Properties

Label 280.2.n.b.139.34
Level $280$
Weight $2$
Character 280.139
Analytic conductor $2.236$
Analytic rank $0$
Dimension $40$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [280,2,Mod(139,280)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("280.139"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(280, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 280 = 2^{3} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 280.n (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.23581125660\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 139.34
Character \(\chi\) \(=\) 280.139
Dual form 280.2.n.b.139.36

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.20452 - 0.741038i) q^{2} +2.57969 q^{3} +(0.901725 - 1.78519i) q^{4} +(-0.460102 + 2.18822i) q^{5} +(3.10728 - 1.91165i) q^{6} +(-2.31487 - 1.28116i) q^{7} +(-0.236748 - 2.81850i) q^{8} +3.65479 q^{9} +(1.06735 + 2.97670i) q^{10} -3.59890 q^{11} +(2.32617 - 4.60522i) q^{12} +1.33525i q^{13} +(-3.73769 + 0.172236i) q^{14} +(-1.18692 + 5.64492i) q^{15} +(-2.37378 - 3.21949i) q^{16} +2.88506 q^{17} +(4.40225 - 2.70834i) q^{18} +5.38901i q^{19} +(3.49150 + 2.79454i) q^{20} +(-5.97165 - 3.30498i) q^{21} +(-4.33494 + 2.66693i) q^{22} +4.45993 q^{23} +(-0.610736 - 7.27085i) q^{24} +(-4.57661 - 2.01361i) q^{25} +(0.989473 + 1.60834i) q^{26} +1.68914 q^{27} +(-4.37448 + 2.97723i) q^{28} +1.88494i q^{29} +(2.75344 + 7.67896i) q^{30} -7.70769 q^{31} +(-5.24503 - 2.11887i) q^{32} -9.28405 q^{33} +(3.47511 - 2.13794i) q^{34} +(3.86853 - 4.47599i) q^{35} +(3.29561 - 6.52448i) q^{36} +4.64826 q^{37} +(3.99346 + 6.49116i) q^{38} +3.44453i q^{39} +(6.27643 + 0.778741i) q^{40} -0.606622i q^{41} +(-9.64207 + 0.444314i) q^{42} -12.1167i q^{43} +(-3.24522 + 6.42472i) q^{44} +(-1.68157 + 7.99747i) q^{45} +(5.37207 - 3.30498i) q^{46} -6.92126i q^{47} +(-6.12362 - 8.30529i) q^{48} +(3.71728 + 5.93143i) q^{49} +(-7.00477 + 0.966017i) q^{50} +7.44256 q^{51} +(2.38368 + 1.20403i) q^{52} +6.31531 q^{53} +(2.03460 - 1.25172i) q^{54} +(1.65586 - 7.87519i) q^{55} +(-3.06290 + 6.82779i) q^{56} +13.9020i q^{57} +(1.39682 + 2.27045i) q^{58} +1.39031i q^{59} +(9.00697 + 7.20904i) q^{60} +3.80122 q^{61} +(-9.28405 + 5.71169i) q^{62} +(-8.46037 - 4.68235i) q^{63} +(-7.88790 + 1.33455i) q^{64} +(-2.92183 - 0.614353i) q^{65} +(-11.1828 + 6.87983i) q^{66} +13.6816i q^{67} +(2.60153 - 5.15038i) q^{68} +11.5052 q^{69} +(1.34283 - 8.25814i) q^{70} -8.19810i q^{71} +(-0.865264 - 10.3010i) q^{72} -11.4433 q^{73} +(5.59890 - 3.44453i) q^{74} +(-11.8062 - 5.19448i) q^{75} +(9.62040 + 4.85941i) q^{76} +(8.33101 + 4.61076i) q^{77} +(2.55253 + 4.14900i) q^{78} -10.3062i q^{79} +(8.13715 - 3.71307i) q^{80} -6.60690 q^{81} +(-0.449530 - 0.730687i) q^{82} +13.5735 q^{83} +(-11.2848 + 7.68033i) q^{84} +(-1.32742 + 6.31315i) q^{85} +(-8.97897 - 14.5948i) q^{86} +4.86257i q^{87} +(0.852034 + 10.1435i) q^{88} +7.04915i q^{89} +(3.90095 + 10.8792i) q^{90} +(1.71067 - 3.09094i) q^{91} +(4.02163 - 7.96181i) q^{92} -19.8834 q^{93} +(-5.12891 - 8.33677i) q^{94} +(-11.7923 - 2.47950i) q^{95} +(-13.5305 - 5.46603i) q^{96} +6.26335 q^{97} +(8.87294 + 4.38986i) q^{98} -13.1532 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 12 q^{4} + 40 q^{9} - 12 q^{14} - 28 q^{16} + 16 q^{25} - 28 q^{30} + 16 q^{35} - 28 q^{36} - 8 q^{44} - 32 q^{46} + 8 q^{49} + 4 q^{50} - 32 q^{51} - 4 q^{56} + 12 q^{60} - 84 q^{64} - 24 q^{65}+ \cdots - 128 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/280\mathbb{Z}\right)^\times\).

\(n\) \(57\) \(71\) \(141\) \(241\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.20452 0.741038i 0.851723 0.523993i
\(3\) 2.57969 1.48938 0.744692 0.667409i \(-0.232597\pi\)
0.744692 + 0.667409i \(0.232597\pi\)
\(4\) 0.901725 1.78519i 0.450862 0.892593i
\(5\) −0.460102 + 2.18822i −0.205764 + 0.978602i
\(6\) 3.10728 1.91165i 1.26854 0.780426i
\(7\) −2.31487 1.28116i −0.874940 0.484231i
\(8\) −0.236748 2.81850i −0.0837031 0.996491i
\(9\) 3.65479 1.21826
\(10\) 1.06735 + 2.97670i 0.337527 + 0.941316i
\(11\) −3.59890 −1.08511 −0.542555 0.840020i \(-0.682543\pi\)
−0.542555 + 0.840020i \(0.682543\pi\)
\(12\) 2.32617 4.60522i 0.671507 1.32941i
\(13\) 1.33525i 0.370332i 0.982707 + 0.185166i \(0.0592824\pi\)
−0.982707 + 0.185166i \(0.940718\pi\)
\(14\) −3.73769 + 0.172236i −0.998940 + 0.0460319i
\(15\) −1.18692 + 5.64492i −0.306461 + 1.45751i
\(16\) −2.37378 3.21949i −0.593446 0.804874i
\(17\) 2.88506 0.699730 0.349865 0.936800i \(-0.386227\pi\)
0.349865 + 0.936800i \(0.386227\pi\)
\(18\) 4.40225 2.70834i 1.03762 0.638361i
\(19\) 5.38901i 1.23632i 0.786051 + 0.618162i \(0.212123\pi\)
−0.786051 + 0.618162i \(0.787877\pi\)
\(20\) 3.49150 + 2.79454i 0.780722 + 0.624878i
\(21\) −5.97165 3.30498i −1.30312 0.721206i
\(22\) −4.33494 + 2.66693i −0.924213 + 0.568590i
\(23\) 4.45993 0.929960 0.464980 0.885321i \(-0.346061\pi\)
0.464980 + 0.885321i \(0.346061\pi\)
\(24\) −0.610736 7.27085i −0.124666 1.48416i
\(25\) −4.57661 2.01361i −0.915322 0.402722i
\(26\) 0.989473 + 1.60834i 0.194052 + 0.315421i
\(27\) 1.68914 0.325075
\(28\) −4.37448 + 2.97723i −0.826699 + 0.562644i
\(29\) 1.88494i 0.350025i 0.984566 + 0.175013i \(0.0559967\pi\)
−0.984566 + 0.175013i \(0.944003\pi\)
\(30\) 2.75344 + 7.67896i 0.502707 + 1.40198i
\(31\) −7.70769 −1.38434 −0.692171 0.721734i \(-0.743346\pi\)
−0.692171 + 0.721734i \(0.743346\pi\)
\(32\) −5.24503 2.11887i −0.927200 0.374567i
\(33\) −9.28405 −1.61615
\(34\) 3.47511 2.13794i 0.595976 0.366654i
\(35\) 3.86853 4.47599i 0.653901 0.756580i
\(36\) 3.29561 6.52448i 0.549269 1.08741i
\(37\) 4.64826 0.764168 0.382084 0.924128i \(-0.375206\pi\)
0.382084 + 0.924128i \(0.375206\pi\)
\(38\) 3.99346 + 6.49116i 0.647825 + 1.05301i
\(39\) 3.44453i 0.551567i
\(40\) 6.27643 + 0.778741i 0.992391 + 0.123130i
\(41\) 0.606622i 0.0947385i −0.998877 0.0473693i \(-0.984916\pi\)
0.998877 0.0473693i \(-0.0150837\pi\)
\(42\) −9.64207 + 0.444314i −1.48780 + 0.0685591i
\(43\) 12.1167i 1.84779i −0.382652 0.923893i \(-0.624989\pi\)
0.382652 0.923893i \(-0.375011\pi\)
\(44\) −3.24522 + 6.42472i −0.489236 + 0.968563i
\(45\) −1.68157 + 7.99747i −0.250674 + 1.19219i
\(46\) 5.37207 3.30498i 0.792068 0.487293i
\(47\) 6.92126i 1.00957i −0.863245 0.504784i \(-0.831572\pi\)
0.863245 0.504784i \(-0.168428\pi\)
\(48\) −6.12362 8.30529i −0.883869 1.19877i
\(49\) 3.71728 + 5.93143i 0.531040 + 0.847347i
\(50\) −7.00477 + 0.966017i −0.990624 + 0.136615i
\(51\) 7.44256 1.04217
\(52\) 2.38368 + 1.20403i 0.330556 + 0.166969i
\(53\) 6.31531 0.867474 0.433737 0.901039i \(-0.357195\pi\)
0.433737 + 0.901039i \(0.357195\pi\)
\(54\) 2.03460 1.25172i 0.276874 0.170337i
\(55\) 1.65586 7.87519i 0.223277 1.06189i
\(56\) −3.06290 + 6.82779i −0.409297 + 0.912401i
\(57\) 13.9020i 1.84136i
\(58\) 1.39682 + 2.27045i 0.183411 + 0.298125i
\(59\) 1.39031i 0.181002i 0.995896 + 0.0905012i \(0.0288469\pi\)
−0.995896 + 0.0905012i \(0.971153\pi\)
\(60\) 9.00697 + 7.20904i 1.16279 + 0.930683i
\(61\) 3.80122 0.486696 0.243348 0.969939i \(-0.421754\pi\)
0.243348 + 0.969939i \(0.421754\pi\)
\(62\) −9.28405 + 5.71169i −1.17908 + 0.725386i
\(63\) −8.46037 4.68235i −1.06591 0.589920i
