Properties

Label 279.3.v.a.244.1
Level $279$
Weight $3$
Character 279.244
Analytic conductor $7.602$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [279,3,Mod(46,279)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(279, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("279.46"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 279 = 3^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 279.v (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,3,0,-11,14,0,-1,19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.60219937565\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{19} + 20 x^{18} - 33 x^{17} + 250 x^{16} - 510 x^{15} + 2908 x^{14} - 6447 x^{13} + \cdots + 731025 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 31)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 244.1
Root \(-2.86150 - 2.07900i\) of defining polynomial
Character \(\chi\) \(=\) 279.244
Dual form 279.3.v.a.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.09299 - 3.36389i) q^{2} +(-6.88507 + 5.00229i) q^{4} -8.82683 q^{5} +(2.08188 - 1.51257i) q^{7} +(12.9065 + 9.37714i) q^{8} +(9.64768 + 29.6925i) q^{10} +(6.28416 + 8.64940i) q^{11} +(-2.12141 - 0.689289i) q^{13} +(-7.36362 - 5.34998i) q^{14} +(6.91748 - 21.2898i) q^{16} +(0.840800 - 1.15726i) q^{17} +(-2.52727 - 7.77815i) q^{19} +(60.7733 - 44.1544i) q^{20} +(22.2271 - 30.5930i) q^{22} +(1.14986 - 1.58264i) q^{23} +52.9129 q^{25} +7.88959i q^{26} +(-6.76754 + 20.8283i) q^{28} +(26.7713 - 8.69853i) q^{29} +(-21.3083 + 22.5157i) q^{31} -15.3640 q^{32} +(-4.81190 - 1.56348i) q^{34} +(-18.3764 + 13.3512i) q^{35} +6.07061i q^{37} +(-23.4025 + 17.0029i) q^{38} +(-113.924 - 82.7704i) q^{40} +(20.7157 + 63.7563i) q^{41} +(55.9522 - 18.1800i) q^{43} +(-86.5337 - 28.1165i) q^{44} +(-6.58063 - 2.13818i) q^{46} +(11.9110 - 36.6584i) q^{47} +(-13.0955 + 40.3038i) q^{49} +(-57.8335 - 177.993i) q^{50} +(18.0541 - 5.86613i) q^{52} +(-45.0108 + 61.9521i) q^{53} +(-55.4692 - 76.3468i) q^{55} +41.0534 q^{56} +(-58.5218 - 80.5484i) q^{58} +(7.78185 - 23.9501i) q^{59} +87.4422i q^{61} +(99.0302 + 47.0692i) q^{62} +(-10.8771 - 33.4763i) q^{64} +(18.7253 + 6.08423i) q^{65} +31.7457 q^{67} +12.1738i q^{68} +(64.9974 + 47.2234i) q^{70} +(51.7571 + 37.6037i) q^{71} +(42.4801 + 58.4689i) q^{73} +(20.4209 - 6.63515i) q^{74} +(56.3090 + 40.9109i) q^{76} +(26.1657 + 8.50176i) q^{77} +(-54.8015 + 75.4277i) q^{79} +(-61.0594 + 187.921i) q^{80} +(191.827 - 139.371i) q^{82} +(-85.7251 + 27.8538i) q^{83} +(-7.42160 + 10.2150i) q^{85} +(-122.311 - 168.347i) q^{86} +170.561i q^{88} +(35.3705 + 48.6833i) q^{89} +(-5.45912 + 1.77378i) q^{91} +16.6485i q^{92} -136.334 q^{94} +(22.3078 + 68.6564i) q^{95} +(-10.3369 + 7.51019i) q^{97} +149.891 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 3 q^{2} - 11 q^{4} + 14 q^{5} - q^{7} + 19 q^{8} + 12 q^{10} + 10 q^{11} + 10 q^{13} - 103 q^{16} - 35 q^{17} + 47 q^{19} + 125 q^{20} + 150 q^{22} - 75 q^{23} + 82 q^{25} + 88 q^{28} - 5 q^{29}+ \cdots + 1000 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/279\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(218\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.09299 3.36389i −0.546497 1.68195i −0.717403 0.696659i \(-0.754669\pi\)
0.170905 0.985287i \(-0.445331\pi\)
\(3\) 0 0
\(4\) −6.88507 + 5.00229i −1.72127 + 1.25057i
\(5\) −8.82683 −1.76537 −0.882683 0.469969i \(-0.844265\pi\)
−0.882683 + 0.469969i \(0.844265\pi\)
\(6\) 0 0
