3.44272i −1.46851 + 0.248457i
\(193\) 7.97366i 0.573957i 0.957937 + 0.286978i \(0.0926508\pi\)
−0.957937 + 0.286978i \(0.907349\pi\)
\(194\) −7.54431 + 4.64138i −0.541650 + 0.333232i
\(195\) −7.53740 + 1.58484i −0.539764 + 0.113493i
\(196\) −7.23674 11.9846i −0.516910 0.856040i
\(197\) 9.16007 0.652628 0.326314 0.945261i \(-0.394193\pi\)
0.326314 + 0.945261i \(0.394193\pi\)
\(198\) 15.8433 9.74704i 1.12593 0.692692i
\(199\) 18.1246 1.28482 0.642408 0.766362i \(-0.277935\pi\)
0.642408 + 0.766362i \(0.277935\pi\)
\(200\) −6.75886 12.4225i −0.477924 0.878401i
\(201\) 35.2943i 2.48947i
\(202\) 5.81825 3.57948i 0.409370 0.251851i
\(203\) 2.41491 + 4.36341i 0.169493 + 0.306251i
\(204\) 6.71114 13.2864i 0.469874 0.930231i
\(205\) −1.32742 + 0.279108i −0.0927113 + 0.0194938i
\(206\) −9.96706 16.2009i −0.694438 1.12877i
\(207\) −16.3001 −1.13294
\(208\) 4.29884 3.16960i 0.298071 0.219772i
\(209\) 19.3945i 1.34155i
\(210\) −20.5771 6.51289i −1.41996 0.449432i
\(211\) 9.48714 0.653122 0.326561 0.945176i \(-0.394110\pi\)
0.326561 + 0.945176i \(0.394110\pi\)
\(212\) −5.69467 + 11.2740i −0.391112 + 0.774302i
\(213\) 21.1485i 1.44907i
\(214\) −6.24377 10.1489i −0.426816 0.693766i
\(215\) −26.5141 + 5.57494i −1.80825 + 0.380208i
\(216\) 0.399901 + 4.76085i 0.0272098 + 0.323935i
\(217\) 17.8423 9.87475i 1.21122 0.670342i
\(218\) −8.97949 14.5957i −0.608168 0.988544i
\(219\) −29.5202 −1.99479
\(220\) −15.5518 4.14523i −1.04850 0.279472i
\(221\) 3.85229i 0.259133i
\(222\) 14.4434 8.88582i 0.969379 0.596377i
\(223\) 28.0127i 1.87587i 0.346816 + 0.937933i \(0.387263\pi\)
−0.346816 + 0.937933i \(0.612737\pi\)
\(224\) 14.8562 1.81478i 0.992621 0.121255i
\(225\) −16.7265 + 7.35931i −1.11510 + 0.490621i
\(226\) 7.65604 + 12.4445i 0.509272 + 0.827795i
\(227\) 1.85392 0.123049 0.0615245 0.998106i \(-0.480404\pi\)
0.0615245 + 0.998106i \(0.480404\pi\)
\(228\) −24.8176 12.5358i −1.64359 0.830200i
\(229\) 20.2457 1.33788 0.668938 0.743318i \(-0.266749\pi\)
0.668938 + 0.743318i \(0.266749\pi\)
\(230\) 9.70372 + 10.2346i 0.639845 + 0.674852i
\(231\) −21.4914 + 11.8943i −1.41403 + 0.782588i
\(232\) −5.31272 + 0.446257i −0.348797 + 0.0292982i
\(233\) 2.35785i 0.154468i 0.997013 + 0.0772339i \(0.0246088\pi\)
−0.997013 + 0.0772339i \(0.975391\pi\)
\(234\) −3.61631 5.87812i −0.236406 0.384265i
\(235\) 15.1452 3.18448i 0.987966 0.207733i
\(236\) −2.48196 1.25367i −0.161562 0.0816072i
\(237\) 26.5867i 1.72699i
\(238\) −5.30540 + 9.40122i −0.343898 + 0.609390i
\(239\) 5.34718i 0.345880i −0.984932 0.172940i \(-0.944673\pi\)
0.984932 0.172940i \(-0.0553267\pi\)
\(240\) 15.3563 17.2211i 0.991245 1.11162i
\(241\) 9.70134i 0.624919i 0.949931 + 0.312459i \(0.101153\pi\)
−0.949931 + 0.312459i \(0.898847\pi\)
\(242\) −2.35136 + 1.44659i −0.151151 + 0.0929904i
\(243\) −22.1112 −1.41843
\(244\) −3.42765 + 6.78589i −0.219433 + 0.434422i
\(245\) 14.6896 + 5.40517i 0.938484 + 0.345323i
\(246\) −1.15965 1.88494i −0.0739364 0.120180i
\(247\) 7.19569 0.457851
\(248\) 1.82478 + 21.7241i 0.115874 + 1.37948i
\(249\) 35.0154 2.21901
\(250\) 14.5784 + 6.12127i 0.922020 + 0.387143i
\(251\) 14.7270i 0.929563i −0.885425 0.464782i \(-0.846133\pi\)
0.885425 0.464782i \(-0.153867\pi\)
\(252\) −0.729943 19.3255i −0.0459821 1.21739i
\(253\) 16.0509 1.00911
\(254\) 11.6338 7.15727i 0.729967 0.449087i
\(255\) 3.42434 + 16.2860i 0.214440 + 1.01987i
\(256\) −4.73029 + 15.2848i −0.295643 + 0.955298i
\(257\) −11.2700 −0.703006 −0.351503 0.936187i \(-0.614329\pi\)
−0.351503 + 0.936187i \(0.614329\pi\)
\(258\) −23.1629 37.6501i −1.44206 2.34399i
\(259\) −10.7601 + 5.95514i −0.668602 + 0.370034i
\(260\) −1.53795 + 5.76998i −0.0953796 + 0.357839i
\(261\) 6.88907i 0.426423i
\(262\) −15.0380 24.4434i −0.929049 1.51012i
\(263\) 14.2659 0.879672 0.439836 0.898078i \(-0.355037\pi\)
0.439836 + 0.898078i \(0.355037\pi\)
\(264\) −2.19798 26.1671i −0.135276 1.61047i
\(265\) −2.90569 13.8193i −0.178495 0.848912i
\(266\) 17.5606 + 9.90997i 1.07671 + 0.607619i
\(267\) 18.1846i 1.11288i
\(268\) −24.4243 12.3371i −1.49195 0.753607i
\(269\) −19.6473 −1.19792 −0.598959 0.800780i \(-0.704419\pi\)
−0.598959 + 0.800780i \(0.704419\pi\)
\(270\) −3.67516 3.87624i −0.223663 0.235900i
\(271\) 21.4339 1.30202 0.651008 0.759071i \(-0.274346\pi\)
0.651008 + 0.759071i \(0.274346\pi\)
\(272\) −6.84852 9.28844i −0.415252 0.563195i
\(273\) 4.41298 + 7.97366i 0.267086 + 0.482588i
\(274\) −9.06482 14.7344i −0.547626 0.890136i
\(275\) 16.4708 7.24679i 0.993226 0.436998i
\(276\) −10.3746 + 20.5390i −0.624475 + 1.23630i
\(277\) 20.3225 1.22106 0.610530 0.791993i \(-0.290957\pi\)
0.610530 + 0.791993i \(0.290957\pi\)
\(278\) 0.131209 + 0.213273i 0.00786940 + 0.0127913i
\(279\) 28.1700 1.68649
\(280\) −11.6997 + 11.9631i −0.699192 + 0.714934i
\(281\) 6.60360 0.393938 0.196969 0.980410i \(-0.436890\pi\)
0.196969 + 0.980410i \(0.436890\pi\)
\(282\) 13.2310 + 21.5063i 0.787894 + 1.28068i
\(283\) −26.0188 −1.54666 −0.773330 0.634004i \(-0.781410\pi\)
−0.773330 + 0.634004i \(0.781410\pi\)
\(284\) −14.6351 7.39243i −0.868435 0.438660i
\(285\) 30.4206 6.39632i 1.80196 0.378886i
\(286\) 3.56102 + 5.78825i 0.210568 + 0.342266i
\(287\) 0.777178 + 1.40425i 0.0458753 + 0.0828905i
\(288\) 19.1695 + 7.74403i 1.12957 + 0.456321i
\(289\) −8.67642 −0.510377
\(290\) 4.32556 4.10118i 0.254006 0.240830i
\(291\) 16.1575 0.947168
\(292\) −10.3187 + 20.4285i −0.603859 + 1.19549i