\(64\) −7.88790 + 1.33455i −0.985988 + 0.166819i
\(65\) −2.92183 0.614353i −0.362408 0.0762011i
\(66\) −11.1828 + 6.87983i −1.37651 + 0.846849i
\(67\) 13.6816i 1.67148i 0.549127 + 0.835739i \(0.314960\pi\)
−0.549127 + 0.835739i \(0.685040\pi\)
\(68\) 2.60153 5.15038i 0.315482 0.624575i
\(69\) 11.5052 1.38507
\(70\) 1.34283 8.25814i 0.160499 0.987036i
\(71\) 8.19810i 0.972935i −0.873699 0.486467i \(-0.838285\pi\)
0.873699 0.486467i \(-0.161715\pi\)
\(72\) −0.865264 10.3010i −0.101972 1.21399i
\(73\) −11.4433 −1.33934 −0.669671 0.742658i \(-0.733565\pi\)
−0.669671 + 0.742658i \(0.733565\pi\)
\(74\) 5.59890 3.44453i 0.650859 0.400419i
\(75\) −11.8062 5.19448i −1.36327 0.599807i
\(76\) 9.62040 + 4.85941i 1.10354 + 0.557412i
\(77\) 8.33101 + 4.61076i 0.949407 + 0.525444i
\(78\) 2.55253 + 4.14900i 0.289017 + 0.469782i
\(79\) 10.3062i 1.15954i −0.814782 0.579768i \(-0.803143\pi\)
0.814782 0.579768i \(-0.196857\pi\)
\(80\) 8.13715 3.71307i 0.909761 0.415133i
\(81\) −6.60690 −0.734100
\(82\) −0.449530 0.730687i −0.0496423 0.0806909i
\(83\) 13.5735 1.48989 0.744943 0.667129i \(-0.232477\pi\)
0.744943 + 0.667129i \(0.232477\pi\)
\(84\) −11.2848 + 7.68033i −1.23127 + 0.837993i
\(85\) −1.32742 + 6.31315i −0.143979 + 0.684757i
\(86\) −8.97897 14.5948i −0.968227 1.57380i
\(87\) 4.86257i 0.521322i
\(88\) 0.852034 + 10.1435i 0.0908271 + 1.08130i
\(89\) 7.04915i 0.747208i 0.927588 + 0.373604i \(0.121878\pi\)
−0.927588 + 0.373604i \(0.878122\pi\)
\(90\) 3.90095 + 10.8792i 0.411196 + 1.14677i
\(91\) 1.71067 3.09094i 0.179327 0.324019i
\(92\) 4.02163 7.96181i 0.419284 0.830076i
\(93\) −19.8834 −2.06182
\(94\) −5.12891 8.33677i −0.529007 0.859873i
\(95\) −11.7923 2.47950i −1.20987 0.254391i
\(96\) −13.5305 5.46603i −1.38096 0.557874i
\(97\) 6.26335 0.635946 0.317973 0.948100i \(-0.396998\pi\)
0.317973 + 0.948100i \(0.396998\pi\)
\(98\) 8.87294 + 4.38986i 0.896303 + 0.443443i
\(99\) −13.1532 −1.32195
\(100\) −7.72151 + 6.35439i −0.772151 + 0.635439i
\(101\) 4.83035 0.480638 0.240319 0.970694i \(-0.422748\pi\)
0.240319 + 0.970694i \(0.422748\pi\)
\(102\) 8.96469 5.51522i 0.887637 0.546088i
\(103\) 13.4501i 1.32528i 0.748938 + 0.662640i \(0.230564\pi\)
−0.748938 + 0.662640i \(0.769436\pi\)
\(104\) 3.76341 0.316119i 0.369033 0.0309980i
\(105\) 9.97959 11.5467i 0.973908 1.12684i
\(106\) 7.60690 4.67988i 0.738847 0.454551i
\(107\) 8.42571i 0.814544i −0.913307 0.407272i \(-0.866480\pi\)
0.913307 0.407272i \(-0.133520\pi\)
\(108\) 1.52314 3.01543i 0.146564 0.290160i
\(109\) 12.1174i 1.16064i 0.814388 + 0.580320i \(0.197073\pi\)
−0.814388 + 0.580320i \(0.802927\pi\)
\(110\) −3.84130 10.7129i −0.366254 1.02143i
\(111\) 11.9910 1.13814
\(112\) 1.37034 + 10.4939i 0.129485 + 0.991581i
\(113\) 10.3315i 0.971907i 0.873985 + 0.485953i \(0.161528\pi\)
−0.873985 + 0.485953i \(0.838472\pi\)
\(114\) 10.3019 + 16.7452i 0.964860 + 1.56833i
\(115\) −2.05202 + 9.75931i −0.191352 + 0.910061i
\(116\) 3.36498 + 1.69970i 0.312430 + 0.157813i
\(117\) 4.88006i 0.451162i
\(118\) 1.03027 + 1.67465i 0.0948440 + 0.154164i
\(119\) −6.67855 3.69621i −0.612222 0.338831i
\(120\) 16.1912 + 2.00891i 1.47805 + 0.183387i
\(121\) 1.95211 0.177465
\(122\) 4.57863 2.81685i 0.414530 0.255025i
\(123\) 1.56490i 0.141102i
\(124\) −6.95022 + 13.7597i −0.624148 + 1.23565i
\(125\) 6.51193 9.08817i 0.582445 0.812870i
\(126\) −13.6605 + 0.629484i −1.21697 + 0.0560789i
\(127\) 9.65843 0.857047 0.428524 0.903531i \(-0.359034\pi\)
0.428524 + 0.903531i \(0.359034\pi\)
\(128\) −8.51216 + 7.45272i −0.752376 + 0.658734i
\(129\) 31.2574i 2.75206i
\(130\) −3.97465 + 1.42519i −0.348600 + 0.124997i
\(131\) 20.2931i 1.77302i −0.462711 0.886509i \(-0.653123\pi\)
0.462711 0.886509i \(-0.346877\pi\)
\(132\) −8.37166 + 16.5738i −0.728659 + 1.44256i
\(133\) 6.90416 12.4749i 0.598667 1.08171i
\(134\) 10.1386 + 16.4798i 0.875843 + 1.42364i
\(135\) −0.777178 + 3.69621i −0.0668888 + 0.318119i
\(136\) −0.683033 8.13155i −0.0585696 0.697275i
\(137\) 12.2326i 1.04510i −0.852608 0.522551i \(-0.824981\pi\)
0.852608 0.522551i \(-0.175019\pi\)
\(138\) 13.8583 8.52581i 1.17969 0.725766i
\(139\) 0.177061i 0.0150181i 0.999972 + 0.00750907i \(0.00239023\pi\)
−0.999972 + 0.00750907i \(0.997610\pi\)
\(140\) −4.50213 10.9422i −0.380500 0.924781i
\(141\) 17.8547i 1.50363i
\(142\) −6.07510 9.87475i −0.509811 0.828671i
\(143\) 4.80545i 0.401852i
\(144\) −8.67567 11.7666i −0.722973 0.980547i
\(145\) −4.12467 0.867267i −0.342535 0.0720226i
\(146\) −13.7837 + 8.47995i −1.14075 + 0.701806i
\(147\) 9.58942 + 15.3012i 0.790922 + 1.26202i
\(148\) 4.19145 8.29800i 0.344535 0.682092i
\(149\) 0.279108i 0.0228654i −0.999935 0.0114327i \(-0.996361\pi\)
0.999935 0.0114327i \(-0.00363923\pi\)
\(150\) −18.0701 + 2.49202i −1.47542 + 0.203473i
\(151\) 4.75356i 0.386839i 0.981116 + 0.193420i \(0.0619579\pi\)
−0.981116 + 0.193420i \(0.938042\pi\)
\(152\) 15.1889 1.27584i 1.23199 0.103484i
\(153\) 10.5443 0.852455
\(154\) 13.4516 0.619860i 1.08396 0.0499497i
\(155\) 3.54632 16.8661i 0.284848 1.35472i
\(156\) 6.14914 + 3.10602i 0.492325 + 0.248681i
\(157\) 2.97219i 0.237206i −0.992942 0.118603i \(-0.962158\pi\)
0.992942 0.118603i \(-0.0378416\pi\)
\(158\) −7.63727 12.4140i −0.607588 0.987602i
\(159\) 16.2915 1.29200
\(160\) 7.04981 10.5024i 0.557337 0.830287i
\(161\) −10.3242 5.71387i −0.813659 0.450316i
\(162\) −7.95813 + 4.89596i −0.625249 + 0.384663i
\(163\) 8.42571i 0.659953i 0.943989 + 0.329976i \(0.107041\pi\)
−0.943989 + 0.329976i \(0.892959\pi\)
\(164\) −1.08293 0.547007i −0.0845630 0.0427140i
\(165\) 4.27161 20.3155i 0.332544 1.58156i
\(166\) 16.3495 10.0585i 1.26897 0.780690i
\(167\) 13.4501i 1.04080i −0.853922 0.520401i \(-0.825782\pi\)
0.853922 0.520401i \(-0.174218\pi\)
\(168\) −7.90131 + 17.6136i −0.609600 + 1.35892i
\(169\) 11.2171 0.862854
\(170\) 3.07938 + 8.58797i 0.236178 + 0.658667i
\(171\) 19.6957i 1.50617i
\(172\) −21.6306 10.9260i −1.64932 0.833097i
\(173\) 10.5918i 0.805276i 0.915359 + 0.402638i \(0.131907\pi\)
−0.915359 + 0.402638i \(0.868093\pi\)
\(174\) 3.60335 + 5.85705i 0.273169 + 0.444022i
\(175\) 8.01453 + 10.5246i 0.605842 + 0.795585i
\(176\) 8.54302 + 11.5867i 0.643955 + 0.873377i
\(177\) 3.58655i 0.269582i
\(178\) 5.22369 + 8.49083i 0.391532 + 0.636414i
\(179\) −1.93943 −0.144959 −0.0724797 0.997370i \(-0.523091\pi\)
−0.0724797 + 0.997370i \(0.523091\pi\)
\(180\) 12.7607 + 10.2134i 0.951124 + 0.761265i
\(181\) −11.9947 −0.891561 −0.445780 0.895142i \(-0.647074\pi\)
−0.445780 + 0.895142i \(0.647074\pi\)
\(182\) −0.229978 4.99076i −0.0170471 0.369940i
\(183\) 9.80596 0.724877
\(184\) −1.05588 12.5703i −0.0778406 0.926697i
\(185\) −2.13867 + 10.1714i −0.157238 + 0.747816i
\(186\) −23.9499 + 14.7344i −1.75609 + 1.08038i
\(187\) −10.3831 −0.759285
\(188\) −12.3557 6.24107i −0.901135 0.455177i
\(189\) −3.91015 2.16405i −0.284422 0.157412i
\(190\) −16.0415 + 5.75198i −1.16377 + 0.417293i
\(191\) 10.3062i 0.745729i 0.927886 + 0.372864i \(0.121624\pi\)
−0.927886 + 0.372864i \(0.878376\pi\)
\(192\) −20.3483 + 3.44272i −1.46851 + 0.248457i
\(193\) 7.97366i 0.573957i −0.957937 0.286978i \(-0.907349\pi\)
0.957937 0.286978i \(-0.0926508\pi\)