\(7\) 2.08188 1.51257i 0.297411 0.216082i −0.429065 0.903274i \(-0.641157\pi\)
0.726476 + 0.687192i \(0.241157\pi\)
\(8\) 12.9065 + 9.37714i 1.61332 + 1.17214i
\(9\) 0 0
\(10\) 9.64768 + 29.6925i 0.964768 + 2.96925i
\(11\) 6.28416 + 8.64940i 0.571287 + 0.786309i 0.992706 0.120557i \(-0.0384680\pi\)
−0.421419 + 0.906866i \(0.638468\pi\)
\(12\) 0 0
\(13\) −2.12141 0.689289i −0.163186 0.0530222i 0.226285 0.974061i \(-0.427342\pi\)
−0.389470 + 0.921039i \(0.627342\pi\)
\(14\) −7.36362 5.34998i −0.525973 0.382142i
\(15\) 0 0
\(16\) 6.91748 21.2898i 0.432342 1.33061i
\(17\) 0.840800 1.15726i 0.0494588 0.0680743i −0.783571 0.621302i \(-0.786604\pi\)
0.833030 + 0.553228i \(0.186604\pi\)
\(18\) 0 0
\(19\) −2.52727 7.77815i −0.133014 0.409376i 0.862262 0.506463i \(-0.169047\pi\)
−0.995276 + 0.0970872i \(0.969047\pi\)
\(20\) 60.7733 44.1544i 3.03866 2.20772i
\(21\) 0 0
\(22\) 22.2271 30.5930i 1.01032 1.39059i
\(23\) 1.14986 1.58264i 0.0499938 0.0688106i −0.783288 0.621659i \(-0.786459\pi\)
0.833282 + 0.552848i \(0.186459\pi\)
\(24\) 0 0
\(25\) 52.9129 2.11652
\(26\) 7.88959i 0.303446i
\(27\) 0 0
\(28\) −6.76754 + 20.8283i −0.241698 + 0.743869i
\(29\) 26.7713 8.69853i 0.923149 0.299949i 0.191391 0.981514i \(-0.438700\pi\)
0.731758 + 0.681565i \(0.238700\pi\)
\(30\) 0 0
\(31\) −21.3083 + 22.5157i −0.687364 + 0.726313i
\(32\) −15.3640 −0.480125
\(33\) 0 0
\(34\) −4.81190 1.56348i −0.141526 0.0459847i
\(35\) −18.3764 + 13.3512i −0.525040 + 0.381464i
\(36\) 0 0
\(37\) 6.07061i 0.164071i 0.996629 + 0.0820353i \(0.0261420\pi\)
−0.996629 + 0.0820353i \(0.973858\pi\)
\(38\) −23.4025 + 17.0029i −0.615857 + 0.447446i
\(39\) 0 0
\(40\) −113.924 82.7704i −2.84809 2.06926i
\(41\) 20.7157 + 63.7563i 0.505260 + 1.55503i 0.800333 + 0.599556i \(0.204656\pi\)
−0.295072 + 0.955475i \(0.595344\pi\)
\(42\) 0 0
\(43\) 55.9522 18.1800i 1.30121 0.422790i 0.425210 0.905095i \(-0.360200\pi\)
0.876004 + 0.482304i \(0.160200\pi\)
\(44\) −86.5337 28.1165i −1.96667 0.639011i
\(45\) 0 0
\(46\) −6.58063 2.13818i −0.143057 0.0464821i
\(47\) 11.9110 36.6584i 0.253426 0.779967i −0.740709 0.671826i \(-0.765510\pi\)
0.994136 0.108141i \(-0.0344897\pi\)
\(48\) 0 0
\(49\) −13.0955 + 40.3038i −0.267255 + 0.822526i
\(50\) −57.8335 177.993i −1.15667 3.55987i
\(51\) 0 0
\(52\) 18.0541 5.86613i 0.347194 0.112810i
\(53\) −45.0108 + 61.9521i −0.849261 + 1.16891i 0.134764 + 0.990878i \(0.456972\pi\)
−0.984025 + 0.178030i \(0.943028\pi\)
\(54\) 0 0
\(55\) −55.4692 76.3468i −1.00853 1.38812i
\(56\) 41.0534 0.733097
\(57\) 0 0
\(58\) −58.5218 80.5484i −1.00900 1.38877i
\(59\) 7.78185 23.9501i 0.131896 0.405933i −0.863199 0.504865i \(-0.831542\pi\)
0.995094 + 0.0989313i \(0.0315424\pi\)
\(60\) 0 0
\(61\) 87.4422i 1.43348i 0.697342 + 0.716739i \(0.254366\pi\)
−0.697342 + 0.716739i \(0.745634\pi\)
\(62\) 99.0302 + 47.0692i 1.59726 + 0.759181i
\(63\) 0 0
\(64\) −10.8771 33.4763i −0.169955 0.523068i
\(65\) 18.7253 + 6.08423i 0.288082 + 0.0936036i
\(66\) 0 0
\(67\) 31.7457 0.473816 0.236908 0.971532i \(-0.423866\pi\)
0.236908 + 0.971532i \(0.423866\pi\)
\(68\) 12.1738i 0.179026i
\(69\) 0 0
\(70\) 64.9974 + 47.2234i 0.928534 + 0.674620i
\(71\) 51.7571 + 37.6037i 0.728973 + 0.529630i 0.889238 0.457444i \(-0.151235\pi\)
−0.160265 + 0.987074i \(0.551235\pi\)
\(72\) 0 0
\(73\) 42.4801 + 58.4689i 0.581920 + 0.800944i 0.993904 0.110247i \(-0.0351642\pi\)
−0.411985 + 0.911191i \(0.635164\pi\)
\(74\) 20.4209 6.63515i 0.275958 0.0896642i