\(293\) 23.5795i 1.37753i 0.724984 + 0.688765i \(0.241847\pi\)
−0.724984 + 0.688765i \(0.758153\pi\)
\(294\) −0.211837 + 25.5367i −0.0123546 + 1.48933i
\(295\) 3.04230 0.639683i 0.177129 0.0372438i
\(296\) −1.10047 13.1011i −0.0639633 0.761487i
\(297\) −6.07906 −0.352743
\(298\) 0.206830 + 0.336191i 0.0119813 + 0.0194750i
\(299\) 5.95514i 0.344394i
\(300\) −1.37285 + 25.7603i −0.0792614 + 1.48727i
\(301\) 15.5234 + 28.0487i 0.894755 + 1.61670i
\(302\) −3.52257 5.72575i −0.202701 0.329480i
\(303\) −12.4608 −0.715854
\(304\) −17.3499 + 12.7924i −0.995085 + 0.733692i
\(305\) −1.74895 8.31790i −0.100145 0.476282i
\(306\) −12.7008 + 7.81372i −0.726055 + 0.446680i
\(307\) 8.34981 0.476549 0.238274 0.971198i \(-0.423418\pi\)
0.238274 + 0.971198i \(0.423418\pi\)
\(308\) 0.718783 + 19.0300i 0.0409564 + 1.08434i
\(309\) 34.6971i 1.97385i
\(310\) −16.7700 17.6876i −0.952475 1.00459i
\(311\) 3.79343 0.215105 0.107553 0.994199i \(-0.465699\pi\)
0.107553 + 0.994199i \(0.465699\pi\)
\(312\) −9.70842 + 0.815487i −0.549631 + 0.0461679i
\(313\) 21.8977 1.23773 0.618867 0.785496i \(-0.287592\pi\)
0.618867 + 0.785496i \(0.287592\pi\)
\(314\) 2.20250 + 3.58005i 0.124294 + 0.202034i
\(315\) 14.1386 + 16.3588i 0.796622 + 0.921713i
\(316\) −18.3984 9.29333i −1.03499 0.522791i
\(317\) −26.3887 −1.48213 −0.741067 0.671431i \(-0.765680\pi\)
−0.741067 + 0.671431i \(0.765680\pi\)
\(318\) 19.6234 12.0726i 1.10043 0.677000i
\(319\) 6.78374i 0.379816i
\(320\) −6.54953 16.6464i −0.366130 0.930564i
\(321\) 21.7357i 1.21317i
\(322\) 8.20146 14.5331i 0.457050 0.809896i
\(323\) 15.5476i 0.865094i
\(324\) −5.95761 + 11.7946i −0.330978 + 0.655253i
\(325\) −2.68868 6.11093i −0.149141 0.338974i
\(326\) 6.24377 + 10.1489i 0.345811 + 0.562097i
\(327\) 31.2592i 1.72864i
\(328\) −1.70977 + 0.143617i −0.0944060 + 0.00792991i
\(329\) −8.86720 16.0218i −0.488865 0.883312i
\(330\) 20.1998 + 21.3050i 1.11196 + 1.17280i
\(331\) −7.51497 −0.413060 −0.206530 0.978440i \(-0.566217\pi\)
−0.206530 + 0.978440i \(0.566217\pi\)
\(332\) 12.2396 24.2312i 0.671733 1.32986i
\(333\) −16.9884 −0.930957
\(334\) 9.96706 + 16.2009i 0.545373 + 0.886475i
\(335\) 29.9384 6.29495i 1.63571 0.343930i
\(336\) −24.8158 11.3804i −1.35381 0.620851i
\(337\) 4.69960i 0.256004i −0.991774 0.128002i \(-0.959144\pi\)
0.991774 0.128002i \(-0.0408563\pi\)
\(338\) −13.5112 + 8.31230i −0.734912 + 0.452129i
\(339\) 26.6521i 1.44754i
\(340\) 12.4671 + 3.32303i 0.676125 + 0.180216i
\(341\) −27.7392 −1.50216
\(342\) 14.5953 + 23.7238i 0.789221 + 1.28284i
\(343\) 1.00596 18.4929i 0.0543166 0.998524i
\(344\) −34.1510 + 2.86862i −1.84130 + 0.154665i
\(345\) −5.29358 25.1760i −0.284997 1.35543i
\(346\) −7.84889 12.7580i −0.421959 0.685872i
\(347\) 9.75889i 0.523885i 0.965084 + 0.261942i \(0.0843630\pi\)
−0.965084 + 0.261942i \(0.915637\pi\)
\(348\) 8.68059 + 4.38470i 0.465329 + 0.235044i
\(349\) 6.30167 0.337321 0.168660 0.985674i \(-0.446056\pi\)
0.168660 + 0.985674i \(0.446056\pi\)
\(350\) 1.85451 18.6161i 0.0991279 0.995075i
\(351\) 2.25543i 0.120386i
\(352\) −18.8764 7.62562i −1.00611 0.406447i
\(353\) −2.43058 −0.129367 −0.0646833 0.997906i \(-0.520604\pi\)
−0.0646833 + 0.997906i \(0.520604\pi\)
\(354\) 2.65777 + 4.32007i 0.141259 + 0.229609i
\(355\) 17.9392 3.77196i 0.952116 0.200195i
\(356\) −12.5841 6.35639i −0.666953 0.336888i
\(357\) 17.2286 9.53507i 0.911833 0.504650i
\(358\) 2.33607 1.43719i 0.123465 0.0759577i
\(359\) 7.92321i 0.418171i −0.977897 0.209086i \(-0.932951\pi\)
0.977897 0.209086i \(-0.0670487\pi\)
\(360\) −22.1428 + 6.63291i −1.16703 + 0.349585i
\(361\) −10.0415 −0.528498
\(362\) −14.4479 + 8.88855i −0.759362 + 0.467172i
\(363\) 5.03584 0.264313
\(364\) 7.06046 0.266680i 0.370069 0.0139778i
\(365\) −5.26511 25.0406i −0.275588 1.31068i
\(366\) 11.8114 7.26659i 0.617394 0.379831i
\(367\) 15.9826i 0.834287i 0.908841 + 0.417143i \(0.136969\pi\)
−0.908841 + 0.417143i \(0.863031\pi\)
\(368\) 10.5869 + 14.3587i 0.551881 + 0.748501i
\(369\) 2.21707i 0.115416i
\(370\) 10.1135 + 10.6668i 0.525774 + 0.554540i
\(371\) −14.6191 + 8.09089i −0.758988 + 0.420058i
\(372\) 17.9294 35.4956i 0.929595 1.84036i
\(373\) −20.9336 −1.08390 −0.541951 0.840410i \(-0.682314\pi\)
−0.541951 + 0.840410i \(0.682314\pi\)
\(374\) 12.5066 7.69425i 0.646700 0.397860i
\(375\) −16.7987 23.4446i −0.867483 1.21068i
\(376\) 19.5076 1.63859i 1.00603 0.0845041i
\(377\) −2.51688 −0.129626
\(378\) −3.10620 + 5.50421i −0.159766 + 0.283106i
\(379\) 13.1532 0.675636 0.337818 0.941211i \(-0.390311\pi\)
0.337818 + 0.941211i \(0.390311\pi\)
\(380\) 6.20709 23.2874i 0.318417 1.19462i
\(381\) −24.9157 −1.27647
\(382\) −7.63727 12.4140i −0.390757 0.635154i
\(383\) 22.4872i 1.14904i −0.818490 0.574521i \(-0.805188\pi\)
0.818490 0.574521i \(-0.194812\pi\)
\(384\) 21.9587 19.2257i 1.12058 0.981107i
\(385\) −13.9225 16.1087i −0.709554 0.820973i
\(386\) −5.90879 9.60442i −0.300749 0.488852i
\(387\) 44.2841i 2.25109i
\(388\) 5.64781 11.1812i 0.286724 0.567642i
\(389\) 7.58914i 0.384785i 0.981318 + 0.192392i \(0.0616246\pi\)
−0.981318 + 0.192392i \(0.938375\pi\)
\(390\) 7.90450 7.49446i 0.400260 0.379497i
\(391\) −12.8672 −0.650721
\(392\) 17.5978 + 9.07291i 0.888823 + 0.458251i
\(393\) 52.3499i 2.64070i
\(394\) −11.0335 + 6.78796i −0.555858 + 0.341973i
\(395\) 22.5522 4.74189i 1.13472 0.238590i
\(396\) −11.8606 + 23.4810i −0.596017 + 1.17996i