\(194\) 7.54431 4.64138i 0.541650 0.333232i
\(195\) −7.53740 1.58484i −0.539764 0.113493i
\(196\) 13.9407 1.28753i 0.995762 0.0919662i
\(197\) −9.16007 −0.652628 −0.326314 0.945261i \(-0.605807\pi\)
−0.326314 + 0.945261i \(0.605807\pi\)
\(198\) −15.8433 + 9.74704i −1.12593 + 0.692692i
\(199\) −18.1246 −1.28482 −0.642408 0.766362i \(-0.722065\pi\)
−0.642408 + 0.766362i \(0.722065\pi\)
\(200\) −4.59186 + 13.3759i −0.324693 + 0.945819i
\(201\) 35.2943i 2.48947i
\(202\) 5.81825 3.57948i 0.409370 0.251851i
\(203\) 2.41491 4.36341i 0.169493 0.306251i
\(204\) 6.71114 13.2864i 0.469874 0.930231i
\(205\) 1.32742 + 0.279108i 0.0927113 + 0.0194938i
\(206\) 9.96706 + 16.2009i 0.694438 + 1.12877i
\(207\) 16.3001 1.13294
\(208\) 4.29884 3.16960i 0.298071 0.219772i
\(209\) 19.3945i 1.34155i
\(210\) 3.46408 21.3034i 0.239044 1.47007i
\(211\) 9.48714 0.653122 0.326561 0.945176i \(-0.394110\pi\)
0.326561 + 0.945176i \(0.394110\pi\)
\(212\) 5.69467 11.2740i 0.391112 0.774302i
\(213\) 21.1485i 1.44907i
\(214\) −6.24377 10.1489i −0.426816 0.693766i
\(215\) 26.5141 + 5.57494i 1.80825 + 0.380208i
\(216\) −0.399901 4.76085i −0.0272098 0.323935i
\(217\) 17.8423 + 9.87475i 1.21122 + 0.670342i
\(218\) 8.97949 + 14.5957i 0.608168 + 0.988544i
\(219\) −29.5202 −1.99479
\(220\) −12.5656 10.0573i −0.847170 0.678062i
\(221\) 3.85229i 0.259133i
\(222\) 14.4434 8.88582i 0.969379 0.596377i
\(223\) 28.0127i 1.87587i 0.346816 + 0.937933i \(0.387263\pi\)
−0.346816 + 0.937933i \(0.612737\pi\)
\(224\) 9.42698 + 11.6246i 0.629867 + 0.776703i
\(225\) −16.7265 7.35931i −1.11510 0.490621i
\(226\) 7.65604 + 12.4445i 0.509272 + 0.827795i
\(227\) 1.85392 0.123049 0.0615245 0.998106i \(-0.480404\pi\)
0.0615245 + 0.998106i \(0.480404\pi\)
\(228\) 24.8176 + 12.5358i 1.64359 + 0.830200i
\(229\) −20.2457 −1.33788 −0.668938 0.743318i \(-0.733251\pi\)
−0.668938 + 0.743318i \(0.733251\pi\)
\(230\) 4.76032 + 13.2759i 0.313886 + 0.875386i
\(231\) 21.4914 + 11.8943i 1.41403 + 0.782588i
\(232\) 5.31272 0.446257i 0.348797 0.0292982i
\(233\) 2.35785i 0.154468i −0.997013 0.0772339i \(-0.975391\pi\)
0.997013 0.0772339i \(-0.0246088\pi\)
\(234\) 3.61631 + 5.87812i 0.236406 + 0.384265i
\(235\) 15.1452 + 3.18448i 0.987966 + 0.207733i
\(236\) 2.48196 + 1.25367i 0.161562 + 0.0816072i
\(237\) 26.5867i 1.72699i
\(238\) −10.7835 + 0.496911i −0.698989 + 0.0322099i
\(239\) 5.34718i 0.345880i −0.984932 0.172940i \(-0.944673\pi\)
0.984932 0.172940i \(-0.0553267\pi\)
\(240\) 20.9913 9.57855i 1.35498 0.618293i
\(241\) 9.70134i 0.624919i −0.949931 0.312459i \(-0.898847\pi\)
0.949931 0.312459i \(-0.101153\pi\)
\(242\) 2.35136 1.44659i 0.151151 0.0929904i
\(243\) −22.1112 −1.41843
\(244\) 3.42765 6.78589i 0.219433 0.434422i
\(245\) −14.6896 + 5.40517i −0.938484 + 0.345323i
\(246\) −1.15965 1.88494i −0.0739364 0.120180i
\(247\) −7.19569 −0.457851
\(248\) 1.82478 + 21.7241i 0.115874 + 1.37948i
\(249\) 35.0154 2.21901
\(250\) 1.10905 15.7724i 0.0701427 0.997537i
\(251\) 14.7270i 0.929563i 0.885425 + 0.464782i \(0.153867\pi\)
−0.885425 + 0.464782i \(0.846133\pi\)
\(252\) −15.9878 + 10.8811i −1.00714 + 0.685448i
\(253\) −16.0509 −1.00911
\(254\) 11.6338 7.15727i 0.729967 0.449087i
\(255\) −3.42434 + 16.2860i −0.214440 + 1.01987i
\(256\) −4.73029 + 15.2848i −0.295643 + 0.955298i
\(257\) −11.2700 −0.703006 −0.351503 0.936187i \(-0.614329\pi\)
−0.351503 + 0.936187i \(0.614329\pi\)
\(258\) −23.1629 37.6501i −1.44206 2.34399i
\(259\) −10.7601 5.95514i −0.668602 0.370034i
\(260\) −3.73142 + 4.66203i −0.231413 + 0.289127i
\(261\) 6.88907i 0.426423i
\(262\) −15.0380 24.4434i −0.929049 1.51012i
\(263\) −14.2659 −0.879672 −0.439836 0.898078i \(-0.644963\pi\)
−0.439836 + 0.898078i \(0.644963\pi\)
\(264\) 2.19798 + 26.1671i 0.135276 + 1.61047i
\(265\) −2.90569 + 13.8193i −0.178495 + 0.848912i
\(266\) −0.928180 20.1425i −0.0569104 1.23501i
\(267\) 18.1846i 1.11288i
\(268\) 24.4243 + 12.3371i 1.49195 + 0.753607i
\(269\) 19.6473 1.19792 0.598959 0.800780i \(-0.295581\pi\)
0.598959 + 0.800780i \(0.295581\pi\)
\(270\) 1.80291 + 5.02807i 0.109722 + 0.305999i
\(271\) −21.4339 −1.30202 −0.651008 0.759071i \(-0.725654\pi\)
−0.651008 + 0.759071i \(0.725654\pi\)
\(272\) −6.84852 9.28844i −0.415252 0.563195i
\(273\) 4.41298 7.97366i 0.267086 0.482588i
\(274\) −9.06482 14.7344i −0.547626 0.890136i
\(275\) 16.4708 + 7.24679i 0.993226 + 0.436998i
\(276\) 10.3746 20.5390i 0.624475 1.23630i
\(277\) −20.3225 −1.22106 −0.610530 0.791993i \(-0.709043\pi\)
−0.610530 + 0.791993i \(0.709043\pi\)
\(278\) 0.131209 + 0.213273i 0.00786940 + 0.0127913i
\(279\) −28.1700 −1.68649
\(280\) −13.5315 9.84377i −0.808659 0.588278i
\(281\) 6.60360 0.393938 0.196969 0.980410i \(-0.436890\pi\)
0.196969 + 0.980410i \(0.436890\pi\)
\(282\) −13.2310 21.5063i −0.787894 1.28068i
\(283\) −26.0188 −1.54666 −0.773330 0.634004i \(-0.781410\pi\)
−0.773330 + 0.634004i \(0.781410\pi\)
\(284\) −14.6351 7.39243i −0.868435 0.438660i
\(285\) −30.4206 6.39632i −1.80196 0.378886i
\(286\) −3.56102 5.78825i −0.210568 0.342266i
\(287\) −0.777178 + 1.40425i −0.0458753 + 0.0828905i
\(288\) −19.1695 7.74403i −1.12957 0.456321i
\(289\) −8.67642 −0.510377
\(290\) −5.61092 + 2.01190i −0.329485 + 0.118143i
\(291\) 16.1575 0.947168
\(292\) −10.3187 + 20.4285i −0.603859 + 1.19549i
\(293\) 23.5795i 1.37753i 0.724984 + 0.688765i \(0.241847\pi\)
−0.724984 + 0.688765i \(0.758153\pi\)
\(294\) 22.8894 + 11.3245i 1.33494 + 0.660456i
\(295\) −3.04230 0.639683i −0.177129 0.0372438i
\(296\) −1.10047 13.1011i −0.0639633 0.761487i
\(297\) −6.07906 −0.352743
\(298\) −0.206830 0.336191i −0.0119813 0.0194750i
\(299\) 5.95514i 0.344394i
\(300\) −19.9191 + 16.3923i −1.15003 + 0.946412i
\(301\) −15.5234 + 28.0487i −0.894755 + 1.61670i
\(302\) 3.52257 + 5.72575i 0.202701 + 0.329480i
\(303\) 12.4608 0.715854
\(304\) 17.3499 12.7924i 0.995085 0.733692i
\(305\) −1.74895 + 8.31790i −0.100145 + 0.476282i
\(306\) 12.7008 7.81372i 0.726055 0.446680i
\(307\) 8.34981 0.476549 0.238274 0.971198i \(-0.423418\pi\)
0.238274 + 0.971198i \(0.423418\pi\)
\(308\) 15.7433 10.7148i 0.897060 0.610531i
\(309\) 34.6971i 1.97385i
\(310\) −8.22683 22.9435i −0.467252 1.30310i
\(311\) −3.79343 −0.215105 −0.107553 0.994199i \(-0.534301\pi\)
−0.107553 + 0.994199i \(0.534301\pi\)
\(312\) 9.70842 0.815487i 0.549631 0.0461679i
\(313\) 21.8977 1.23773 0.618867 0.785496i \(-0.287592\pi\)
0.618867 + 0.785496i \(0.287592\pi\)
\(314\) −2.20250 3.58005i −0.124294 0.202034i
\(315\) 14.1386 16.3588i 0.796622 0.921713i
\(316\) −18.3984 9.29333i −1.03499 0.522791i
\(317\) 26.3887 1.48213 0.741067 0.671431i \(-0.234320\pi\)
0.741067 + 0.671431i \(0.234320\pi\)
\(318\) 19.6234 12.0726i 1.10043 0.677000i
\(319\) 6.78374i 0.379816i
\(320\) 0.708951 17.8745i 0.0396315 0.999214i
\(321\) 21.7357i 1.21317i
\(322\) −16.6699 + 0.768159i −0.928974 + 0.0428078i
\(323\) 15.5476i 0.865094i
\(324\) −5.95761 + 11.7946i −0.330978 + 0.655253i
\(325\) 2.68868 6.11093i 0.149141 0.338974i
\(326\) 6.24377 + 10.1489i 0.345811 + 0.562097i
\(327\) 31.2592i 1.72864i
\(328\) −1.70977 + 0.143617i −0.0944060 + 0.00792991i
\(329\) −8.86720 + 16.0218i −0.488865 + 0.883312i
\(330\) −9.90936 27.6358i −0.545492 1.52130i