\(75\) 0 0
\(76\) 56.3090 + 40.9109i 0.740908 + 0.538301i
\(77\) 26.1657 + 8.50176i 0.339814 + 0.110412i
\(78\) 0 0
\(79\) −54.8015 + 75.4277i −0.693689 + 0.954781i 0.306307 + 0.951933i \(0.400907\pi\)
−0.999996 + 0.00284853i \(0.999093\pi\)
\(80\) −61.0594 + 187.921i −0.763242 + 2.34902i
\(81\) 0 0
\(82\) 191.827 139.371i 2.33936 1.69964i
\(83\) −85.7251 + 27.8538i −1.03283 + 0.335588i −0.775909 0.630844i \(-0.782709\pi\)
−0.256923 + 0.966432i \(0.582709\pi\)
\(84\) 0 0
\(85\) −7.42160 + 10.2150i −0.0873130 + 0.120176i
\(86\) −122.311 168.347i −1.42222 1.95752i
\(87\) 0 0
\(88\) 170.561i 1.93819i
\(89\) 35.3705 + 48.6833i 0.397421 + 0.547003i 0.960094 0.279676i \(-0.0902271\pi\)
−0.562673 + 0.826679i \(0.690227\pi\)
\(90\) 0 0
\(91\) −5.45912 + 1.77378i −0.0599904 + 0.0194921i
\(92\) 16.6485i 0.180962i
\(93\) 0 0
\(94\) −136.334 −1.45036
\(95\) 22.3078 + 68.6564i 0.234819 + 0.722699i
\(96\) 0 0
\(97\) −10.3369 + 7.51019i −0.106566 + 0.0774246i −0.639792 0.768548i \(-0.720979\pi\)
0.533226 + 0.845973i \(0.320979\pi\)
\(98\) 149.891 1.52950
\(99\) 0 0
\(100\) −364.309 + 264.686i −3.64309 + 2.64686i
\(101\) −91.2036 66.2633i −0.903005 0.656072i 0.0362307 0.999343i \(-0.488465\pi\)
−0.939236 + 0.343272i \(0.888465\pi\)
\(102\) 0 0
\(103\) 21.6220 + 66.5456i 0.209922 + 0.646074i 0.999475 + 0.0323918i \(0.0103124\pi\)
−0.789553 + 0.613682i \(0.789688\pi\)
\(104\) −20.9165 28.7891i −0.201120 0.276818i
\(105\) 0 0
\(106\) 257.597 + 83.6983i 2.43016 + 0.789606i
\(107\) 22.8705 + 16.6164i 0.213743 + 0.155294i 0.689506 0.724280i \(-0.257828\pi\)
−0.475762 + 0.879574i \(0.657828\pi\)
\(108\) 0 0
\(109\) 41.1765 126.728i 0.377766 1.16264i −0.563828 0.825892i \(-0.690672\pi\)
0.941594 0.336751i \(-0.109328\pi\)
\(110\) −196.195 + 270.039i −1.78359 + 2.45490i
\(111\) 0 0
\(112\) −17.8011 54.7860i −0.158938 0.489161i
\(113\) 96.5883 70.1755i 0.854764 0.621022i −0.0716917 0.997427i \(-0.522840\pi\)
0.926455 + 0.376405i \(0.122840\pi\)
\(114\) 0 0
\(115\) −10.1496 + 13.9697i −0.0882573 + 0.121476i
\(116\) −140.810 + 193.808i −1.21388 + 1.67076i
\(117\) 0 0
\(118\) −89.0710 −0.754839
\(119\) 3.68105i 0.0309332i
\(120\) 0 0
\(121\) 2.06956 6.36944i 0.0171038 0.0526400i
\(122\) 294.146 95.5738i 2.41103 0.783392i
\(123\) 0 0
\(124\) 34.0788 261.612i 0.274829 2.10978i
\(125\) −246.382 −1.97106
\(126\) 0 0
\(127\) 63.5833 + 20.6595i 0.500656 + 0.162673i 0.548449 0.836184i \(-0.315219\pi\)
−0.0477924 + 0.998857i \(0.515219\pi\)
\(128\) −150.441 + 109.302i −1.17532 + 0.853921i
\(129\) 0 0
\(130\) 69.6401i 0.535693i
\(131\) −172.109 + 125.044i −1.31381 + 0.954536i −0.313819 + 0.949483i \(0.601609\pi\)
−0.999987 + 0.00505353i \(0.998391\pi\)
\(132\) 0 0
\(133\) −17.0265 12.3705i −0.128019 0.0930111i
\(134\) −34.6979 106.789i −0.258939 0.796933i
\(135\) 0 0
\(136\) 21.7036 7.05193i 0.159585 0.0518525i
\(137\) 146.518 + 47.6066i 1.06948 + 0.347494i 0.790283 0.612741i \(-0.209933\pi\)
0.279192 + 0.960235i \(0.409933\pi\)
\(138\) 0 0
\(139\) 105.217 + 34.1869i 0.756953 + 0.245949i 0.661971 0.749530i \(-0.269720\pi\)
0.0949829 + 0.995479i \(0.469720\pi\)
\(140\) 59.7359 183.848i 0.426685 1.31320i
\(141\) 0 0
\(142\) 69.9247 215.206i 0.492427 1.51554i
\(143\) −7.36936 22.6805i −0.0515340 0.158605i
\(144\) 0 0
\(145\) −236.306 + 76.7804i −1.62970 + 0.529520i
\(146\) 150.252 206.805i 1.02913 1.41647i
\(147\) 0 0
\(148\) −30.3670 41.7966i −0.205182 0.282409i
\(149\) −68.8403 −0.462015 −0.231008 0.972952i \(-0.574202\pi\)