\(397\) 4.23587i 0.212592i −0.994335 0.106296i \(-0.966101\pi\)
0.994335 0.106296i \(-0.0338992\pi\)
\(398\) −21.8314 + 13.4310i −1.09431 + 0.673235i
\(399\) −17.8106 32.1813i −0.891644 1.61108i
\(400\) 17.3467 + 9.95451i 0.867335 + 0.497725i
\(401\) −6.90753 −0.344946 −0.172473 0.985014i \(-0.555176\pi\)
−0.172473 + 0.985014i \(0.555176\pi\)
\(402\) 26.1545 + 42.5126i 1.30447 + 2.12034i
\(403\) 10.2917i 0.512667i
\(404\) −4.35565 + 8.62308i −0.216702 + 0.429014i
\(405\) −3.03985 14.4573i −0.151051 0.718391i
\(406\) −6.14225 3.46626i −0.304835 0.172028i
\(407\) 16.7286 0.829207
\(408\) 1.76201 + 20.9769i 0.0872326 + 1.03851i
\(409\) 3.86544i 0.191134i 0.995423 + 0.0955668i \(0.0304664\pi\)
−0.995423 + 0.0955668i \(0.969534\pi\)
\(410\) 1.39207 1.31986i 0.0687497 0.0651833i
\(411\) 31.5563i 1.55656i
\(412\) 24.0110 + 12.1283i 1.18294 + 0.597519i
\(413\) −1.78120 3.21838i −0.0876470 0.158366i
\(414\) 19.6338 12.0790i 0.964946 0.593650i
\(415\) 6.24520 + 29.7018i 0.306565 + 1.45800i
\(416\) −2.82923 + 7.00345i −0.138714 + 0.343372i
\(417\) 0.456763i 0.0223678i
\(418\) −14.3721 23.3611i −0.702962 1.14263i
\(419\) 12.9925i 0.634726i −0.948304 0.317363i \(-0.897203\pi\)
0.948304 0.317363i \(-0.102797\pi\)
\(420\) 29.6118 7.40353i 1.44491 0.361255i
\(421\) 20.4156i 0.994997i 0.867465 + 0.497499i \(0.165748\pi\)
−0.867465 + 0.497499i \(0.834252\pi\)
\(422\) −11.4274 + 7.03033i −0.556279 + 0.342231i
\(423\) 25.2957i 1.22992i
\(424\) −1.49514 17.7997i −0.0726103 0.864430i
\(425\) −13.2038 + 5.80939i −0.640479 + 0.281797i
\(426\) 15.6719 + 25.4738i 0.759304 + 1.23421i
\(427\) −8.79934 + 4.86995i −0.425830 + 0.235674i
\(428\) 15.0415 + 7.59767i 0.727057 + 0.367247i
\(429\) 12.3966i 0.598511i
\(430\) 27.8054 26.3631i 1.34090 1.27134i
\(431\) 3.54463i 0.170739i 0.996349 + 0.0853695i \(0.0272071\pi\)
−0.996349 + 0.0853695i \(0.972793\pi\)
\(432\) −4.00966 5.43818i −0.192915 0.261645i
\(433\) 24.1539 1.16076 0.580382 0.814344i \(-0.302903\pi\)
0.580382 + 0.814344i \(0.302903\pi\)
\(434\) −14.1738 + 25.1162i −0.680366 + 1.20561i
\(435\) −10.6404 + 2.23728i −0.510167 + 0.107269i
\(436\) 21.6319 + 10.9266i 1.03598 + 0.523289i
\(437\) 24.0346i 1.14973i
\(438\) 35.5577 21.8756i 1.69901 1.04526i
\(439\) 8.10213 0.386694 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(440\) 21.8042 6.53149i 1.03948 0.311377i
\(441\) 13.5859 21.6781i 0.646946 1.03229i
\(442\) −2.85469 4.64015i −0.135784 0.220709i
\(443\) 26.0995i 1.24002i −0.784592 0.620012i \(-0.787128\pi\)
0.784592 0.620012i \(-0.212872\pi\)
\(444\) −10.8126 + 21.4063i −0.513144 + 1.01590i
\(445\) 15.4251 3.24333i 0.731219 0.153749i
\(446\) −20.7584 33.7417i −0.982941 1.59772i
\(447\) 0.720012i 0.0340554i
\(448\) −16.5497 + 13.1949i −0.781901 + 0.623402i
\(449\) 14.9898 0.707414 0.353707 0.935356i \(-0.384921\pi\)
0.353707 + 0.935356i \(0.384921\pi\)
\(450\) 14.6939 21.2594i 0.692676 1.00218i
\(451\) 2.18318i 0.102802i
\(452\) −18.4437 9.31618i −0.867518 0.438196i
\(453\) 12.2627i 0.576152i
\(454\) −2.23308 + 1.37383i −0.104804 + 0.0644769i
\(455\) −5.97658 + 5.16546i −0.280186 + 0.242161i
\(456\) 39.1827 3.29127i 1.83490 0.154128i
\(457\) 38.8078i 1.81535i 0.419670 + 0.907677i \(0.362146\pi\)
−0.419670 + 0.907677i \(0.637854\pi\)
\(458\) −24.3863 + 15.0029i −1.13950 + 0.701038i
\(459\) 4.87328 0.227465
\(460\) −19.2726 5.13697i −0.898588 0.239512i
\(461\) 28.0610 1.30693 0.653466 0.756956i \(-0.273314\pi\)
0.653466 + 0.756956i \(0.273314\pi\)
\(462\) 17.0726 30.2528i 0.794291 1.40749i
\(463\) −9.44403 −0.438901 −0.219451 0.975624i \(-0.570427\pi\)
−0.219451 + 0.975624i \(0.570427\pi\)
\(464\) 6.06857 4.47445i 0.281726 0.207721i
\(465\) 9.14841 + 43.5093i 0.424247 + 2.01770i
\(466\) −1.74726 2.84007i −0.0809401 0.131564i
\(467\) −19.1643 −0.886818 −0.443409 0.896319i \(-0.646231\pi\)
−0.443409 + 0.896319i \(0.646231\pi\)
\(468\) 8.71182 + 4.40047i 0.402704 + 0.203412i
\(469\) −17.5283 31.6713i −0.809382 1.46244i
\(470\) −15.8829 + 15.0590i −0.732622 + 0.694618i
\(471\) 7.66731i 0.353291i
\(472\) 3.91858 0.329152i 0.180367 0.0151505i
\(473\) 43.6070i 2.00505i
\(474\) 19.7018 + 32.0241i 0.904932 + 1.47092i
\(475\) 10.8514 + 24.6634i 0.497895 + 1.13164i
\(476\) −0.576212 15.2554i −0.0264106 0.699232i
\(477\) −23.0811 −1.05681
\(478\) 3.96247 + 6.44077i 0.181239 + 0.294594i
\(479\) −19.8597 −0.907414 −0.453707 0.891151i \(-0.649899\pi\)
−0.453707 + 0.891151i \(0.649899\pi\)
\(480\) −5.73544 + 32.1227i −0.261786 + 1.46620i
\(481\) 6.20660i 0.282996i
\(482\) −7.18907 11.6854i −0.327453 0.532257i
\(483\) −26.6332 + 14.7400i −1.21185 + 0.670693i
\(484\) 1.76027 3.48489i 0.0800123 0.158404i
\(485\) 2.88178 + 13.7056i 0.130855 + 0.622338i
\(486\) 26.6333 16.3852i 1.20811 0.743248i
\(487\) −2.59554 −0.117615 −0.0588075 0.998269i \(-0.518730\pi\)
−0.0588075 + 0.998269i \(0.518730\pi\)
\(488\) −0.899932 10.7137i −0.0407380 0.484988i
\(489\) 21.7357i 0.982922i
\(490\) −21.6993 + 4.37493i −0.980275 + 0.197639i
\(491\) 16.6118 0.749679 0.374839 0.927090i \(-0.377698\pi\)
0.374839 + 0.927090i \(0.377698\pi\)
\(492\) 2.79363 + 1.41111i 0.125947 + 0.0636176i
\(493\) 5.43818i 0.244923i
\(494\) −8.66734 + 5.33228i −0.389962 + 0.239911i
\(495\) −6.05183 28.7821i −0.272009 1.29366i
\(496\) −18.2964 24.8149i −0.821532 1.11422i
\(497\) −10.5030 18.9776i −0.471125 0.851260i
\(498\) −42.1766 + 25.9477i −1.88998 + 1.16275i