\(331\) −7.51497 −0.413060 −0.206530 0.978440i \(-0.566217\pi\)
−0.206530 + 0.978440i \(0.566217\pi\)
\(332\) 12.2396 24.2312i 0.671733 1.32986i
\(333\) 16.9884 0.930957
\(334\) −9.96706 16.2009i −0.545373 0.886475i
\(335\) −29.9384 6.29495i −1.63571 0.343930i
\(336\) 3.53504 + 27.0710i 0.192852 + 1.47684i
\(337\) 4.69960i 0.256004i 0.991774 + 0.128002i \(0.0408563\pi\)
−0.991774 + 0.128002i \(0.959144\pi\)
\(338\) 13.5112 8.31230i 0.734912 0.452129i
\(339\) 26.6521i 1.44754i
\(340\) 10.0732 + 8.06242i 0.546295 + 0.437246i
\(341\) 27.7392 1.50216
\(342\) 14.5953 + 23.7238i 0.789221 + 1.28284i
\(343\) −1.00596 18.4929i −0.0543166 0.998524i
\(344\) −34.1510 + 2.86862i −1.84130 + 0.154665i
\(345\) −5.29358 + 25.1760i −0.284997 + 1.35543i
\(346\) 7.84889 + 12.7580i 0.421959 + 0.685872i
\(347\) 9.75889i 0.523885i −0.965084 0.261942i \(-0.915637\pi\)
0.965084 0.261942i \(-0.0843630\pi\)
\(348\) 8.68059 + 4.38470i 0.465329 + 0.235044i
\(349\) −6.30167 −0.337321 −0.168660 0.985674i \(-0.553944\pi\)
−0.168660 + 0.985674i \(0.553944\pi\)
\(350\) 17.4528 + 6.73799i 0.932890 + 0.360161i
\(351\) 2.25543i 0.120386i
\(352\) 18.8764 + 7.62562i 1.00611 + 0.406447i
\(353\) −2.43058 −0.129367 −0.0646833 0.997906i \(-0.520604\pi\)
−0.0646833 + 0.997906i \(0.520604\pi\)
\(354\) 2.65777 + 4.32007i 0.141259 + 0.229609i
\(355\) 17.9392 + 3.77196i 0.952116 + 0.200195i
\(356\) 12.5841 + 6.35639i 0.666953 + 0.336888i
\(357\) −17.2286 9.53507i −0.911833 0.504650i
\(358\) −2.33607 + 1.43719i −0.123465 + 0.0759577i
\(359\) 7.92321i 0.418171i −0.977897 0.209086i \(-0.932951\pi\)
0.977897 0.209086i \(-0.0670487\pi\)
\(360\) 22.9390 + 2.84613i 1.20899 + 0.150004i
\(361\) −10.0415 −0.528498
\(362\) −14.4479 + 8.88855i −0.759362 + 0.467172i
\(363\) 5.03584 0.264313
\(364\) −3.97536 5.84104i −0.208365 0.306154i
\(365\) 5.26511 25.0406i 0.275588 1.31068i
\(366\) 11.8114 7.26659i 0.617394 0.379831i
\(367\) 15.9826i 0.834287i 0.908841 + 0.417143i \(0.136969\pi\)
−0.908841 + 0.417143i \(0.863031\pi\)
\(368\) −10.5869 14.3587i −0.551881 0.748501i
\(369\) 2.21707i 0.115416i
\(370\) 4.96133 + 13.8365i 0.257927 + 0.719324i
\(371\) −14.6191 8.09089i −0.758988 0.420058i
\(372\) −17.9294 + 35.4956i −0.929595 + 1.84036i
\(373\) 20.9336 1.08390 0.541951 0.840410i \(-0.317686\pi\)
0.541951 + 0.840410i \(0.317686\pi\)
\(374\) −12.5066 + 7.69425i −0.646700 + 0.397860i
\(375\) 16.7987 23.4446i 0.867483 1.21068i
\(376\) −19.5076 + 1.63859i −1.00603 + 0.0845041i
\(377\) −2.51688 −0.129626
\(378\) −6.31349 + 0.290930i −0.324731 + 0.0149638i
\(379\) 13.1532 0.675636 0.337818 0.941211i \(-0.390311\pi\)
0.337818 + 0.941211i \(0.390311\pi\)
\(380\) −15.0598 + 18.8157i −0.772552 + 0.965226i
\(381\) 24.9157 1.27647
\(382\) 7.63727 + 12.4140i 0.390757 + 0.635154i
\(383\) 22.4872i 1.14904i −0.818490 0.574521i \(-0.805188\pi\)
0.818490 0.574521i \(-0.194812\pi\)
\(384\) −21.9587 + 19.2257i −1.12058 + 0.981107i
\(385\) −13.9225 + 16.1087i −0.709554 + 0.820973i
\(386\) −5.90879 9.60442i −0.300749 0.488852i
\(387\) 44.2841i 2.25109i
\(388\) 5.64781 11.1812i 0.286724 0.567642i
\(389\) 7.58914i 0.384785i 0.981318 + 0.192392i \(0.0616246\pi\)
−0.981318 + 0.192392i \(0.938375\pi\)
\(390\) −10.2534 + 3.67654i −0.519199 + 0.186169i
\(391\) 12.8672 0.650721
\(392\) 15.8377 11.8814i 0.799923 0.600102i
\(393\) 52.3499i 2.64070i
\(394\) −11.0335 + 6.78796i −0.555858 + 0.341973i
\(395\) 22.5522 + 4.74189i 1.13472 + 0.238590i
\(396\) −11.8606 + 23.4810i −0.596017 + 1.17996i
\(397\) 4.23587i 0.212592i −0.994335 0.106296i \(-0.966101\pi\)
0.994335 0.106296i \(-0.0338992\pi\)
\(398\) −21.8314 + 13.4310i −1.09431 + 0.673235i
\(399\) 17.8106 32.1813i 0.891644 1.61108i
\(400\) 4.38109 + 19.5143i 0.219054 + 0.975713i
\(401\) −6.90753 −0.344946 −0.172473 0.985014i \(-0.555176\pi\)
−0.172473 + 0.985014i \(0.555176\pi\)
\(402\) 26.1545 + 42.5126i 1.30447 + 2.12034i
\(403\) 10.2917i 0.512667i
\(404\) 4.35565 8.62308i 0.216702 0.429014i
\(405\) 3.03985 14.4573i 0.151051 0.718391i
\(406\) −0.324655 7.04534i −0.0161123 0.349654i
\(407\) −16.7286 −0.829207
\(408\) −1.76201 20.9769i −0.0872326 1.03851i
\(409\) 3.86544i 0.191134i −0.995423 0.0955668i \(-0.969534\pi\)
0.995423 0.0955668i \(-0.0304664\pi\)
\(410\) 1.80573 0.647480i 0.0891789 0.0319768i
\(411\) 31.5563i 1.55656i
\(412\) 24.0110 + 12.1283i 1.18294 + 0.597519i
\(413\) 1.78120 3.21838i 0.0876470 0.158366i
\(414\) 19.6338 12.0790i 0.964946 0.593650i
\(415\) −6.24520 + 29.7018i −0.306565 + 1.45800i
\(416\) 2.82923 7.00345i 0.138714 0.343372i
\(417\) 0.456763i 0.0223678i
\(418\) −14.3721 23.3611i −0.702962 1.14263i
\(419\) 12.9925i 0.634726i 0.948304 + 0.317363i \(0.102797\pi\)
−0.948304 + 0.317363i \(0.897203\pi\)
\(420\) −11.6141 28.2273i −0.566710 1.37735i
\(421\) 20.4156i 0.994997i 0.867465 + 0.497499i \(0.165748\pi\)
−0.867465 + 0.497499i \(0.834252\pi\)
\(422\) 11.4274 7.03033i 0.556279 0.342231i
\(423\) 25.2957i 1.22992i
\(424\) −1.49514 17.7997i −0.0726103 0.864430i
\(425\) −13.2038 5.80939i −0.640479 0.281797i
\(426\) −15.6719 25.4738i −0.759304 1.23421i
\(427\) −8.79934 4.86995i −0.425830 0.235674i
\(428\) −15.0415 7.59767i −0.727057 0.367247i
\(429\) 12.3966i 0.598511i
\(430\) 36.0679 12.9328i 1.73935 0.623677i
\(431\) 3.54463i 0.170739i 0.996349 + 0.0853695i \(0.0272071\pi\)
−0.996349 + 0.0853695i \(0.972793\pi\)
\(432\) −4.00966 5.43818i −0.192915 0.261645i
\(433\) 24.1539 1.16076 0.580382 0.814344i \(-0.302903\pi\)
0.580382 + 0.814344i \(0.302903\pi\)
\(434\) 28.8090 1.32754i 1.38287 0.0637239i
\(435\) −10.6404 2.23728i −0.510167 0.107269i
\(436\) 21.6319 + 10.9266i 1.03598 + 0.523289i
\(437\) 24.0346i 1.14973i
\(438\) −35.5577 + 21.8756i −1.69901 + 1.04526i
\(439\) −8.10213 −0.386694 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(440\) −22.5883 2.80262i −1.07685 0.133609i
\(441\) 13.5859 + 21.6781i 0.646946 + 1.03229i
\(442\) 2.85469 + 4.64015i 0.135784 + 0.220709i
\(443\) 26.0995i 1.24002i 0.784592 + 0.620012i \(0.212872\pi\)
−0.784592 + 0.620012i \(0.787128\pi\)
\(444\) 10.8126 21.4063i 0.513144 1.01590i
\(445\) −15.4251 3.24333i −0.731219 0.153749i
\(446\) 20.7584 + 33.7417i 0.982941 + 1.59772i
\(447\) 0.720012i 0.0340554i
\(448\) 19.9693 + 7.01631i 0.943459 + 0.331490i
\(449\) 14.9898 0.707414 0.353707 0.935356i \(-0.384921\pi\)
0.353707 + 0.935356i \(0.384921\pi\)
\(450\) −25.6009 + 3.53058i −1.20684 + 0.166433i
\(451\) 2.18318i 0.102802i
\(452\) 18.4437 + 9.31618i 0.867518 + 0.438196i
\(453\) 12.2627i 0.576152i
\(454\) 2.23308 1.37383i 0.104804 0.0644769i
\(455\) 5.97658 + 5.16546i 0.280186 + 0.242161i
\(456\) 39.1827 3.29127i 1.83490 0.154128i
\(457\) 38.8078i 1.81535i −0.419670 0.907677i \(-0.637854\pi\)
0.419670 0.907677i \(-0.362146\pi\)
\(458\) −24.3863 + 15.0029i −1.13950 + 0.701038i
\(459\) 4.87328 0.227465
\(460\) 15.5718 + 12.4635i 0.726041 + 0.581112i
\(461\) −28.0610 −1.30693 −0.653466 0.756956i \(-0.726686\pi\)
−0.653466 + 0.756956i \(0.726686\pi\)
\(462\) 34.7009 1.59904i 1.61443 0.0743942i
\(463\) 9.44403 0.438901 0.219451 0.975624i \(-0.429573\pi\)
0.219451 + 0.975624i \(0.429573\pi\)
\(464\) 6.06857 4.47445i 0.281726 0.207721i