−0.231008 + 0.972952i \(0.574202\pi\)
\(150\) 0 0
\(151\) −21.7773 29.9739i −0.144220 0.198502i 0.730796 0.682596i \(-0.239149\pi\)
−0.875016 + 0.484094i \(0.839149\pi\)
\(152\) 40.3184 124.087i 0.265253 0.816365i
\(153\) 0 0
\(154\) 97.3110i 0.631890i
\(155\) 188.085 198.742i 1.21345 1.28221i
\(156\) 0 0
\(157\) −6.60304 20.3221i −0.0420576 0.129440i 0.927823 0.373021i \(-0.121678\pi\)
−0.969881 + 0.243581i \(0.921678\pi\)
\(158\) 313.628 + 101.904i 1.98499 + 0.644962i
\(159\) 0 0
\(160\) 135.615 0.847597
\(161\) 5.03412i 0.0312678i
\(162\) 0 0
\(163\) −52.1576 37.8947i −0.319985 0.232483i 0.416184 0.909280i \(-0.363367\pi\)
−0.736169 + 0.676797i \(0.763367\pi\)
\(164\) −461.556 335.340i −2.81437 2.04476i
\(165\) 0 0
\(166\) 187.394 + 257.926i 1.12888 + 1.55377i
\(167\) 62.8998 20.4374i 0.376646 0.122380i −0.114575 0.993415i \(-0.536551\pi\)
0.491221 + 0.871035i \(0.336551\pi\)
\(168\) 0 0
\(169\) −132.699 96.4112i −0.785199 0.570480i
\(170\) 42.4738 + 13.8006i 0.249846 + 0.0811798i
\(171\) 0 0
\(172\) −294.293 + 405.060i −1.71101 + 2.35500i
\(173\) 26.0370 80.1335i 0.150503 0.463200i −0.847175 0.531314i \(-0.821698\pi\)
0.997678 + 0.0681146i \(0.0216984\pi\)
\(174\) 0 0
\(175\) 110.158 80.0347i 0.629476 0.457341i
\(176\) 227.615 73.9565i 1.29326 0.420207i
\(177\) 0 0
\(178\) 125.106 172.193i 0.702841 0.967377i
\(179\) −33.5421 46.1667i −0.187386 0.257915i 0.704980 0.709227i \(-0.250956\pi\)
−0.892366 + 0.451313i \(0.850956\pi\)
\(180\) 0 0
\(181\) 133.782i 0.739127i −0.929206 0.369563i \(-0.879507\pi\)
0.929206 0.369563i \(-0.120493\pi\)
\(182\) 11.9336 + 16.4252i 0.0655692 + 0.0902482i
\(183\) 0 0
\(184\) 29.6813 9.64405i 0.161312 0.0524133i
\(185\) 53.5843i 0.289645i
\(186\) 0 0
\(187\) 15.2933 0.0817826
\(188\) 101.368 + 311.978i 0.539191 + 1.65946i
\(189\) 0 0
\(190\) 206.570 150.082i 1.08721 0.789906i
\(191\) −144.839 −0.758319 −0.379159 0.925331i \(-0.623787\pi\)
−0.379159 + 0.925331i \(0.623787\pi\)
\(192\) 0 0
\(193\) −20.2680 + 14.7256i −0.105016 + 0.0762984i −0.639054 0.769162i \(-0.720674\pi\)
0.534038 + 0.845460i \(0.320674\pi\)
\(194\) 36.5616 + 26.5636i 0.188462 + 0.136926i
\(195\) 0 0
\(196\) −111.448 343.002i −0.568612 1.75001i
\(197\) 80.4506 + 110.731i 0.408379 + 0.562085i 0.962822 0.270136i \(-0.0870688\pi\)
−0.554443 + 0.832221i \(0.687069\pi\)
\(198\) 0 0
\(199\) 48.4061 + 15.7281i 0.243247 + 0.0790357i 0.428103 0.903730i \(-0.359182\pi\)
−0.184856 + 0.982766i \(0.559182\pi\)
\(200\) 682.922 + 496.172i 3.41461 + 2.48086i
\(201\) 0 0
\(202\) −123.217 + 379.224i −0.609987 + 1.87735i
\(203\) 42.5775 58.6029i 0.209741 0.288684i
\(204\) 0 0
\(205\) −182.854 562.766i −0.891969 2.74520i
\(206\) 200.220 145.468i 0.971940 0.706156i
\(207\) 0 0
\(208\) −29.3496 + 40.3963i −0.141104 + 0.194213i
\(209\) 51.3945 70.7385i 0.245907 0.338462i
\(210\) 0 0
\(211\) −64.2302 −0.304409 −0.152204 0.988349i \(-0.548637\pi\)
−0.152204 + 0.988349i \(0.548637\pi\)
\(212\) 651.702i 3.07406i
\(213\) 0 0
\(214\) 30.8984 95.0957i 0.144385 0.444372i
\(215\) −493.881 + 160.472i −2.29712 + 0.746379i
\(216\) 0 0
\(217\) −10.3046 + 79.1053i −0.0474867 + 0.364541i
\(218\) −471.305 −2.16195
\(219\) 0 0
\(220\) 763.818 + 248.179i 3.47190 + 1.12809i
\(221\) −2.58137 + 1.87548i −0.0116804 + 0.00848632i
\(222\) 0 0
\(223\) 239.452i 1.07377i 0.843654 + 0.536887i \(0.180400\pi\)
−0.843654 + 0.536887i \(0.819600\pi\)
\(224\) −31.9860 + 23.2392i −0.142795 + 0.103746i