\(499\) 12.8033 0.573155 0.286578 0.958057i \(-0.407482\pi\)
0.286578 + 0.958057i \(0.407482\pi\)
\(500\) −22.0960 + 3.42998i −0.988165 + 0.153393i
\(501\) 34.6971i 1.55015i
\(502\) 10.9133 + 17.7390i 0.487085 + 0.791730i
\(503\) 7.66175i 0.341621i −0.985304 0.170810i \(-0.945361\pi\)
0.985304 0.170810i \(-0.0546385\pi\)
\(504\) 15.2002 + 22.7370i 0.677070 + 1.01279i
\(505\) −2.22246 10.5699i −0.0988980 0.470353i
\(506\) −19.3336 + 11.8943i −0.859481 + 0.528767i
\(507\) 28.9366 1.28512
\(508\) −8.70925 + 17.2421i −0.386410 + 0.764995i
\(509\) −8.30655 −0.368181 −0.184091 0.982909i \(-0.558934\pi\)
−0.184091 + 0.982909i \(0.558934\pi\)
\(510\) −16.1932 17.0792i −0.717046 0.756278i
\(511\) −26.4899 + 14.6607i −1.17184 + 0.648551i
\(512\) −5.62888 21.9161i −0.248764 0.968564i
\(513\) 9.10281i 0.401899i
\(514\) 13.5750 8.35154i 0.598766 0.368370i
\(515\) −29.4318 + 6.18843i −1.29692 + 0.272695i
\(516\) 55.8003 + 28.1856i 2.45647 + 1.24080i
\(517\) 24.9089i 1.09549i
\(518\) 8.54777 15.1467i 0.375568 0.665509i
\(519\) 27.3234i 1.19936i
\(520\) −2.42329 8.08973i −0.106268 0.354758i
\(521\) 19.9456i 0.873833i 0.899502 + 0.436916i \(0.143929\pi\)
−0.899502 + 0.436916i \(0.856071\pi\)
\(522\) −5.10506 8.29800i −0.223443 0.363194i
\(523\) 21.9379 0.959276 0.479638 0.877467i \(-0.340768\pi\)
0.479638 + 0.877467i \(0.340768\pi\)
\(524\) 36.2270 + 18.2988i 1.58258 + 0.799387i
\(525\) −20.6750 + 27.1502i −0.902330 + 1.18493i
\(526\) −17.1835 + 10.5716i −0.749237 + 0.460942i
\(527\) 22.2372 0.968666
\(528\) 22.0383 + 29.8899i 0.959095 + 1.30079i
\(529\) −3.10900 −0.135174
\(530\) 13.7406 + 14.4923i 0.596852 + 0.629507i
\(531\) 5.08127i 0.220508i
\(532\) −28.4957 + 1.07631i −1.23544 + 0.0466639i
\(533\) −0.809994 −0.0350847
\(534\) 13.4755 + 21.9037i 0.583141 + 0.947865i
\(535\) −18.4373 + 3.87669i −0.797114 + 0.167604i
\(536\) 38.5617 3.23910i 1.66561 0.139908i
\(537\) −5.00311 −0.215900
\(538\) 23.6655 14.5594i 1.02029 0.627701i
\(539\) −13.3781 + 21.3466i −0.576237 + 0.919465i
\(540\) 7.29923 + 1.94556i 0.314109 + 0.0837236i
\(541\) 23.9613i 1.03018i −0.857137 0.515088i \(-0.827759\pi\)
0.857137 0.515088i \(-0.172241\pi\)
\(542\) −25.8175 + 15.8833i −1.10896 + 0.682247i
\(543\) 30.9426 1.32788
\(544\) 15.1322 + 6.11308i 0.648790 + 0.262096i
\(545\) −26.5156 + 5.57526i −1.13580 + 0.238818i
\(546\) −11.2243 6.33423i −0.480356 0.271080i
\(547\) 8.98695i 0.384254i −0.981370 0.192127i \(-0.938461\pi\)
0.981370 0.192127i \(-0.0615386\pi\)
\(548\) 21.8375 + 11.0304i 0.932851 + 0.471197i
\(549\) −13.8926 −0.592923
\(550\) −14.4692 + 20.9344i −0.616969 + 0.892644i
\(551\) 10.1580 0.432745
\(552\) −2.72384 32.4275i −0.115934 1.38021i
\(553\) −13.2038 23.8575i −0.561483 1.01452i
\(554\) −24.4788 + 15.0597i −1.04000 + 0.639827i
\(555\) −5.51710 26.2390i −0.234188 1.11379i
\(556\) −0.316087 0.159660i −0.0134051 0.00677111i
\(557\) −8.37113 −0.354696 −0.177348 0.984148i \(-0.556752\pi\)
−0.177348 + 0.984148i \(0.556752\pi\)
\(558\) −33.9312 + 20.8750i −1.43642 + 0.883710i
\(559\) −16.1789 −0.684295
\(560\) 5.22738 23.0797i 0.220897 0.975297i
\(561\) −26.7851 −1.13087
\(562\) −7.95415 + 4.89352i −0.335526 + 0.206421i
\(563\) 26.2152 1.10484 0.552420 0.833566i \(-0.313705\pi\)
0.552420 + 0.833566i \(0.313705\pi\)
\(564\) −31.8739 16.1000i −1.34213 0.677932i
\(565\) 22.6076 4.75355i 0.951110 0.199983i
\(566\) 31.3402 19.2810i 1.31733 0.810439i
\(567\) −15.2941 + 8.46447i −0.642293 + 0.355474i
\(568\) 23.1063 1.94088i 0.969521 0.0814377i
\(569\) 31.1843 1.30732 0.653658 0.756790i \(-0.273234\pi\)
0.653658 + 0.756790i \(0.273234\pi\)
\(570\) −31.9022 + 30.2473i −1.33624 + 1.26692i
\(571\) −45.6053 −1.90852 −0.954261 0.298974i \(-0.903356\pi\)
−0.954261 + 0.298974i \(0.903356\pi\)
\(572\) −8.57862 4.33319i −0.358690 0.181180i
\(573\) 26.5867i 1.11068i
\(574\) −1.97673 1.11553i −0.0825071 0.0465614i
\(575\) 20.4114 8.98056i 0.851213 0.374515i
\(576\) −28.8286 + 4.87749i −1.20119 + 0.203229i
\(577\) −24.1057 −1.00353 −0.501766 0.865003i \(-0.667316\pi\)
−0.501766 + 0.865003i \(0.667316\pi\)
\(578\) 10.4509 6.42956i 0.434700 0.267434i
\(579\) 20.5696i 0.854841i
\(580\) −2.17109 + 8.14535i −0.0901495 + 0.338217i
\(581\) 31.4209 17.3898i 1.30356 0.721449i
\(582\) −19.4620 + 11.9733i −0.806724 + 0.496309i
\(583\) 22.7282 0.941306
\(584\) −2.70919 32.2531i −0.112107 1.33464i
\(585\) −10.6786 + 2.24533i −0.441508 + 0.0928329i
\(586\) −17.4733 28.4020i −0.721817 1.17327i
\(587\) −14.6387 −0.604205 −0.302103 0.953275i \(-0.597689\pi\)
−0.302103 + 0.953275i \(0.597689\pi\)
\(588\) −18.6685 30.9164i −0.769877 1.27497i
\(589\) 41.5368i 1.71150i
\(590\) −3.19047 + 3.02497i −0.131350 + 0.124536i
\(591\) 23.6301 0.972013
\(592\) 11.0340 + 14.9650i 0.453493 + 0.615059i
\(593\) −9.32979 −0.383129 −0.191564 0.981480i \(-0.561356\pi\)
−0.191564 + 0.981480i \(0.561356\pi\)
\(594\) 7.32233 4.50482i 0.300439 0.184835i
\(595\) 11.1609 + 12.9135i 0.457554 + 0.529402i
\(596\) −0.498260 0.251679i −0.0204095 0.0103092i
\(597\) 46.7557 1.91358
\(598\) 4.41298 + 7.17307i 0.180460 + 0.293329i
\(599\) 48.3192i 1.97427i 0.159893 + 0.987134i \(0.448885\pi\)
−0.159893 + 0.987134i \(0.551115\pi\)
\(600\) −17.4358 32.0461i −0.711812 1.30828i
\(601\) 7.63740i 0.311536i 0.987794 + 0.155768i \(0.0497852\pi\)
−0.987794 + 0.155768i \(0.950215\pi\)
\(602\) −39.4834 22.2817i −1.60922 0.908135i
\(603\) 50.0034i 2.03630i