\(465\) 9.14841 43.5093i 0.424247 2.01770i
\(466\) −1.74726 2.84007i −0.0809401 0.131564i
\(467\) −19.1643 −0.886818 −0.443409 0.896319i \(-0.646231\pi\)
−0.443409 + 0.896319i \(0.646231\pi\)
\(468\) 8.71182 + 4.40047i 0.402704 + 0.203412i
\(469\) 17.5283 31.6713i 0.809382 1.46244i
\(470\) 20.6025 7.38743i 0.950323 0.340757i
\(471\) 7.66731i 0.353291i
\(472\) 3.91858 0.329152i 0.180367 0.0151505i
\(473\) 43.6070i 2.00505i
\(474\) −19.7018 32.0241i −0.904932 1.47092i
\(475\) 10.8514 24.6634i 0.497895 1.13164i
\(476\) −12.6207 + 8.58950i −0.578467 + 0.393699i
\(477\) 23.0811 1.05681
\(478\) −3.96247 6.44077i −0.181239 0.294594i
\(479\) 19.8597 0.907414 0.453707 0.891151i \(-0.350101\pi\)
0.453707 + 0.891151i \(0.350101\pi\)
\(480\) 18.1863 27.0929i 0.830088 1.23661i
\(481\) 6.20660i 0.282996i
\(482\) −7.18907 11.6854i −0.327453 0.532257i
\(483\) −26.6332 14.7400i −1.21185 0.670693i
\(484\) 1.76027 3.48489i 0.0800123 0.158404i
\(485\) −2.88178 + 13.7056i −0.130855 + 0.622338i
\(486\) −26.6333 + 16.3852i −1.20811 + 0.743248i
\(487\) 2.59554 0.117615 0.0588075 0.998269i \(-0.481270\pi\)
0.0588075 + 0.998269i \(0.481270\pi\)
\(488\) −0.899932 10.7137i −0.0407380 0.484988i
\(489\) 21.7357i 0.982922i
\(490\) −13.6884 + 17.3962i −0.618381 + 0.785879i
\(491\) 16.6118 0.749679 0.374839 0.927090i \(-0.377698\pi\)
0.374839 + 0.927090i \(0.377698\pi\)
\(492\) −2.79363 1.41111i −0.125947 0.0636176i
\(493\) 5.43818i 0.244923i
\(494\) −8.66734 + 5.33228i −0.389962 + 0.239911i
\(495\) 6.05183 28.7821i 0.272009 1.29366i
\(496\) 18.2964 + 24.8149i 0.821532 + 1.11422i
\(497\) −10.5030 + 18.9776i −0.471125 + 0.851260i
\(498\) 42.1766 25.9477i 1.88998 1.16275i
\(499\) 12.8033 0.573155 0.286578 0.958057i \(-0.407482\pi\)
0.286578 + 0.958057i \(0.407482\pi\)
\(500\) −10.3521 19.8200i −0.462960 0.886379i
\(501\) 34.6971i 1.55015i
\(502\) 10.9133 + 17.7390i 0.487085 + 0.791730i
\(503\) 7.66175i 0.341621i −0.985304 0.170810i \(-0.945361\pi\)
0.985304 0.170810i \(-0.0546385\pi\)
\(504\) −11.1942 + 24.9541i −0.498631 + 1.11154i
\(505\) −2.22246 + 10.5699i −0.0988980 + 0.470353i
\(506\) −19.3336 + 11.8943i −0.859481 + 0.528767i
\(507\) 28.9366 1.28512
\(508\) 8.70925 17.2421i 0.386410 0.764995i
\(509\) 8.30655 0.368181 0.184091 0.982909i \(-0.441066\pi\)
0.184091 + 0.982909i \(0.441066\pi\)
\(510\) 7.94384 + 22.1543i 0.351759 + 0.981008i
\(511\) 26.4899 + 14.6607i 1.17184 + 0.648551i
\(512\) 5.62888 + 21.9161i 0.248764 + 0.968564i
\(513\) 9.10281i 0.401899i
\(514\) −13.5750 + 8.35154i −0.598766 + 0.368370i
\(515\) −29.4318 6.18843i −1.29692 0.272695i
\(516\) −55.8003 28.1856i −2.45647 1.24080i
\(517\) 24.9089i 1.09549i
\(518\) −17.3737 + 0.800595i −0.763358 + 0.0351761i
\(519\) 27.3234i 1.19936i
\(520\) −1.03982 + 8.38062i −0.0455990 + 0.367514i
\(521\) 19.9456i 0.873833i −0.899502 0.436916i \(-0.856071\pi\)
0.899502 0.436916i \(-0.143929\pi\)
\(522\) 5.10506 + 8.29800i 0.223443 + 0.363194i
\(523\) 21.9379 0.959276 0.479638 0.877467i \(-0.340768\pi\)
0.479638 + 0.877467i \(0.340768\pi\)
\(524\) −36.2270 18.2988i −1.58258 0.799387i
\(525\) 20.6750 + 27.1502i 0.902330 + 1.18493i
\(526\) −17.1835 + 10.5716i −0.749237 + 0.460942i
\(527\) −22.2372 −0.968666
\(528\) 22.0383 + 29.8899i 0.959095 + 1.30079i
\(529\) −3.10900 −0.135174
\(530\) 6.74067 + 18.7988i 0.292796 + 0.816567i
\(531\) 5.08127i 0.220508i
\(532\) −16.0443 23.5741i −0.695611 1.02207i
\(533\) 0.809994 0.0350847
\(534\) 13.4755 + 21.9037i 0.583141 + 0.947865i
\(535\) 18.4373 + 3.87669i 0.797114 + 0.167604i
\(536\) 38.5617 3.23910i 1.66561 0.139908i
\(537\) −5.00311 −0.215900
\(538\) 23.6655 14.5594i 1.02029 0.627701i
\(539\) −13.3781 21.3466i −0.576237 0.919465i
\(540\) 5.89763 + 4.72037i 0.253794 + 0.203133i
\(541\) 23.9613i 1.03018i −0.857137 0.515088i \(-0.827759\pi\)
0.857137 0.515088i \(-0.172241\pi\)
\(542\) −25.8175 + 15.8833i −1.10896 + 0.682247i
\(543\) −30.9426 −1.32788
\(544\) −15.1322 6.11308i −0.648790 0.262096i
\(545\) −26.5156 5.57526i −1.13580 0.238818i
\(546\) −0.593272 12.8746i −0.0253897 0.550982i
\(547\) 8.98695i 0.384254i 0.981370 + 0.192127i \(0.0615386\pi\)
−0.981370 + 0.192127i \(0.938461\pi\)
\(548\) −21.8375 11.0304i −0.932851 0.471197i
\(549\) 13.8926 0.592923
\(550\) 25.2095 3.47660i 1.07494 0.148243i
\(551\) −10.1580 −0.432745
\(552\) −2.72384 32.4275i −0.115934 1.38021i
\(553\) −13.2038 + 23.8575i −0.561483 + 1.01452i
\(554\) −24.4788 + 15.0597i −1.04000 + 0.639827i
\(555\) −5.51710 + 26.2390i −0.234188 + 1.11379i
\(556\) 0.316087 + 0.159660i 0.0134051 + 0.00677111i
\(557\) 8.37113 0.354696 0.177348 0.984148i \(-0.443248\pi\)
0.177348 + 0.984148i \(0.443248\pi\)
\(558\) −33.9312 + 20.8750i −1.43642 + 0.883710i
\(559\) 16.1789 0.684295
\(560\) −23.5935 1.82967i −0.997007 0.0773177i
\(561\) −26.7851 −1.13087
\(562\) 7.95415 4.89352i 0.335526 0.206421i
\(563\) 26.2152 1.10484 0.552420 0.833566i \(-0.313705\pi\)
0.552420 + 0.833566i \(0.313705\pi\)
\(564\) −31.8739 16.1000i −1.34213 0.677932i
\(565\) −22.6076 4.75355i −0.951110 0.199983i
\(566\) −31.3402 + 19.2810i −1.31733 + 0.810439i
\(567\) 15.2941 + 8.46447i 0.642293 + 0.355474i
\(568\) −23.1063 + 1.94088i −0.969521 + 0.0814377i
\(569\) 31.1843 1.30732 0.653658 0.756790i \(-0.273234\pi\)
0.653658 + 0.756790i \(0.273234\pi\)
\(570\) −41.3820 + 14.8383i −1.73330 + 0.621508i
\(571\) −45.6053 −1.90852 −0.954261 0.298974i \(-0.903356\pi\)
−0.954261 + 0.298974i \(0.903356\pi\)
\(572\) −8.57862 4.33319i −0.358690 0.181180i
\(573\) 26.5867i 1.11068i
\(574\) 0.104482 + 2.26737i 0.00436099 + 0.0946381i
\(575\) −20.4114 8.98056i −0.851213 0.374515i
\(576\) −28.8286 + 4.87749i −1.20119 + 0.203229i
\(577\) −24.1057 −1.00353 −0.501766 0.865003i \(-0.667316\pi\)
−0.501766 + 0.865003i \(0.667316\pi\)
\(578\) −10.4509 + 6.42956i −0.434700 + 0.267434i
\(579\) 20.5696i 0.854841i
\(580\) −5.26755 + 6.58128i −0.218723 + 0.273273i
\(581\) −31.4209 17.3898i −1.30356 0.721449i
\(582\) 19.4620 11.9733i 0.806724 0.496309i
\(583\) −22.7282 −0.941306
\(584\) 2.70919 + 32.2531i 0.112107 + 1.33464i
\(585\) −10.6786 2.24533i −0.441508 0.0928329i
\(586\) 17.4733 + 28.4020i 0.721817 + 1.17327i
\(587\) −14.6387 −0.604205 −0.302103 0.953275i \(-0.597689\pi\)
−0.302103 + 0.953275i \(0.597689\pi\)
\(588\) 35.9626 3.32142i 1.48307 0.136973i
\(589\) 41.5368i 1.71150i
\(590\) −4.13853 + 1.48395i −0.170380 + 0.0610932i
\(591\) −23.6301 −0.972013
\(592\) −11.0340 14.9650i −0.453493 0.615059i
\(593\) −9.32979 −0.383129 −0.191564 0.981480i \(-0.561356\pi\)
−0.191564 + 0.981480i \(0.561356\pi\)
\(594\) −7.32233 + 4.50482i −0.300439 + 0.184835i
\(595\) 11.1609 12.9135i 0.457554 0.529402i
\(596\) −0.498260 0.251679i −0.0204095 0.0103092i
\(597\) −46.7557 −1.91358
\(598\) 4.41298 + 7.17307i 0.180460 + 0.293329i
\(599\) 48.3192i 1.97427i 0.159893 + 0.987134i \(0.448885\pi\)
−0.159893 + 0.987134i \(0.551115\pi\)
\(600\) −11.8456 + 34.5057i −0.483593 + 1.40869i
\(601\) 7.63740i 0.311536i −0.987794 0.155768i \(-0.950215\pi\)
0.987794 0.155768i \(-0.0497852\pi\)
\(602\) 2.08693 + 45.2886i 0.0850571 + 1.84583i
\(603\) 50.0034i 2.03630i
\(604\) 8.48599 + 4.28640i 0.345290 + 0.174411i
\(605\) −0.898172 + 4.27165i −0.0365159 + 0.173667i