\(225\) 0 0
\(226\) −341.633 248.211i −1.51165 1.09828i
\(227\) −73.4319 226.000i −0.323489 0.995595i −0.972118 0.234491i \(-0.924658\pi\)
0.648630 0.761104i \(-0.275342\pi\)
\(228\) 0 0
\(229\) −349.938 + 113.702i −1.52811 + 0.496514i −0.948067 0.318070i \(-0.896965\pi\)
−0.580046 + 0.814584i \(0.696965\pi\)
\(230\) 58.0861 + 18.8733i 0.252548 + 0.0820579i
\(231\) 0 0
\(232\) 427.092 + 138.771i 1.84091 + 0.598149i
\(233\) −74.6446 + 229.733i −0.320363 + 0.985977i 0.653127 + 0.757248i \(0.273457\pi\)
−0.973490 + 0.228728i \(0.926543\pi\)
\(234\) 0 0
\(235\) −105.137 + 323.578i −0.447390 + 1.37693i
\(236\) 66.2267 + 203.825i 0.280622 + 0.863665i
\(237\) 0 0
\(238\) −12.3827 + 4.02337i −0.0520280 + 0.0169049i
\(239\) −261.838 + 360.389i −1.09556 + 1.50790i −0.254408 + 0.967097i \(0.581881\pi\)
−0.841148 + 0.540806i \(0.818119\pi\)
\(240\) 0 0
\(241\) −1.21971 1.67879i −0.00506105 0.00696594i 0.806479 0.591263i \(-0.201370\pi\)
−0.811540 + 0.584297i \(0.801370\pi\)
\(242\) −23.6881 −0.0978848
\(243\) 0 0
\(244\) −437.411 602.045i −1.79267 2.46740i
\(245\) 115.592 355.755i 0.471803 1.45206i
\(246\) 0 0
\(247\) 18.2427i 0.0738570i
\(248\) −486.149 + 90.7887i −1.96028 + 0.366083i
\(249\) 0 0
\(250\) 269.295 + 828.804i 1.07718 + 3.31522i
\(251\) 433.842 + 140.964i 1.72846 + 0.561609i 0.993225 0.116208i \(-0.0370738\pi\)
0.735231 + 0.677817i \(0.237074\pi\)
\(252\) 0 0
\(253\) 20.9148 0.0826672
\(254\) 236.468i 0.930977i
\(255\) 0 0
\(256\) 418.205 + 303.843i 1.63361 + 1.18689i
\(257\) 210.122 + 152.663i 0.817596 + 0.594018i 0.916023 0.401126i \(-0.131381\pi\)
−0.0984272 + 0.995144i \(0.531381\pi\)
\(258\) 0 0
\(259\) 9.18225 + 12.6383i 0.0354527 + 0.0487965i
\(260\) −159.360 + 51.7793i −0.612924 + 0.199151i
\(261\) 0 0
\(262\) 608.749 + 442.282i 2.32347 + 1.68810i
\(263\) 238.181 + 77.3895i 0.905629 + 0.294257i 0.724559 0.689213i \(-0.242044\pi\)
0.181071 + 0.983470i \(0.442044\pi\)
\(264\) 0 0
\(265\) 397.303 546.841i 1.49926 2.06355i
\(266\) −23.0031 + 70.7962i −0.0864777 + 0.266151i
\(267\) 0 0
\(268\) −218.571 + 158.801i −0.815564 + 0.592542i
\(269\) −105.828 + 34.3857i −0.393413 + 0.127828i −0.499042 0.866578i \(-0.666315\pi\)
0.105628 + 0.994406i \(0.466315\pi\)
\(270\) 0 0
\(271\) −23.5512 + 32.4155i −0.0869049 + 0.119614i −0.850256 0.526370i \(-0.823553\pi\)
0.763351 + 0.645984i \(0.223553\pi\)
\(272\) −18.8217 25.9058i −0.0691973 0.0952420i
\(273\) 0 0
\(274\) 544.905i 1.98871i
\(275\) 332.513 + 457.665i 1.20914 + 1.66424i
\(276\) 0 0
\(277\) −93.4930 + 30.3777i −0.337520 + 0.109667i −0.472873 0.881131i \(-0.656783\pi\)
0.135353 + 0.990797i \(0.456783\pi\)
\(278\) 391.303i 1.40757i
\(279\) 0 0
\(280\) −362.372 −1.29418
\(281\) −71.5798 220.300i −0.254733 0.783986i −0.993882 0.110445i \(-0.964772\pi\)
0.739150 0.673541i \(-0.235228\pi\)
\(282\) 0 0
\(283\) −56.8697 + 41.3182i −0.200953 + 0.146001i −0.683711 0.729753i \(-0.739635\pi\)
0.482758 + 0.875754i \(0.339635\pi\)
\(284\) −544.456 −1.91710
\(285\) 0 0
\(286\) −68.2402 + 49.5794i −0.238602 + 0.173355i
\(287\) 139.564 + 101.399i 0.486284 + 0.353306i
\(288\) 0 0
\(289\) 88.6736 + 272.909i 0.306829 + 0.944323i
\(290\) 516.562 + 710.987i 1.78125 + 2.45168i
\(291\) 0 0
\(292\) −584.957 190.064i −2.00328 0.650904i
\(293\) −349.682 254.059i −1.19345 0.867095i −0.199829 0.979831i \(-0.564039\pi\)
−0.993625 + 0.112735i \(0.964039\pi\)
\(294\) 0 0
\(295\) −68.6890 + 211.403i −0.232844 + 0.716621i