\(604\) 8.48599 + 4.28640i 0.345290 + 0.174411i
\(605\) 0.898172 + 4.27165i 0.0365159 + 0.173667i
\(606\) 15.0093 9.23393i 0.609709 0.375103i
\(607\) 38.2619i 1.55300i −0.630116 0.776501i \(-0.716993\pi\)
0.630116 0.776501i \(-0.283007\pi\)
\(608\) 11.4186 28.2656i 0.463087 1.14632i
\(609\) 6.22971 + 11.2562i 0.252440 + 0.456125i
\(610\) 8.27052 + 8.72302i 0.334864 + 0.353185i
\(611\) 9.24163 0.373876
\(612\) 9.50804 18.8235i 0.384340 0.760896i
\(613\) 17.0330 0.687955 0.343977 0.938978i \(-0.388226\pi\)
0.343977 + 0.938978i \(0.388226\pi\)
\(614\) −10.0575 + 6.18753i −0.405887 + 0.249708i
\(615\) −3.42434 + 0.720012i −0.138083 + 0.0290337i
\(616\) −14.9678 22.3894i −0.603069 0.902094i
\(617\) 5.71269i 0.229984i 0.993366 + 0.114992i \(0.0366843\pi\)
−0.993366 + 0.114992i \(0.963316\pi\)
\(618\) −25.7119 41.7933i −1.03428 1.68117i
\(619\) 45.1694i 1.81551i −0.419497 0.907757i \(-0.637794\pi\)
0.419497 0.907757i \(-0.362206\pi\)
\(620\) 33.3070 + 8.87775i 1.33764 + 0.356539i
\(621\) −7.53346 −0.302307
\(622\) −4.56925 + 2.81107i −0.183210 + 0.112714i
\(623\) −9.03106 16.3179i −0.361822 0.653763i
\(624\) 11.0897 8.17658i 0.443942 0.327325i
\(625\) 16.8908 18.4310i 0.675630 0.737241i
\(626\) −26.3762 + 16.2271i −1.05421 + 0.648564i
\(627\) 50.0319i 1.99808i
\(628\) −5.30591 2.68009i −0.211729 0.106947i
\(629\) −13.4105 −0.534712
\(630\) −29.1527 9.22717i −1.16147 0.367619i
\(631\) 1.44976i 0.0577141i −0.999584 0.0288571i \(-0.990813\pi\)
0.999584 0.0288571i \(-0.00918676\pi\)
\(632\) 29.0480 2.43997i 1.15547 0.0970567i
\(633\) 24.4739 0.972749
\(634\) 31.7856 19.5550i 1.26237 0.776628i
\(635\) −4.44387 21.1348i −0.176349 0.838708i
\(636\) −14.6905 + 29.0834i −0.582515 + 1.15323i
\(637\) 7.91995 + 4.96351i 0.313800 + 0.196661i
\(638\) 5.02701 + 8.17113i 0.199021 + 0.323498i
\(639\) 29.9623i 1.18529i
\(640\) 20.2247 + 15.1975i 0.799450 + 0.600733i
\(641\) −8.82070 −0.348397 −0.174198 0.984711i \(-0.555733\pi\)
−0.174198 + 0.984711i \(0.555733\pi\)
\(642\) −16.1070 26.1810i −0.635692 1.03328i
\(643\) −21.0328 −0.829451 −0.414726 0.909946i \(-0.636122\pi\)
−0.414726 + 0.909946i \(0.636122\pi\)
\(644\) 0.890749 + 23.5829i 0.0351004 + 0.929298i
\(645\) −68.3981 + 14.3816i −2.69317 + 0.566275i
\(646\) 11.5214 + 18.7274i 0.453303 + 0.736820i
\(647\) 42.6208i 1.67560i −0.545979 0.837799i \(-0.683842\pi\)
0.545979 0.837799i \(-0.316158\pi\)
\(648\) −1.56417 18.6216i −0.0614465 0.731524i
\(649\) 5.00358i 0.196408i
\(650\) 7.76699 + 5.36831i 0.304647 + 0.210563i
\(651\) 46.0276 25.4738i 1.80396 0.998395i
\(652\) −15.0415 7.59767i −0.589069 0.297548i
\(653\) −10.3346 −0.404424 −0.202212 0.979342i \(-0.564813\pi\)
−0.202212 + 0.979342i \(0.564813\pi\)
\(654\) −23.1643 37.6523i −0.905795 1.47232i
\(655\) −44.4058 + 9.33691i −1.73508 + 0.364823i
\(656\) 1.95302 1.43999i 0.0762525 0.0562222i
\(657\) −41.8230 −1.63167
\(658\) 22.5535 + 12.7276i 0.879227 + 0.496175i
\(659\) −24.5798 −0.957493 −0.478746 0.877953i \(-0.658909\pi\)
−0.478746 + 0.877953i \(0.658909\pi\)
\(660\) −40.1188 10.6934i −1.56162 0.416240i
\(661\) −27.2497 −1.05989 −0.529946 0.848031i \(-0.677788\pi\)
−0.529946 + 0.848031i \(0.677788\pi\)
\(662\) 9.05191 5.56888i 0.351813 0.216441i
\(663\) 9.93770i 0.385948i
\(664\) 3.21350 + 38.2569i 0.124708 + 1.48466i
\(665\) 24.1212 20.8475i 0.935379 0.808433i
\(666\) 20.4628 12.5890i 0.792917 0.487815i
\(667\) 8.40673i 0.325510i
\(668\) −24.0110 12.1283i −0.929013 0.469259i
\(669\) 72.2639i 2.79388i
\(670\) −31.3966 + 29.7679i −1.21295 + 1.15003i
\(671\) 13.6802 0.528119
\(672\) 38.3243 4.68156i 1.47839 0.180595i
\(673\) 30.4582i 1.17408i 0.809559 + 0.587038i \(0.199706\pi\)
−0.809559 + 0.587038i \(0.800294\pi\)
\(674\) 3.48258 + 5.66075i 0.134144 + 0.218044i
\(675\) −7.73055 + 3.40127i −0.297549 + 0.130915i
\(676\) 10.1147 20.0246i 0.389028 0.770178i
\(677\) 0.455107i 0.0174912i 0.999962 + 0.00874559i \(0.00278384\pi\)
−0.999962 + 0.00874559i \(0.997216\pi\)
\(678\) 19.7502 + 32.1029i 0.758502 + 1.23290i
\(679\) 14.4989 8.02432i 0.556415 0.307945i
\(680\) −17.4794 + 5.23597i −0.670303 + 0.200790i
\(681\) 4.78254 0.183267
\(682\) 33.4124 20.5558i 1.27943 0.787124i
\(683\) 1.03207i 0.0394911i −0.999805 0.0197456i \(-0.993714\pi\)
0.999805 0.0197456i \(-0.00628562\pi\)
\(684\) −35.1605 17.7601i −1.34439 0.679074i
\(685\) −26.7676 + 5.62824i −1.02274 + 0.215044i
\(686\) 12.4923 + 23.0205i 0.476957 + 0.878927i
\(687\) 52.2277 1.99261
\(688\) 39.0098 28.7625i 1.48723 1.09656i
\(689\) 8.43253i 0.321254i
\(690\) 25.0326 + 26.4022i 0.952974 + 1.00511i
\(691\) 10.9090i 0.414999i 0.978235 + 0.207500i \(0.0665326\pi\)
−0.978235 + 0.207500i \(0.933467\pi\)
\(692\) 18.9083 + 9.55085i 0.718784 + 0.363069i
\(693\) −30.4481 + 16.8513i −1.15663 + 0.640129i
\(694\) −7.23171 11.7548i −0.274512 0.446204i
\(695\) 0.387449 0.0814662i 0.0146968 0.00309019i
\(696\) −13.7052 + 1.15120i −0.519493 + 0.0436363i
\(697\) 1.75014i 0.0662914i
\(698\) −7.59048 + 4.66978i −0.287304 + 0.176754i
\(699\) 6.08251i 0.230062i
\(700\) 11.5615 + 23.7977i 0.436983 + 0.899470i
\(701\) 33.6356i 1.27040i −0.772349 0.635199i \(-0.780918\pi\)
0.772349 0.635199i \(-0.219082\pi\)
\(702\) −1.67136 2.71671i −0.0630814 0.102535i
\(703\) 25.0495i 0.944760i
\(704\) 28.3878 4.80292i 1.06991 0.181017i
\(705\) 39.0700 8.21497i 1.47146 0.309394i
\(706\) 2.92767 1.80115i 0.110184 0.0677872i
\(707\) −11.1817 + 6.18843i −0.420530 + 0.232740i