\(606\) 15.0093 9.23393i 0.609709 0.375103i
\(607\) 38.2619i 1.55300i −0.630116 0.776501i \(-0.716993\pi\)
0.630116 0.776501i \(-0.283007\pi\)
\(608\) 11.4186 28.2656i 0.463087 1.14632i
\(609\) 6.22971 11.2562i 0.252440 0.456125i
\(610\) 4.05724 + 11.3151i 0.164273 + 0.458135i
\(611\) 9.24163 0.373876
\(612\) 9.50804 18.8235i 0.384340 0.760896i
\(613\) −17.0330 −0.687955 −0.343977 0.938978i \(-0.611774\pi\)
−0.343977 + 0.938978i \(0.611774\pi\)
\(614\) 10.0575 6.18753i 0.405887 0.249708i
\(615\) 3.42434 + 0.720012i 0.138083 + 0.0290337i
\(616\) 11.0231 24.5726i 0.444132 0.990056i
\(617\) 5.71269i 0.229984i −0.993366 0.114992i \(-0.963316\pi\)
0.993366 0.114992i \(-0.0366843\pi\)
\(618\) 25.7119 + 41.7933i 1.03428 + 1.68117i
\(619\) 45.1694i 1.81551i 0.419497 + 0.907757i \(0.362206\pi\)
−0.419497 + 0.907757i \(0.637794\pi\)
\(620\) −26.9114 21.5395i −1.08079 0.865045i
\(621\) 7.53346 0.302307
\(622\) −4.56925 + 2.81107i −0.183210 + 0.112714i
\(623\) 9.03106 16.3179i 0.361822 0.653763i
\(624\) 11.0897 8.17658i 0.443942 0.327325i
\(625\) 16.8908 + 18.4310i 0.675630 + 0.737241i
\(626\) 26.3762 16.2271i 1.05421 0.648564i
\(627\) 50.0319i 1.99808i
\(628\) −5.30591 2.68009i −0.211729 0.106947i
\(629\) 13.4105 0.534712
\(630\) 4.90776 30.1817i 0.195530 1.20247i
\(631\) 1.44976i 0.0577141i −0.999584 0.0288571i \(-0.990813\pi\)
0.999584 0.0288571i \(-0.00918676\pi\)
\(632\) −29.0480 + 2.43997i −1.15547 + 0.0970567i
\(633\) 24.4739 0.972749
\(634\) 31.7856 19.5550i 1.26237 0.776628i
\(635\) −4.44387 + 21.1348i −0.176349 + 0.838708i
\(636\) 14.6905 29.0834i 0.582515 1.15323i
\(637\) −7.91995 + 4.96351i −0.313800 + 0.196661i
\(638\) −5.02701 8.17113i −0.199021 0.323498i
\(639\) 29.9623i 1.18529i
\(640\) −12.3917 22.0555i −0.489826 0.871820i
\(641\) −8.82070 −0.348397 −0.174198 0.984711i \(-0.555733\pi\)
−0.174198 + 0.984711i \(0.555733\pi\)
\(642\) −16.1070 26.1810i −0.635692 1.03328i
\(643\) −21.0328 −0.829451 −0.414726 0.909946i \(-0.636122\pi\)
−0.414726 + 0.909946i \(0.636122\pi\)
\(644\) −19.5099 + 13.2783i −0.768797 + 0.523237i
\(645\) 68.3981 + 14.3816i 2.69317 + 0.566275i
\(646\) 11.5214 + 18.7274i 0.453303 + 0.736820i
\(647\) 42.6208i 1.67560i −0.545979 0.837799i \(-0.683842\pi\)
0.545979 0.837799i \(-0.316158\pi\)
\(648\) 1.56417 + 18.6216i 0.0614465 + 0.731524i
\(649\) 5.00358i 0.196408i
\(650\) −1.28988 9.35314i −0.0505931 0.366860i
\(651\) 46.0276 + 25.4738i 1.80396 + 0.998395i
\(652\) 15.0415 + 7.59767i 0.589069 + 0.297548i
\(653\) 10.3346 0.404424 0.202212 0.979342i \(-0.435187\pi\)
0.202212 + 0.979342i \(0.435187\pi\)
\(654\) 23.1643 + 37.6523i 0.905795 + 1.47232i
\(655\) 44.4058 + 9.33691i 1.73508 + 0.364823i
\(656\) −1.95302 + 1.43999i −0.0762525 + 0.0562222i
\(657\) −41.8230 −1.63167
\(658\) 1.19209 + 25.8695i 0.0464724 + 1.00850i
\(659\) −24.5798 −0.957493 −0.478746 0.877953i \(-0.658909\pi\)
−0.478746 + 0.877953i \(0.658909\pi\)
\(660\) −32.4152 25.9446i −1.26176 1.00989i
\(661\) 27.2497 1.05989 0.529946 0.848031i \(-0.322212\pi\)
0.529946 + 0.848031i \(0.322212\pi\)
\(662\) −9.05191 + 5.56888i −0.351813 + 0.216441i
\(663\) 9.93770i 0.385948i
\(664\) −3.21350 38.2569i −0.124708 1.48466i
\(665\) 24.1212 + 20.8475i 0.935379 + 0.808433i
\(666\) 20.4628 12.5890i 0.792917 0.487815i
\(667\) 8.40673i 0.325510i
\(668\) −24.0110 12.1283i −0.929013 0.469259i
\(669\) 72.2639i 2.79388i
\(670\) −40.7262 + 14.6031i −1.57339 + 0.564168i
\(671\) −13.6802 −0.528119
\(672\) 24.3187 + 29.9879i 0.938113 + 1.15681i
\(673\) 30.4582i 1.17408i −0.809559 0.587038i \(-0.800294\pi\)
0.809559 0.587038i \(-0.199706\pi\)
\(674\) 3.48258 + 5.66075i 0.134144 + 0.218044i
\(675\) −7.73055 3.40127i −0.297549 0.130915i
\(676\) 10.1147 20.0246i 0.389028 0.770178i
\(677\) 0.455107i 0.0174912i 0.999962 + 0.00874559i \(0.00278384\pi\)
−0.999962 + 0.00874559i \(0.997216\pi\)
\(678\) 19.7502 + 32.1029i 0.758502 + 1.23290i
\(679\) −14.4989 8.02432i −0.556415 0.307945i
\(680\) 18.1079 + 2.24672i 0.694406 + 0.0861577i
\(681\) 4.78254 0.183267
\(682\) 33.4124 20.5558i 1.27943 0.787124i
\(683\) 1.03207i 0.0394911i 0.999805 + 0.0197456i \(0.00628562\pi\)
−0.999805 + 0.0197456i \(0.993714\pi\)
\(684\) 35.1605 + 17.7601i 1.34439 + 0.679074i
\(685\) 26.7676 + 5.62824i 1.02274 + 0.215044i
\(686\) −14.9157 21.5296i −0.569482 0.822004i
\(687\) −52.2277 −1.99261
\(688\) −39.0098 + 28.7625i −1.48723 + 1.09656i
\(689\) 8.43253i 0.321254i
\(690\) 12.2801 + 34.2476i 0.467497 + 1.30379i
\(691\) 10.9090i 0.414999i −0.978235 0.207500i \(-0.933467\pi\)
0.978235 0.207500i \(-0.0665326\pi\)
\(692\) 18.9083 + 9.55085i 0.718784 + 0.363069i
\(693\) 30.4481 + 16.8513i 1.15663 + 0.640129i
\(694\) −7.23171 11.7548i −0.274512 0.446204i
\(695\) −0.387449 0.0814662i −0.0146968 0.00309019i
\(696\) 13.7052 1.15120i 0.519493 0.0436363i
\(697\) 1.75014i 0.0662914i
\(698\) −7.59048 + 4.66978i −0.287304 + 0.176754i
\(699\) 6.08251i 0.230062i
\(700\) 26.0153 4.81714i 0.983285 0.182071i
\(701\) 33.6356i 1.27040i −0.772349 0.635199i \(-0.780918\pi\)
0.772349 0.635199i \(-0.219082\pi\)
\(702\) 1.67136 + 2.71671i 0.0630814 + 0.102535i
\(703\) 25.0495i 0.944760i
\(704\) 28.3878 4.80292i 1.06991 0.181017i
\(705\) 39.0700 + 8.21497i 1.47146 + 0.309394i
\(706\) −2.92767 + 1.80115i −0.110184 + 0.0677872i
\(707\) −11.1817 6.18843i −0.420530 0.232740i
\(708\) 6.40267 + 3.23409i 0.240627 + 0.121544i
\(709\) 14.1991i 0.533258i −0.963799 0.266629i \(-0.914090\pi\)
0.963799 0.266629i \(-0.0859099\pi\)
\(710\) 24.4033 8.75026i 0.915839 0.328392i
\(711\) 37.6669i 1.41262i
\(712\) 19.8680 1.66887i 0.744586 0.0625437i
\(713\) −34.3758 −1.28738
\(714\) −27.8180 + 1.28187i −1.04106 + 0.0479729i
\(715\) 10.5154 + 2.21100i 0.393253 + 0.0826866i
\(716\) −1.74883 + 3.46224i −0.0653568 + 0.129390i
\(717\) 13.7941i 0.515148i
\(718\) −5.87140 9.54365i −0.219119 0.356166i
\(719\) 35.5086 1.32425 0.662123 0.749395i \(-0.269656\pi\)
0.662123 + 0.749395i \(0.269656\pi\)
\(720\) 29.7395 13.5705i 1.10833 0.505741i
\(721\) 17.2317 31.1354i 0.641742 1.15954i
\(722\) −12.0951 + 7.44111i −0.450134 + 0.276929i
\(723\) 25.0264i 0.930743i
\(724\) −10.8159 + 21.4128i −0.401971 + 0.795801i
\(725\) 3.79554 8.62666i 0.140963 0.320386i
\(726\) 6.06576 3.73175i 0.225122 0.138498i
\(727\) 14.4322i 0.535261i 0.963522 + 0.267630i \(0.0862406\pi\)
−0.963522 + 0.267630i \(0.913759\pi\)
\(728\) −9.11682 4.08974i −0.337892 0.151576i
\(729\) −37.2192 −1.37849
\(730\) −12.2141 34.0634i −0.452064 1.26074i
\(731\) 34.9575i 1.29295i
\(732\) 8.84227 17.5055i 0.326820 0.647021i
\(733\) 20.7489i 0.766378i −0.923670 0.383189i \(-0.874826\pi\)
0.923670 0.383189i \(-0.125174\pi\)
\(734\) 11.8437 + 19.2514i 0.437160 + 0.710581i
\(735\) −37.8946 + 13.9436i −1.39776 + 0.514319i
\(736\) −23.3925 9.45003i −0.862259 0.348333i
\(737\) 49.2389i 1.81374i
\(738\) −1.64294 2.67051i −0.0604774 0.0983027i
\(739\) 15.3022 0.562901 0.281450 0.959576i \(-0.409185\pi\)
0.281450 + 0.959576i \(0.409185\pi\)
\(740\) 16.2294 + 12.9897i 0.596603 + 0.477512i
\(741\) −18.5626 −0.681916
\(742\) −23.6047 + 1.08772i −0.866555 + 0.0399315i
\(743\) 30.8617 1.13221 0.566103 0.824334i \(-0.308450\pi\)