\(296\) −56.9250 + 78.3505i −0.192314 + 0.264698i
\(297\) 0 0
\(298\) 75.2421 + 231.571i 0.252490 + 0.777085i
\(299\) −3.53022 + 2.56485i −0.0118068 + 0.00857811i
\(300\) 0 0
\(301\) 88.9872 122.480i 0.295639 0.406911i
\(302\) −77.0264 + 106.018i −0.255054 + 0.351052i
\(303\) 0 0
\(304\) −183.078 −0.602229
\(305\) 771.837i 2.53061i
\(306\) 0 0
\(307\) 41.1089 126.520i 0.133905 0.412117i −0.861513 0.507735i \(-0.830483\pi\)
0.995418 + 0.0956180i \(0.0304827\pi\)
\(308\) −222.681 + 72.3534i −0.722990 + 0.234914i
\(309\) 0 0
\(310\) −874.123 415.472i −2.81975 1.34023i
\(311\) 498.250 1.60209 0.801045 0.598604i \(-0.204278\pi\)
0.801045 + 0.598604i \(0.204278\pi\)
\(312\) 0 0
\(313\) 573.864 + 186.460i 1.83343 + 0.595718i 0.999005 + 0.0445979i \(0.0142007\pi\)
0.834426 + 0.551120i \(0.185799\pi\)
\(314\) −61.1442 + 44.4238i −0.194727 + 0.141477i
\(315\) 0 0
\(316\) 793.458i 2.51094i
\(317\) 88.4313 64.2491i 0.278963 0.202678i −0.439502 0.898242i \(-0.644845\pi\)
0.718465 + 0.695563i \(0.244845\pi\)
\(318\) 0 0
\(319\) 243.472 + 176.893i 0.763236 + 0.554523i
\(320\) 96.0105 + 295.490i 0.300033 + 0.923406i
\(321\) 0 0
\(322\) −16.9342 + 5.50226i −0.0525908 + 0.0170878i
\(323\) −11.1263 3.61515i −0.0344467 0.0111924i
\(324\) 0 0
\(325\) −112.250 36.4723i −0.345385 0.112222i
\(326\) −70.4658 + 216.871i −0.216153 + 0.665250i
\(327\) 0 0
\(328\) −330.484 + 1017.13i −1.00757 + 3.10099i
\(329\) −30.6512 94.3348i −0.0931648 0.286732i
\(330\) 0 0
\(331\) 140.683 45.7106i 0.425024 0.138099i −0.0886918 0.996059i \(-0.528269\pi\)
0.513716 + 0.857961i \(0.328269\pi\)
\(332\) 450.890 620.597i 1.35810 1.86927i
\(333\) 0 0
\(334\) −137.498 189.250i −0.411672 0.566618i
\(335\) −280.214 −0.836459
\(336\) 0 0
\(337\) 30.8900 + 42.5164i 0.0916617 + 0.126161i 0.852385 0.522915i \(-0.175155\pi\)
−0.760723 + 0.649077i \(0.775155\pi\)
\(338\) −179.278 + 551.761i −0.530408 + 1.63243i
\(339\) 0 0
\(340\) 107.456i 0.316046i
\(341\) −328.652 42.8117i −0.963789 0.125548i
\(342\) 0 0
\(343\) 72.6644 + 223.638i 0.211849 + 0.652006i
\(344\) 892.625 + 290.031i 2.59484 + 0.843114i
\(345\) 0 0
\(346\) −298.019 −0.861326
\(347\) 541.910i 1.56170i 0.624718 + 0.780851i \(0.285214\pi\)
−0.624718 + 0.780851i \(0.714786\pi\)
\(348\) 0 0
\(349\) 247.884 + 180.098i 0.710269 + 0.516041i 0.883261 0.468882i \(-0.155343\pi\)
−0.172991 + 0.984923i \(0.555343\pi\)
\(350\) −389.630 283.083i −1.11323 0.808809i
\(351\) 0 0
\(352\) −96.5499 132.889i −0.274289 0.377527i
\(353\) −502.795 + 163.368i −1.42435 + 0.462799i −0.916981 0.398931i \(-0.869381\pi\)
−0.507368 + 0.861730i \(0.669381\pi\)
\(354\) 0 0
\(355\) −456.851 331.922i −1.28690 0.934991i
\(356\) −487.056 158.254i −1.36814 0.444534i
\(357\) 0 0
\(358\) −118.639 + 163.292i −0.331393 + 0.456123i
\(359\) 166.648 512.890i 0.464201 1.42866i −0.395784 0.918344i \(-0.629527\pi\)
0.859985 0.510320i \(-0.170473\pi\)
\(360\) 0 0
\(361\) 237.943 172.875i 0.659121 0.478879i
\(362\) −450.028 + 146.223i −1.24317 + 0.403931i
\(363\) 0 0
\(364\) 28.7135 39.5207i 0.0788832 0.108573i
\(365\) −374.965 516.095i −1.02730 1.41396i
\(366\) 0 0
\(367\) 441.199i 1.20218i −0.799182 0.601089i \(-0.794734\pi\)
0.799182 0.601089i \(-0.205266\pi\)
\(368\) −25.7401 35.4281i −0.0699458 0.0962721i
\(369\) 0 0
\(370\) −180.252 + 58.5673i −0.487167 + 0.158290i
\(371\) 197.059i 0.531156i
\(372\) 0 0
\(373\) 81.3830 0.218185 0.109093 0.994032i \(-0.465206\pi\)
0.109093 + 0.994032i \(0.465206\pi\)