\(708\) −6.40267 3.23409i −0.240627 0.121544i
\(709\) 14.1991i 0.533258i −0.963799 0.266629i \(-0.914090\pi\)
0.963799 0.266629i \(-0.0859099\pi\)
\(710\) −18.8130 + 17.8371i −0.706038 + 0.669413i
\(711\) 37.6669i 1.41262i
\(712\) 19.8680 1.66887i 0.744586 0.0625437i
\(713\) −34.3758 −1.28738
\(714\) −13.6863 + 24.2522i −0.512196 + 0.907616i
\(715\) 10.5154 2.21100i 0.393253 0.0826866i
\(716\) −1.74883 + 3.46224i −0.0653568 + 0.129390i
\(717\) 13.7941i 0.515148i
\(718\) 5.87140 + 9.54365i 0.219119 + 0.356166i
\(719\) −35.5086 −1.32425 −0.662123 0.749395i \(-0.730344\pi\)
−0.662123 + 0.749395i \(0.730344\pi\)
\(720\) 21.7561 24.3981i 0.810803 0.909264i
\(721\) 17.2317 + 31.1354i 0.641742 + 1.15954i
\(722\) 12.0951 7.44111i 0.450134 0.276929i
\(723\) 25.0264i 0.930743i
\(724\) 10.8159 21.4128i 0.401971 0.795801i
\(725\) −3.79554 8.62666i −0.140963 0.320386i
\(726\) −6.06576 + 3.73175i −0.225122 + 0.138498i
\(727\) 14.4322i 0.535261i 0.963522 + 0.267630i \(0.0862406\pi\)
−0.963522 + 0.267630i \(0.913759\pi\)
\(728\) −8.30683 + 5.55329i −0.307871 + 0.205819i
\(729\) −37.2192 −1.37849
\(730\) 24.8979 + 26.2601i 0.921513 + 0.971931i
\(731\) 34.9575i 1.29295i
\(732\) −8.84227 + 17.5055i −0.326820 + 0.647021i
\(733\) 20.7489i 0.766378i −0.923670 0.383189i \(-0.874826\pi\)
0.923670 0.383189i \(-0.125174\pi\)
\(734\) −11.8437 19.2514i −0.437160 0.710581i
\(735\) 37.8946 + 13.9436i 1.39776 + 0.514319i
\(736\) −23.3925 9.45003i −0.862259 0.348333i
\(737\) 49.2389i 1.81374i
\(738\) −1.64294 2.67051i −0.0604774 0.0983027i
\(739\) 15.3022 0.562901 0.281450 0.959576i \(-0.409185\pi\)
0.281450 + 0.959576i \(0.409185\pi\)
\(740\) −20.0864 5.35388i −0.738389 0.196812i
\(741\) 18.5626 0.681916
\(742\) 11.6134 20.5790i 0.426340 0.755477i
\(743\) −30.8617 −1.13221 −0.566103 0.824334i \(-0.691550\pi\)
−0.566103 + 0.824334i \(0.691550\pi\)
\(744\) 4.70737 + 56.0415i 0.172580 + 2.05458i
\(745\) 0.610750 0.128418i 0.0223762 0.00470488i
\(746\) 25.2149 15.5126i 0.923184 0.567957i
\(747\) 49.6082 1.81507
\(748\) −9.36267 + 18.5357i −0.342333 + 0.677733i
\(749\) 10.7946 + 19.5045i 0.394428 + 0.712677i
\(750\) 37.6077 + 15.7910i 1.37324 + 0.576604i
\(751\) 10.9371i 0.399099i −0.979888 0.199550i \(-0.936052\pi\)
0.979888 0.199550i \(-0.0639479\pi\)
\(752\) −22.2829 + 16.4296i −0.812575 + 0.599125i
\(753\) 37.9912i 1.38448i
\(754\) 3.03162 1.86510i 0.110405 0.0679230i
\(755\) −10.4018 + 2.18712i −0.378562 + 0.0795976i
\(756\) −0.337360 8.93173i −0.0122697 0.324844i
\(757\) −28.1387 −1.02272 −0.511359 0.859367i \(-0.670858\pi\)
−0.511359 + 0.859367i \(0.670858\pi\)
\(758\) −15.8433 + 9.74704i −0.575454 + 0.354028i
\(759\) 41.4062 1.50295
\(760\) 9.78028 + 32.6497i 0.354768 + 1.18433i
\(761\) 46.8922i 1.69984i −0.526911 0.849921i \(-0.676650\pi\)
0.526911 0.849921i \(-0.323350\pi\)
\(762\) 30.0114 18.4635i 1.08720 0.668862i
\(763\) 15.5243 + 28.0503i 0.562018 + 1.01549i
\(764\) 18.3984 + 9.29333i 0.665632 + 0.336221i
\(765\) 4.85145 + 23.0732i 0.175404 + 0.834214i
\(766\) 16.6639 + 27.0862i 0.602090 + 0.978665i
\(767\) 1.85641 0.0670311
\(768\) −12.2027 + 39.4299i −0.440326 + 1.42281i
\(769\) 8.13831i 0.293475i −0.989175 0.146738i \(-0.953123\pi\)
0.989175 0.146738i \(-0.0468773\pi\)
\(770\) 28.7070 + 9.08609i 1.03453 + 0.327440i
\(771\) −29.0732 −1.04705
\(772\) 14.2345 + 7.19005i 0.512310 + 0.258776i
\(773\) 8.13686i 0.292662i −0.989236 0.146331i \(-0.953253\pi\)
0.989236 0.146331i \(-0.0467465\pi\)
\(774\) −32.8162 53.3410i −1.17955 1.91730i
\(775\) −35.2751 + 15.5203i −1.26712 + 0.557505i
\(776\) 1.48284 + 17.6532i 0.0532307 + 0.633715i
\(777\) −27.7578 + 15.3624i −0.995804 + 0.551123i
\(778\) −5.62384 9.14125i −0.201624 0.327730i
\(779\) 3.26910 0.117128
\(780\) −3.96743 + 14.8848i −0.142057 + 0.532960i
\(781\) 29.5042i 1.05574i
\(782\) 15.4987 9.53507i 0.554234 0.340974i
\(783\) 3.18394i 0.113785i
\(784\) −27.9202 + 2.11216i −0.997151 + 0.0754343i
\(785\) 6.50379 1.36751i 0.232130 0.0488085i
\(786\) −38.7933 63.0564i −1.38371 2.24915i
\(787\) −35.3405 −1.25975 −0.629877 0.776695i \(-0.716895\pi\)
−0.629877 + 0.776695i \(0.716895\pi\)
\(788\) 8.25987 16.3524i 0.294246 0.582532i
\(789\) 36.8015 1.31017
\(790\) −23.6506 + 22.4237i −0.841449 + 0.797800i
\(791\) −13.2363 23.9161i −0.470628 0.850360i
\(792\) −3.11400 37.0724i −0.110651 1.31731i
\(793\) 5.07559i 0.180239i
\(794\) 3.13894 + 5.10218i 0.111397 + 0.181070i
\(795\) −7.49576 35.6494i −0.265847 1.26435i
\(796\) 16.3434 32.3557i 0.579276 1.14682i
\(797\) 21.6145i 0.765626i 0.923826 + 0.382813i \(0.125045\pi\)
−0.923826 + 0.382813i \(0.874955\pi\)
\(798\) 45.3007 + 25.5646i 1.60363 + 0.904978i
\(799\) 19.9683i 0.706426i
\(800\) −28.2711 + 0.864187i −0.999533 + 0.0305536i
\(801\) 25.7631i 0.910296i
\(802\) 8.32024 5.11874i 0.293798 0.180749i
\(803\) 41.1835 1.45333
\(804\) −63.0070 31.8258i −2.22209 1.12241i
\(805\) −17.2534 19.9626i −0.608102 0.703590i
\(806\) −7.62655 12.3966i −0.268634 0.436650i
\(807\) −50.6839 −1.78416
\(808\) −1.14358 13.6144i −0.0402309 0.478951i
\(809\) −6.77039 −0.238034 −0.119017 0.992892i \(-0.537974\pi\)
−0.119017 + 0.992892i \(0.537974\pi\)
\(810\) 14.3750 + 15.1615i 0.505086 + 0.532720i
\(811\) 31.6060i 1.10984i −0.831905 0.554918i \(-0.812750\pi\)
0.831905 0.554918i \(-0.187250\pi\)
\(812\) 9.96708 0.376466i 0.349776 0.0132114i
\(813\) 55.2927 1.93920