0.566103 + 0.824334i \(0.308450\pi\)
\(744\) 4.70737 + 56.0415i 0.172580 + 2.05458i
\(745\) 0.610750 + 0.128418i 0.0223762 + 0.00470488i
\(746\) 25.2149 15.5126i 0.923184 0.567957i
\(747\) 49.6082 1.81507
\(748\) −9.36267 + 18.5357i −0.342333 + 0.677733i
\(749\) −10.7946 + 19.5045i −0.394428 + 0.712677i
\(750\) 2.86101 40.6880i 0.104469 1.48571i
\(751\) 10.9371i 0.399099i −0.979888 0.199550i \(-0.936052\pi\)
0.979888 0.199550i \(-0.0639479\pi\)
\(752\) −22.2829 + 16.4296i −0.812575 + 0.599125i
\(753\) 37.9912i 1.38448i
\(754\) −3.03162 + 1.86510i −0.110405 + 0.0679230i
\(755\) −10.4018 2.18712i −0.378562 0.0795976i
\(756\) −7.38912 + 5.02897i −0.268740 + 0.182902i
\(757\) 28.1387 1.02272 0.511359 0.859367i \(-0.329142\pi\)
0.511359 + 0.859367i \(0.329142\pi\)
\(758\) 15.8433 9.74704i 0.575454 0.354028i
\(759\) −41.4062 −1.50295
\(760\) −4.19665 + 33.8238i −0.152228 + 1.22692i
\(761\) 46.8922i 1.69984i 0.526911 + 0.849921i \(0.323350\pi\)
−0.526911 + 0.849921i \(0.676650\pi\)
\(762\) 30.0114 18.4635i 1.08720 0.668862i
\(763\) 15.5243 28.0503i 0.562018 1.01549i
\(764\) 18.3984 + 9.29333i 0.665632 + 0.336221i
\(765\) −4.85145 + 23.0732i −0.175404 + 0.834214i
\(766\) −16.6639 27.0862i −0.602090 0.978665i
\(767\) −1.85641 −0.0670311
\(768\) −12.2027 + 39.4299i −0.440326 + 1.42281i
\(769\) 8.13831i 0.293475i 0.989175 + 0.146738i \(0.0468773\pi\)
−0.989175 + 0.146738i \(0.953123\pi\)
\(770\) −4.83272 + 29.7202i −0.174159 + 1.07104i
\(771\) −29.0732 −1.04705
\(772\) −14.2345 7.19005i −0.512310 0.258776i
\(773\) 8.13686i 0.292662i −0.989236 0.146331i \(-0.953253\pi\)
0.989236 0.146331i \(-0.0467465\pi\)
\(774\) −32.8162 53.3410i −1.17955 1.91730i
\(775\) 35.2751 + 15.5203i 1.26712 + 0.557505i
\(776\) −1.48284 17.6532i −0.0532307 0.633715i
\(777\) −27.7578 15.3624i −0.995804 0.551123i
\(778\) 5.62384 + 9.14125i 0.201624 + 0.327730i
\(779\) 3.26910 0.117128
\(780\) −9.62589 + 12.0266i −0.344662 + 0.430621i
\(781\) 29.5042i 1.05574i
\(782\) 15.4987 9.53507i 0.554234 0.340974i
\(783\) 3.18394i 0.113785i
\(784\) 10.2722 26.0477i 0.366863 0.930275i
\(785\) 6.50379 + 1.36751i 0.232130 + 0.0488085i
\(786\) −38.7933 63.0564i −1.38371 2.24915i
\(787\) −35.3405 −1.25975 −0.629877 0.776695i \(-0.716895\pi\)
−0.629877 + 0.776695i \(0.716895\pi\)
\(788\) −8.25987 + 16.3524i −0.294246 + 0.582532i
\(789\) −36.8015 −1.31017
\(790\) 30.6784 11.0003i 1.09149 0.391374i
\(791\) 13.2363 23.9161i 0.470628 0.850360i
\(792\) 3.11400 + 37.0724i 0.110651 + 1.31731i
\(793\) 5.07559i 0.180239i
\(794\) −3.13894 5.10218i −0.111397 0.181070i
\(795\) −7.49576 + 35.6494i −0.265847 + 1.26435i
\(796\) −16.3434 + 32.3557i −0.579276 + 1.14682i
\(797\) 21.6145i 0.765626i 0.923826 + 0.382813i \(0.125045\pi\)
−0.923826 + 0.382813i \(0.874955\pi\)
\(798\) −2.39441 51.9613i −0.0847613 1.83941i
\(799\) 19.9683i 0.706426i
\(800\) 19.7379 + 20.2587i 0.697840 + 0.716253i
\(801\) 25.7631i 0.910296i
\(802\) −8.32024 + 5.11874i −0.293798 + 0.180749i
\(803\) 41.1835 1.45333
\(804\) 63.0070 + 31.8258i 2.22209 + 1.12241i
\(805\) 17.2534 19.9626i 0.608102 0.703590i
\(806\) −7.62655 12.3966i −0.268634 0.436650i
\(807\) 50.6839 1.78416
\(808\) −1.14358 13.6144i −0.0402309 0.478951i
\(809\) −6.77039 −0.238034 −0.119017 0.992892i \(-0.537974\pi\)
−0.119017 + 0.992892i \(0.537974\pi\)
\(810\) −7.05190 19.6668i −0.247778 0.691020i
\(811\) 31.6060i 1.10984i 0.831905 + 0.554918i \(0.187250\pi\)
−0.831905 + 0.554918i \(0.812750\pi\)
\(812\) −5.61192 8.24566i −0.196940 0.289366i
\(813\) −55.2927 −1.93920
\(814\) −20.1499 + 12.3966i −0.706254 + 0.434499i
\(815\) −18.4373 3.87669i −0.645831 0.135794i
\(816\) −17.6670 23.9613i −0.618470 0.838812i
\(817\) 65.2973 2.28446
\(818\) −2.86444 4.65599i −0.100153 0.162793i
\(819\) 6.25212 11.2967i 0.218467 0.394740i
\(820\) 1.69523 2.11802i 0.0592000 0.0739645i
\(821\) 28.3663i 0.989990i 0.868896 + 0.494995i \(0.164830\pi\)
−0.868896 + 0.494995i \(0.835170\pi\)
\(822\) −23.3844 38.0101i −0.815625 1.32575i
\(823\) 15.3770 0.536008 0.268004 0.963418i \(-0.413636\pi\)
0.268004 + 0.963418i \(0.413636\pi\)
\(824\) 37.9092 3.18429i 1.32063 0.110930i
\(825\) 42.4895 + 18.6944i 1.47929 + 0.650857i
\(826\) −0.239460 5.19653i −0.00833189 0.180811i
\(827\) 25.3065i 0.879994i −0.897999 0.439997i \(-0.854979\pi\)
0.897999 0.439997i \(-0.145021\pi\)
\(828\) 14.6982 29.0987i 0.510798 1.01125i
\(829\) −34.4068 −1.19500 −0.597498 0.801870i \(-0.703838\pi\)
−0.597498 + 0.801870i \(0.703838\pi\)
\(830\) 14.4877 + 40.4043i 0.502876 + 1.40245i
\(831\) −52.4256 −1.81863
\(832\) −1.78196 10.5323i −0.0617784 0.365143i
\(833\) 10.7246 + 17.1125i 0.371585 + 0.592914i
\(834\) 0.338478 + 0.550178i 0.0117206 + 0.0190511i
\(835\) 29.4318 + 6.18843i 1.01853 + 0.214160i
\(836\) −34.6229 17.4885i −1.19746 0.604854i
\(837\) −13.0194 −0.450016
\(838\) 9.62795 + 15.6497i 0.332592 + 0.540610i
\(839\) −30.9918 −1.06995 −0.534977 0.844867i \(-0.679680\pi\)
−0.534977 + 0.844867i \(0.679680\pi\)
\(840\) −34.9069 25.3938i −1.20440 0.876171i
\(841\) 25.4470 0.877482
\(842\) 15.1288 + 24.5910i 0.521372 + 0.847462i
\(843\) 17.0352 0.586724
\(844\) 8.55479 16.9363i 0.294468 0.582972i
\(845\) −5.16101 + 24.5455i −0.177544 + 0.844390i
\(846\) −18.7451 30.4691i −0.644469 1.04755i
\(847\) −4.51890 2.50096i −0.155271 0.0859341i
\(848\) −14.9912 20.3321i −0.514799 0.698207i
\(849\) −67.1205 −2.30357
\(850\) −20.2092 + 2.78702i −0.693170 + 0.0955939i
\(851\) 20.7309 0.710646
\(852\) −37.7541 19.0701i −1.29343 0.653332i
\(853\) 48.4535i 1.65902i −0.558495 0.829508i \(-0.688621\pi\)
0.558495 0.829508i \(-0.311379\pi\)
\(854\) −14.2078 + 0.654705i −0.486180 + 0.0224036i
\(855\) −43.0985 9.06203i −1.47394 0.309915i
\(856\) −23.7479 + 1.99477i −0.811686 + 0.0681799i
\(857\) 29.2857 1.00038 0.500190 0.865916i \(-0.333264\pi\)
0.500190 + 0.865916i \(0.333264\pi\)
\(858\) −9.18632 14.9319i −0.313616 0.509765i
\(859\) 48.5659i 1.65705i −0.559955 0.828523i \(-0.689182\pi\)
0.559955 0.828523i \(-0.310818\pi\)
\(860\) 33.8607 42.3055i 1.15464 1.44261i
\(861\) −2.00488 + 3.62254i −0.0683260 + 0.123456i
\(862\) 2.62671 + 4.26957i 0.0894661 + 0.145422i
\(863\) 8.92660 0.303865 0.151933 0.988391i \(-0.451450\pi\)
0.151933 + 0.988391i \(0.451450\pi\)
\(864\) −8.85960 3.57908i −0.301410 0.121763i
\(865\) −23.1771 4.87329i −0.788045 0.165697i
\(866\) 29.0938 17.8990i 0.988649 0.608232i
\(867\) −22.3824 −0.760147
\(868\) 33.7171 22.9476i 1.14443 0.778892i
\(869\) 37.0909i 1.25822i
\(870\) −14.4744 + 5.19008i −0.490729 + 0.175960i
\(871\) −18.2684 −0.619003
\(872\) 34.1530 2.86878i 1.15657 0.0971492i
\(873\) 22.8912 0.774749
\(874\) 17.8106 + 28.9501i 0.602452 + 0.979253i
\(875\) −26.7176 + 12.6952i −0.903221 + 0.429175i
\(876\) −26.6191 + 52.6992i −0.899377 + 1.78054i
\(877\) −3.16793 −0.106973 −0.0534867 0.998569i \(-0.517033\pi\)
−0.0534867 + 0.998569i \(0.517033\pi\)
\(878\) −9.75916 + 6.00399i −0.329356 + 0.202625i
\(879\) 60.8278i 2.05167i
\(880\) −29.2848 + 13.3630i −0.987191 + 0.450466i
\(881\) 17.9454i 0.604595i −0.953214 0.302297i \(-0.902246\pi\)
0.953214 0.302297i \(-0.0977536\pi\)
\(882\) 32.4287 + 16.0440i 1.09193 + 0.540229i