\(374\) −16.7156 51.4452i −0.0446940 0.137554i
\(375\) 0 0
\(376\) 497.481 361.441i 1.32309 0.961280i
\(377\) −62.7888 −0.166549
\(378\) 0 0
\(379\) −28.1638 + 20.4622i −0.0743108 + 0.0539900i −0.624320 0.781168i \(-0.714624\pi\)
0.550010 + 0.835158i \(0.314624\pi\)
\(380\) −497.030 361.113i −1.30797 0.950298i
\(381\) 0 0
\(382\) 158.308 + 487.223i 0.414419 + 1.27545i
\(383\) 106.036 + 145.946i 0.276857 + 0.381061i 0.924690 0.380722i \(-0.124324\pi\)
−0.647833 + 0.761783i \(0.724324\pi\)
\(384\) 0 0
\(385\) −230.960 75.0435i −0.599897 0.194918i
\(386\) 71.6882 + 52.0845i 0.185721 + 0.134934i
\(387\) 0 0
\(388\) 33.6020 103.416i 0.0866031 0.266537i
\(389\) 67.2257 92.5282i 0.172817 0.237862i −0.713819 0.700330i \(-0.753036\pi\)
0.886636 + 0.462468i \(0.153036\pi\)
\(390\) 0 0
\(391\) −0.864733 2.66137i −0.00221159 0.00680658i
\(392\) −546.951 + 397.383i −1.39528 + 1.01373i
\(393\) 0 0
\(394\) 284.554 391.655i 0.722219 0.994049i
\(395\) 483.723 665.788i 1.22462 1.68554i
\(396\) 0 0
\(397\) −410.101 −1.03300 −0.516500 0.856287i \(-0.672765\pi\)
−0.516500 + 0.856287i \(0.672765\pi\)
\(398\) 180.024i 0.452321i
\(399\) 0 0
\(400\) 366.024 1126.51i 0.915059 2.81626i
\(401\) 652.806 212.109i 1.62794 0.528951i 0.654147 0.756368i \(-0.273028\pi\)
0.973798 + 0.227416i \(0.0730278\pi\)
\(402\) 0 0
\(403\) 60.7235 33.0775i 0.150679 0.0820782i
\(404\) 959.411 2.37478
\(405\) 0 0
\(406\) −243.671 79.1734i −0.600174 0.195008i
\(407\) −52.5072 + 38.1487i −0.129010 + 0.0937314i
\(408\) 0 0
\(409\) 613.235i 1.49935i −0.661804 0.749677i \(-0.730209\pi\)
0.661804 0.749677i \(-0.269791\pi\)
\(410\) −1693.23 + 1230.20i −4.12982 + 3.00049i
\(411\) 0 0
\(412\) −481.750 350.012i −1.16930 0.849543i
\(413\) −20.0254 61.6318i −0.0484876 0.149229i
\(414\) 0 0
\(415\) 756.681 245.860i 1.82333 0.592435i
\(416\) 32.5934 + 10.5902i 0.0783495 + 0.0254573i
\(417\) 0 0
\(418\) −294.131 95.5688i −0.703662 0.228634i
\(419\) −95.8862 + 295.107i −0.228845 + 0.704314i 0.769033 + 0.639209i \(0.220738\pi\)
−0.997878 + 0.0651046i \(0.979262\pi\)
\(420\) 0 0
\(421\) 5.71156 17.5784i 0.0135666 0.0417538i −0.944044 0.329819i \(-0.893012\pi\)
0.957611 + 0.288066i \(0.0930121\pi\)
\(422\) 70.2033 + 216.064i 0.166359 + 0.511999i
\(423\) 0 0
\(424\) −1161.87 + 377.513i −2.74025 + 0.890362i
\(425\) 44.4892 61.2341i 0.104680 0.144080i
\(426\) 0 0
\(427\) 132.263 + 182.044i 0.309749 + 0.426333i
\(428\) −240.585 −0.562115
\(429\) 0 0
\(430\) 1079.62 + 1485.97i 2.51074 + 3.45574i
\(431\) −25.9029 + 79.7209i −0.0600995 + 0.184967i −0.976599 0.215069i \(-0.931002\pi\)
0.916499 + 0.400036i \(0.131002\pi\)
\(432\) 0 0
\(433\) 608.121i 1.40444i 0.711962 + 0.702218i \(0.247807\pi\)
−0.711962 + 0.702218i \(0.752193\pi\)
\(434\) 277.365 51.7981i 0.639089 0.119350i
\(435\) 0 0
\(436\) 350.429 + 1078.51i 0.803735 + 2.47364i
\(437\) −15.2160 4.94399i −0.0348193 0.0113135i
\(438\) 0 0
\(439\) 433.644 0.987800 0.493900 0.869519i \(-0.335571\pi\)
0.493900 + 0.869519i \(0.335571\pi\)
\(440\) 1505.51i 3.42162i
\(441\) 0 0
\(442\) 9.13033 + 6.63357i 0.0206569 + 0.0150081i
\(443\) 196.016 + 142.414i 0.442473 + 0.321476i 0.786617 0.617441i \(-0.211831\pi\)
−0.344144 + 0.938917i \(0.611831\pi\)
\(444\) 0 0
\(445\) −312.209 429.719i −0.701594 0.965661i
\(446\) 805.490 261.719i 1.80603 0.586815i
\(447\) 0 0
\(448\) −73.2803 53.2413i −0.163572 0.118842i
\(449\) 443.545 + 144.117i 0.987851 + 0.320972i 0.758001 0.652254i \(-0.226176\pi\)