\(814\) −20.1499 + 12.3966i −0.706254 + 0.434499i
\(815\) 18.4373 3.87669i 0.645831 0.135794i
\(816\) −17.6670 23.9613i −0.618470 0.838812i
\(817\) 65.2973 2.28446
\(818\) −2.86444 4.65599i −0.100153 0.162793i
\(819\) 6.25212 + 11.2967i 0.218467 + 0.394740i
\(820\) −0.698710 + 2.62138i −0.0244000 + 0.0915425i
\(821\) 28.3663i 0.989990i 0.868896 + 0.494995i \(0.164830\pi\)
−0.868896 + 0.494995i \(0.835170\pi\)
\(822\) −23.3844 38.0101i −0.815625 1.32575i
\(823\) −15.3770 −0.536008 −0.268004 0.963418i \(-0.586364\pi\)
−0.268004 + 0.963418i \(0.586364\pi\)
\(824\) −37.9092 + 3.18429i −1.32063 + 0.110930i
\(825\) 42.4895 18.6944i 1.47929 0.650857i
\(826\) 4.53043 + 2.55666i 0.157634 + 0.0889577i
\(827\) 25.3065i 0.879994i 0.897999 + 0.439997i \(0.145021\pi\)
−0.897999 + 0.439997i \(0.854979\pi\)
\(828\) −14.6982 + 29.0987i −0.510798 + 1.01125i
\(829\) 34.4068 1.19500 0.597498 0.801870i \(-0.296162\pi\)
0.597498 + 0.801870i \(0.296162\pi\)
\(830\) −29.5326 31.1484i −1.02509 1.08118i
\(831\) 52.4256 1.81863
\(832\) −1.78196 10.5323i −0.0617784 0.365143i
\(833\) 10.7246 17.1125i 0.371585 0.592914i
\(834\) 0.338478 + 0.550178i 0.0117206 + 0.0190511i
\(835\) 29.4318 6.18843i 1.01853 0.214160i
\(836\) 34.6229 + 17.4885i 1.19746 + 0.604854i
\(837\) 13.0194 0.450016
\(838\) 9.62795 + 15.6497i 0.332592 + 0.540610i
\(839\) 30.9918 1.06995 0.534977 0.844867i \(-0.320320\pi\)
0.534977 + 0.844867i \(0.320320\pi\)
\(840\) −30.1816 + 30.8611i −1.04136 + 1.06481i
\(841\) 25.4470 0.877482
\(842\) −15.1288 24.5910i −0.521372 0.847462i
\(843\) 17.0352 0.586724
\(844\) 8.55479 16.9363i 0.294468 0.582972i
\(845\) 5.16101 + 24.5455i 0.177544 + 0.844390i
\(846\) 18.7451 + 30.4691i 0.644469 + 1.04755i
\(847\) 4.51890 2.50096i 0.155271 0.0859341i
\(848\) 14.9912 + 20.3321i 0.514799 + 0.698207i
\(849\) −67.1205 −2.30357
\(850\) 11.5992 16.7820i 0.397851 0.575619i
\(851\) 20.7309 0.710646
\(852\) −37.7541 19.0701i −1.29343 0.653332i
\(853\) 48.4535i 1.65902i −0.558495 0.829508i \(-0.688621\pi\)
0.558495 0.829508i \(-0.311379\pi\)
\(854\) 6.99014 12.3866i 0.239198 0.423860i
\(855\) 43.0985 9.06203i 1.47394 0.309915i
\(856\) −23.7479 + 1.99477i −0.811686 + 0.0681799i
\(857\) 29.2857 1.00038 0.500190 0.865916i \(-0.333264\pi\)
0.500190 + 0.865916i \(0.333264\pi\)
\(858\) 9.18632 + 14.9319i 0.313616 + 0.509765i
\(859\) 48.5659i 1.65705i 0.559955 + 0.828523i \(0.310818\pi\)
−0.559955 + 0.828523i \(0.689182\pi\)
\(860\) −13.9561 + 52.3597i −0.475899 + 1.78545i
\(861\) 2.00488 + 3.62254i 0.0683260 + 0.123456i
\(862\) −2.62671 4.26957i −0.0894661 0.145422i
\(863\) −8.92660 −0.303865 −0.151933 0.988391i \(-0.548550\pi\)
−0.151933 + 0.988391i \(0.548550\pi\)
\(864\) 8.85960 + 3.57908i 0.301410 + 0.121763i
\(865\) −23.1771 + 4.87329i −0.788045 + 0.165697i
\(866\) −29.0938 + 17.8990i −0.988649 + 0.608232i
\(867\) −22.3824 −0.760147
\(868\) −1.53940 40.7562i −0.0522506 1.38336i
\(869\) 37.0909i 1.25822i
\(870\) 11.1586 10.5798i 0.378312 0.358687i
\(871\) 18.2684 0.619003
\(872\) −34.1530 + 2.86878i −1.15657 + 0.0971492i
\(873\) 22.8912 0.774749
\(874\) −17.8106 28.9501i −0.602452 0.979253i
\(875\) −26.7176 12.6952i −0.903221 0.429175i
\(876\) −26.6191 + 52.6992i −0.899377 + 1.78054i
\(877\) 3.16793 0.106973 0.0534867 0.998569i \(-0.482967\pi\)
0.0534867 + 0.998569i \(0.482967\pi\)
\(878\) −9.75916 + 6.00399i −0.329356 + 0.202625i
\(879\) 60.8278i 2.05167i
\(880\) −21.4235 + 24.0251i −0.722186 + 0.809885i
\(881\) 17.9454i 0.604595i 0.953214 + 0.302297i \(0.0977536\pi\)
−0.953214 + 0.302297i \(0.902246\pi\)
\(882\) −0.300121 + 36.1793i −0.0101056 + 1.21822i
\(883\) 8.46669i 0.284927i −0.989800 0.142463i \(-0.954498\pi\)
0.989800 0.142463i \(-0.0455023\pi\)
\(884\) 6.87705 + 3.47370i 0.231300 + 0.116833i
\(885\) 7.84817 1.65018i 0.263813 0.0554702i
\(886\) 19.3407 + 31.4373i 0.649764 + 1.05616i
\(887\) 20.3807i 0.684317i −0.939642 0.342159i \(-0.888842\pi\)
0.939642 0.342159i \(-0.111158\pi\)
\(888\) −2.83886 33.7968i −0.0952658 1.13415i
\(889\) −22.3581 + 12.3740i −0.749865 + 0.415009i
\(890\) −16.1764 + 15.3372i −0.542233 + 0.514105i
\(891\) 23.7776 0.796580
\(892\) 50.0078 + 25.2597i 1.67439 + 0.845758i
\(893\) −37.2987 −1.24815
\(894\) 0.533556 + 0.867267i 0.0178448 + 0.0290058i
\(895\) −0.892334 4.24389i −0.0298274 0.141858i
\(896\) 10.1565 28.1575i 0.339304 0.940677i
\(897\) 15.3624i 0.512935i
\(898\) −18.0555 + 11.1080i −0.602520 + 0.370680i
\(899\) 14.5286i 0.484555i
\(900\) −1.94499 + 36.4961i −0.0648330 + 1.21654i
\(901\) −18.2201 −0.606998
\(902\) 1.61782 + 2.62967i 0.0538674 + 0.0875586i
\(903\) 40.0456 + 72.3569i 1.33263 + 2.40789i
\(904\) 29.1194 2.44597i 0.968496 0.0813516i
\(905\) 5.51880 + 26.2471i 0.183451 + 0.872483i
\(906\) −9.08713 14.7706i −0.301900 0.490722i
\(907\) 21.3838i 0.710037i −0.934859 0.355018i \(-0.884475\pi\)
0.934859 0.355018i \(-0.115525\pi\)
\(908\) 1.67173 3.30960i 0.0554782 0.109833i
\(909\) −17.6539 −0.585543
\(910\) 3.37109 10.6508i 0.111750 0.353069i
\(911\) 26.8804i 0.890586i 0.895385 + 0.445293i \(0.146901\pi\)
−0.895385 + 0.445293i \(0.853099\pi\)
\(912\) −44.7573 + 33.0003i −1.48206 + 1.09275i
\(913\) −48.8497 −1.61669
\(914\) −28.7581 46.7447i −0.951233 1.54618i
\(915\) −4.51174 21.4576i −0.149154 0.709366i
\(916\) 18.2561 36.1424i 0.603198 1.19418i
\(917\) 25.9986 + 46.9760i 0.858551 + 1.55128i
\(918\) −5.86995 + 3.61129i −0.193737 + 0.119190i