\(883\) 8.46669i 0.284927i 0.989800 + 0.142463i \(0.0455023\pi\)
−0.989800 + 0.142463i \(0.954498\pi\)
\(884\) 6.87705 + 3.47370i 0.231300 + 0.116833i
\(885\) −7.84817 1.65018i −0.263813 0.0554702i
\(886\) 19.3407 + 31.4373i 0.649764 + 1.05616i
\(887\) 20.3807i 0.684317i −0.939642 0.342159i \(-0.888842\pi\)
0.939642 0.342159i \(-0.111158\pi\)
\(888\) −2.83886 33.7968i −0.0952658 1.13415i
\(889\) −22.3581 12.3740i −0.749865 0.415009i
\(890\) −20.9832 + 7.52393i −0.703359 + 0.252203i
\(891\) 23.7776 0.796580
\(892\) 50.0078 + 25.2597i 1.67439 + 0.845758i
\(893\) 37.2987 1.24815
\(894\) −0.533556 0.867267i −0.0178448 0.0290058i
\(895\) 0.892334 4.24389i 0.0298274 0.141858i
\(896\) 29.2527 6.34671i 0.977263 0.212029i
\(897\) 15.3624i 0.512935i
\(898\) 18.0555 11.1080i 0.602520 0.370680i
\(899\) 14.5286i 0.484555i
\(900\) −28.2205 + 23.2239i −0.940683 + 0.774131i
\(901\) 18.2201 0.606998
\(902\) 1.61782 + 2.62967i 0.0538674 + 0.0875586i
\(903\) −40.0456 + 72.3569i −1.33263 + 2.40789i
\(904\) 29.1194 2.44597i 0.968496 0.0813516i
\(905\) 5.51880 26.2471i 0.183451 0.872483i
\(906\) 9.08713 + 14.7706i 0.301900 + 0.490722i
\(907\) 21.3838i 0.710037i 0.934859 + 0.355018i \(0.115525\pi\)
−0.934859 + 0.355018i \(0.884475\pi\)
\(908\) 1.67173 3.30960i 0.0554782 0.109833i
\(909\) 17.6539 0.585543
\(910\) 11.0267 + 1.79302i 0.365532 + 0.0594380i
\(911\) 26.8804i 0.890586i 0.895385 + 0.445293i \(0.146901\pi\)
−0.895385 + 0.445293i \(0.853099\pi\)
\(912\) 44.7573 33.0003i 1.48206 1.09275i
\(913\) −48.8497 −1.61669
\(914\) −28.7581 46.7447i −0.951233 1.54618i
\(915\) −4.51174 + 21.4576i −0.149154 + 0.709366i
\(916\) −18.2561 + 36.1424i −0.603198 + 1.19418i
\(917\) −25.9986 + 46.9760i −0.858551 + 1.55128i
\(918\) 5.86995 3.61129i 0.193737 0.119190i
\(919\) 6.12542i 0.202059i 0.994883 + 0.101029i \(0.0322136\pi\)
−0.994883 + 0.101029i \(0.967786\pi\)
\(920\) 27.9925 + 3.47313i 0.922884 + 0.114506i
\(921\) 21.5399 0.709764
\(922\) −33.8000 + 20.7943i −1.11314 + 0.684823i
\(923\) 10.9465 0.360309
\(924\) 40.6129 27.6408i 1.33607 0.909315i
\(925\) −21.2733 9.35977i −0.699460 0.307747i
\(926\) 11.3755 6.99839i 0.373822 0.229981i
\(927\) 49.1573i 1.61454i
\(928\) 3.99396 9.88660i 0.131108 0.324543i
\(929\) 31.3815i 1.02959i −0.857312 0.514796i \(-0.827867\pi\)
0.857312 0.514796i \(-0.172133\pi\)
\(930\) −21.2226 59.1870i −0.695918 1.94082i
\(931\) −31.9645 + 20.0325i −1.04760 + 0.656538i
\(932\) −4.20920 2.12613i −0.137877 0.0696438i
\(933\) −9.78585 −0.320374
\(934\) −23.0837 + 14.2015i −0.755323 + 0.464686i
\(935\) 4.77727 22.7204i 0.156233 0.743037i
\(936\) 13.7545 1.15535i 0.449579 0.0377637i
\(937\) 8.37400 0.273567 0.136783 0.990601i \(-0.456324\pi\)
0.136783 + 0.990601i \(0.456324\pi\)
\(938\) −2.35647 51.1377i −0.0769413 1.66971i
\(939\) 56.4893 1.84346
\(940\) 19.3417 24.1655i 0.630858 0.788193i
\(941\) −43.1607 −1.40700 −0.703499 0.710696i \(-0.748380\pi\)
−0.703499 + 0.710696i \(0.748380\pi\)
\(942\) −5.68177 9.23541i −0.185122 0.300906i
\(943\) 2.70550i 0.0881030i
\(944\) 4.47608 3.30029i 0.145684 0.107415i
\(945\) 6.53449 7.56058i 0.212567 0.245946i
\(946\) 32.3144 + 52.5254i 1.05063 + 1.70775i
\(947\) 25.4973i 0.828550i 0.910152 + 0.414275i \(0.135965\pi\)
−0.910152 + 0.414275i \(0.864035\pi\)
\(948\) −47.4622 23.9739i −1.54150 0.778636i
\(949\) 15.2798i 0.496002i
\(950\) −5.20588 37.7488i −0.168901 1.22473i
\(951\) 68.0745 2.20747
\(952\) −8.83665 + 19.6986i −0.286397 + 0.638435i
\(953\) 29.6337i 0.959929i 0.877288 + 0.479964i \(0.159350\pi\)
−0.877288 + 0.479964i \(0.840650\pi\)
\(954\) 27.8016 17.1040i 0.900110 0.553762i
\(955\) −22.5522 4.74189i −0.729771 0.153444i
\(956\) −9.54572 4.82169i −0.308731 0.155944i
\(957\) 17.4999i 0.565692i
\(958\) 23.9214 14.7168i 0.772865 0.475479i
\(959\) −15.6719 + 28.3169i −0.506071 + 0.914401i
\(960\) 1.82887 46.1106i 0.0590266 1.48821i
\(961\) 28.4085 0.916403
\(962\) 4.59932 + 7.47595i 0.148288 + 0.241034i
\(963\) 30.7942i 0.992328i
\(964\) −17.3187 8.74794i −0.557798 0.281752i
\(965\) 17.4481 + 3.66870i 0.561675 + 0.118100i
\(966\) −43.0030 + 1.98161i −1.38360 + 0.0637573i
\(967\) −5.90310 −0.189831 −0.0949154 0.995485i \(-0.530258\pi\)
−0.0949154 + 0.995485i \(0.530258\pi\)
\(968\) −0.462159 5.50204i −0.0148544 0.176842i
\(969\) 40.1080i 1.28846i
\(970\) 6.68520 + 18.6441i 0.214649 + 0.598626i
\(971\) 9.06341i 0.290859i 0.989369 + 0.145429i \(0.0464563\pi\)
−0.989369 + 0.145429i \(0.953544\pi\)
\(972\) −19.9382 + 39.4726i −0.639517 + 1.26608i
\(973\) 0.226843 0.409874i 0.00727225 0.0131400i
\(974\) 3.12637 1.92339i 0.100175 0.0616295i
\(975\) 6.93595 15.7643i 0.222128 0.504862i
\(976\) −9.02327 12.2380i −0.288828 0.391729i
\(977\) 20.7277i 0.663138i −0.943431 0.331569i \(-0.892422\pi\)
0.943431 0.331569i \(-0.107578\pi\)
\(978\) 16.1070 + 26.1810i 0.515045 + 0.837177i
\(979\) 25.3692i 0.810804i
\(980\) −3.59674 + 31.0976i −0.114894 + 0.993378i
\(981\) 44.2867i 1.41396i
\(982\) 20.0092 12.3100i 0.638518 0.392827i
\(983\) 1.55484i 0.0495916i −0.999693 0.0247958i \(-0.992106\pi\)
0.999693 0.0247958i \(-0.00789356\pi\)
\(984\) −4.41066 + 0.370486i −0.140607 + 0.0118107i
\(985\) 4.21457 20.0443i 0.134287 0.638663i
\(986\) 4.02990 + 6.55039i 0.128338 + 0.208607i
\(987\) −22.8746 + 41.3313i −0.728107 + 1.31559i
\(988\) −6.48854 + 12.8457i −0.206428 + 0.408675i
\(989\) 54.0398i 1.71837i
\(990\) −14.0391 39.1532i −0.446193 1.24437i
\(991\) 48.1236i 1.52870i −0.644804 0.764348i \(-0.723061\pi\)
0.644804 0.764348i \(-0.276939\pi\)
\(992\) 40.4271 + 16.3316i 1.28356 + 0.518529i
\(993\) −19.3863 −0.615205
\(994\) 1.41200 + 30.6419i 0.0447860 + 0.971904i
\(995\) 8.33915 39.6605i 0.264369 1.25732i
\(996\) 31.5742 62.5090i 1.00047 1.98067i
\(997\) 19.4339i 0.615479i −0.951471 0.307739i \(-0.900428\pi\)
0.951471 0.307739i \(-0.0995725\pi\)
\(998\) 15.4218 9.48775i 0.488169 0.300329i
\(999\) 7.85156 0.248412
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 280.2.n.b.139.34 yes 40
4.3 odd 2 1120.2.n.b.559.6 40
5.4 even 2 inner 280.2.n.b.139.7 yes 40
7.6 odd 2 inner 280.2.n.b.139.33 yes 40
8.3 odd 2 inner 280.2.n.b.139.6 yes 40
8.5 even 2 1120.2.n.b.559.5 40
20.19 odd 2 1120.2.n.b.559.33 40
28.27 even 2 1120.2.n.b.559.35 40
35.34 odd 2 inner 280.2.n.b.139.8 yes 40
40.19 odd 2 inner 280.2.n.b.139.35 yes 40
40.29 even 2 1120.2.n.b.559.34 40
56.13 odd 2 1120.2.n.b.559.36 40
56.27 even 2 inner 280.2.n.b.139.5 40
140.139 even 2 1120.2.n.b.559.8 40
280.69 odd 2 1120.2.n.b.559.7 40
280.139 even 2 inner 280.2.n.b.139.36 yes 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.n.b.139.5 40 56.27 even 2 inner
280.2.n.b.139.6 yes 40 8.3 odd 2 inner
280.2.n.b.139.7 yes 40 5.4 even 2 inner
280.2.n.b.139.8 yes 40 35.34 odd 2 inner
280.2.n.b.139.33 yes 40 7.6 odd 2 inner
280.2.n.b.139.34 yes 40 1.1 even 1 trivial
280.2.n.b.139.35 yes 40 40.19 odd 2 inner
280.2.n.b.139.36 yes 40 280.139 even 2 inner
1120.2.n.b.559.5 40 8.5 even 2
1120.2.n.b.559.6 40 4.3 odd 2
1120.2.n.b.559.7 40 280.69 odd 2
1120.2.n.b.559.8 40 140.139 even 2
1120.2.n.b.559.33 40 20.19 odd 2
1120.2.n.b.559.34 40 40.29 even 2
1120.2.n.b.559.35 40 28.27 even 2
1120.2.n.b.559.36 40 56.13 odd 2