\(919\) 6.12542i 0.202059i 0.994883 + 0.101029i \(0.0322136\pi\)
−0.994883 + 0.101029i \(0.967786\pi\)
\(920\) 27.0208 8.09413i 0.890850 0.266856i
\(921\) 21.5399 0.709764
\(922\) −33.8000 + 20.7943i −1.11314 + 0.684823i
\(923\) 10.9465 0.360309
\(924\) 1.85423 + 49.0916i 0.0609998 + 1.61499i
\(925\) 21.2733 9.35977i 0.699460 0.307747i
\(926\) 11.3755 6.99839i 0.373822 0.229981i
\(927\) 49.1573i 1.61454i
\(928\) −3.99396 + 9.88660i −0.131108 + 0.324543i
\(929\) 31.3815i 1.02959i 0.857312 + 0.514796i \(0.172133\pi\)
−0.857312 + 0.514796i \(0.827867\pi\)
\(930\) −43.2615 45.6284i −1.41860 1.49621i
\(931\) −31.9645 20.0325i −1.04760 0.656538i
\(932\) 4.20920 + 2.12613i 0.137877 + 0.0696438i
\(933\) 9.78585 0.320374
\(934\) 23.0837 14.2015i 0.755323 0.464686i
\(935\) −4.77727 22.7204i −0.156233 0.743037i
\(936\) −13.7545 + 1.15535i −0.449579 + 0.0377637i
\(937\) 8.37400 0.273567 0.136783 0.990601i \(-0.456324\pi\)
0.136783 + 0.990601i \(0.456324\pi\)
\(938\) 44.5828 + 25.1594i 1.45568 + 0.821485i
\(939\) 56.4893 1.84346
\(940\) 7.97193 29.9086i 0.260016 0.975511i
\(941\) 43.1607 1.40700 0.703499 0.710696i \(-0.251620\pi\)
0.703499 + 0.710696i \(0.251620\pi\)
\(942\) 5.68177 + 9.23541i 0.185122 + 0.300906i
\(943\) 2.70550i 0.0881030i
\(944\) −4.47608 + 3.30029i −0.145684 + 0.107415i
\(945\) 6.53449 + 7.56058i 0.212567 + 0.245946i
\(946\) 32.3144 + 52.5254i 1.05063 + 1.70775i
\(947\) 25.4973i 0.828550i −0.910152 0.414275i \(-0.864035\pi\)
0.910152 0.414275i \(-0.135965\pi\)
\(948\) −47.4622 23.9739i −1.54150 0.778636i
\(949\) 15.2798i 0.496002i
\(950\) −31.3472 21.6662i −1.01704 0.702946i
\(951\) −68.0745 −2.20747
\(952\) 11.9989 + 17.9484i 0.388887 + 0.581712i
\(953\) 29.6337i 0.959929i −0.877288 0.479964i \(-0.840650\pi\)
0.877288 0.479964i \(-0.159350\pi\)
\(954\) 27.8016 17.1040i 0.900110 0.553762i
\(955\) −22.5522 + 4.74189i −0.729771 + 0.153444i
\(956\) −9.54572 4.82169i −0.308731 0.155944i
\(957\) 17.4999i 0.565692i
\(958\) 23.9214 14.7168i 0.772865 0.475479i
\(959\) 15.6719 + 28.3169i 0.506071 + 0.914401i
\(960\) −16.8957 42.9426i −0.545308 1.38597i
\(961\) 28.4085 0.916403
\(962\) 4.59932 + 7.47595i 0.148288 + 0.241034i
\(963\) 30.7942i 0.992328i
\(964\) 17.3187 + 8.74794i 0.557798 + 0.281752i
\(965\) −17.4481 + 3.66870i −0.561675 + 0.118100i
\(966\) 21.1572 37.4908i 0.680722 1.20625i
\(967\) 5.90310 0.189831 0.0949154 0.995485i \(-0.469742\pi\)
0.0949154 + 0.995485i \(0.469742\pi\)
\(968\) 0.462159 + 5.50204i 0.0148544 + 0.176842i
\(969\) 40.1080i 1.28846i
\(970\) −13.6275 14.3731i −0.437553 0.461492i
\(971\) 9.06341i 0.290859i −0.989369 0.145429i \(-0.953544\pi\)
0.989369 0.145429i \(-0.0464563\pi\)
\(972\) −19.9382 + 39.4726i −0.639517 + 1.26608i
\(973\) −0.226843 0.409874i −0.00727225 0.0131400i
\(974\) 3.12637 1.92339i 0.100175 0.0616295i
\(975\) −6.93595 15.7643i −0.222128 0.504862i
\(976\) 9.02327 + 12.2380i 0.288828 + 0.391729i
\(977\) 20.7277i 0.663138i 0.943431 + 0.331569i \(0.107578\pi\)
−0.943431 + 0.331569i \(0.892422\pi\)
\(978\) 16.1070 + 26.1810i 0.515045 + 0.837177i
\(979\) 25.3692i 0.810804i
\(980\) 22.8952 21.3497i 0.731361 0.681991i
\(981\) 44.2867i 1.41396i
\(982\) −20.0092 + 12.3100i −0.638518 + 0.392827i
\(983\) 1.55484i 0.0495916i −0.999693 0.0247958i \(-0.992106\pi\)
0.999693 0.0247958i \(-0.00789356\pi\)
\(984\) −4.41066 + 0.370486i −0.140607 + 0.0118107i
\(985\) 4.21457 + 20.0443i 0.134287 + 0.638663i
\(986\) −4.02990 6.55039i −0.128338 0.208607i
\(987\) −22.8746 41.3313i −0.728107 1.31559i
\(988\) 6.48854 12.8457i 0.206428 0.408675i
\(989\) 54.0398i 1.71837i
\(990\) 28.6182 + 30.1840i 0.909546 + 0.959309i
\(991\) 48.1236i 1.52870i −0.644804 0.764348i \(-0.723061\pi\)
0.644804 0.764348i \(-0.276939\pi\)
\(992\) 40.4271 + 16.3316i 1.28356 + 0.518529i
\(993\) −19.3863 −0.615205
\(994\) 26.7142 + 15.0756i 0.847322 + 0.478171i
\(995\) 8.33915 + 39.6605i 0.264369 + 1.25732i
\(996\) 31.5742 62.5090i 1.00047 1.98067i
\(997\) 19.4339i 0.615479i −0.951471 0.307739i \(-0.900428\pi\)
0.951471 0.307739i \(-0.0995725\pi\)
\(998\) −15.4218 + 9.48775i −0.488169 + 0.300329i
\(999\) −7.85156 −0.248412
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 280.2.n.b.139.8 yes 40
4.3 odd 2 1120.2.n.b.559.8 40
5.4 even 2 inner 280.2.n.b.139.33 yes 40
7.6 odd 2 inner 280.2.n.b.139.7 yes 40
8.3 odd 2 inner 280.2.n.b.139.36 yes 40
8.5 even 2 1120.2.n.b.559.7 40
20.19 odd 2 1120.2.n.b.559.35 40
28.27 even 2 1120.2.n.b.559.33 40
35.34 odd 2 inner 280.2.n.b.139.34 yes 40
40.19 odd 2 inner 280.2.n.b.139.5 40
40.29 even 2 1120.2.n.b.559.36 40
56.13 odd 2 1120.2.n.b.559.34 40
56.27 even 2 inner 280.2.n.b.139.35 yes 40
140.139 even 2 1120.2.n.b.559.6 40
280.69 odd 2 1120.2.n.b.559.5 40
280.139 even 2 inner 280.2.n.b.139.6 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.n.b.139.5 40 40.19 odd 2 inner
280.2.n.b.139.6 yes 40 280.139 even 2 inner
280.2.n.b.139.7 yes 40 7.6 odd 2 inner
280.2.n.b.139.8 yes 40 1.1 even 1 trivial
280.2.n.b.139.33 yes 40 5.4 even 2 inner
280.2.n.b.139.34 yes 40 35.34 odd 2 inner
280.2.n.b.139.35 yes 40 56.27 even 2 inner
280.2.n.b.139.36 yes 40 8.3 odd 2 inner
1120.2.n.b.559.5 40 280.69 odd 2
1120.2.n.b.559.6 40 140.139 even 2
1120.2.n.b.559.7 40 8.5 even 2
1120.2.n.b.559.8 40 4.3 odd 2
1120.2.n.b.559.33 40 28.27 even 2
1120.2.n.b.559.34 40 56.13 odd 2
1120.2.n.b.559.35 40 20.19 odd 2
1120.2.n.b.559.36 40 40.29 even 2