0.229850 + 0.973226i \(0.426176\pi\)
\(450\) 0 0
\(451\) −421.273 + 579.833i −0.934087 + 1.28566i
\(452\) −313.978 + 966.326i −0.694642 + 2.13789i
\(453\) 0 0
\(454\) −679.979 + 494.034i −1.49775 + 1.08818i
\(455\) 48.1868 15.6568i 0.105905 0.0344106i
\(456\) 0 0
\(457\) −199.560 + 274.671i −0.436675 + 0.601031i −0.969469 0.245214i \(-0.921142\pi\)
0.532794 + 0.846245i \(0.321142\pi\)
\(458\) 764.961 + 1052.88i 1.67022 + 2.29886i
\(459\) 0 0
\(460\) 146.954i 0.319465i
\(461\) −248.643 342.228i −0.539356 0.742359i 0.449164 0.893449i \(-0.351722\pi\)
−0.988520 + 0.151090i \(0.951722\pi\)
\(462\) 0 0
\(463\) 340.867 110.754i 0.736214 0.239210i 0.0831752 0.996535i \(-0.473494\pi\)
0.653039 + 0.757325i \(0.273494\pi\)
\(464\) 630.128i 1.35803i
\(465\) 0 0
\(466\) 854.382 1.83344
\(467\) 45.2667 + 139.317i 0.0969309 + 0.298323i 0.987752 0.156031i \(-0.0498701\pi\)
−0.890821 + 0.454354i \(0.849870\pi\)
\(468\) 0 0
\(469\) 66.0907 48.0177i 0.140918 0.102383i
\(470\) 1203.39 2.56041
\(471\) 0 0
\(472\) 325.020 236.141i 0.688601 0.500298i
\(473\) 508.858 + 369.707i 1.07581 + 0.781622i
\(474\) 0 0
\(475\) −133.725 411.564i −0.281527 0.866451i
\(476\) 18.4137 + 25.3443i 0.0386843 + 0.0532443i
\(477\) 0 0
\(478\) 1498.50 + 486.891i 3.13493 + 1.01860i
\(479\) 50.3660 + 36.5931i 0.105148 + 0.0763947i 0.639117 0.769110i \(-0.279300\pi\)
−0.533969 + 0.845504i \(0.679300\pi\)
\(480\) 0 0
\(481\) 4.18441 12.8783i 0.00869939 0.0267740i
\(482\) −4.31413 + 5.93789i −0.00895048 + 0.0123193i
\(483\) 0 0
\(484\) 17.6128 + 54.2065i 0.0363900 + 0.111997i
\(485\) 91.2419 66.2912i 0.188128 0.136683i
\(486\) 0 0
\(487\) −568.690 + 782.734i −1.16774 + 1.60726i −0.490654 + 0.871355i \(0.663242\pi\)
−0.677087 + 0.735903i \(0.736758\pi\)
\(488\) −819.957 + 1128.57i −1.68024 + 2.31265i
\(489\) 0 0
\(490\) −1323.06 −2.70012
\(491\) 487.811i 0.993505i 0.867892 + 0.496752i \(0.165474\pi\)
−0.867892 + 0.496752i \(0.834526\pi\)
\(492\) 0 0
\(493\) 12.4429 38.2952i 0.0252391 0.0776778i
\(494\) 61.3664 19.9392i 0.124223 0.0403627i
\(495\) 0 0
\(496\) 331.955 + 609.401i 0.669265 + 1.22863i
\(497\) 164.630 0.331248
\(498\) 0 0
\(499\) 272.058 + 88.3971i 0.545207 + 0.177149i 0.568654 0.822577i \(-0.307464\pi\)
−0.0234472 + 0.999725i \(0.507464\pi\)
\(500\) 1696.36 1232.48i 3.39272 2.46495i
\(501\) 0 0
\(502\) 1613.47i 3.21409i
\(503\) 245.336 178.247i 0.487746 0.354368i −0.316571 0.948569i \(-0.602531\pi\)
0.804317 + 0.594201i \(0.202531\pi\)
\(504\) 0 0
\(505\) 805.038 + 584.894i 1.59413 + 1.15821i
\(506\) −22.8598 70.3551i −0.0451774 0.139042i
\(507\) 0 0
\(508\) −541.120 + 175.821i −1.06520 + 0.346104i
\(509\) −273.051 88.7196i −0.536446 0.174302i 0.0282502 0.999601i \(-0.491006\pi\)
−0.564696 + 0.825299i \(0.691006\pi\)
\(510\) 0 0
\(511\) 176.877 + 57.4708i 0.346139 + 0.112467i
\(512\) 335.147 1031.48i 0.654585 2.01460i
\(513\) 0 0
\(514\) 283.878 873.687i 0.552292 1.69978i
\(515\) −190.854 587.387i −0.370589 1.14056i
\(516\) 0 0
\(517\) 391.924 127.344i 0.758074 0.246313i
\(518\) 32.4777 44.7017i 0.0626982 0.0862967i
\(519\) 0 0
\(520\) 184.626 + 254.116i 0.355051 + 0.488685i
\(521\) −285.592 −0.548161 −0.274081 0.961707i \(-0.588374\pi\)
−0.274081 + 0.961707i \(0.588374\pi\)
\(522\) 0 0
\(523\) −140.119 192.857i −0.267914 0.368752i 0.653770 0.756693i \(-0.273186\pi\)
−0.921684 + 0.387941i \(0.873186\pi\)
\(524\) 559.471 1721.88i 1.06769 3.28602i
\(525\) 0 0
\(526\) 885.800i 1.68403i
\(527\) 8.14056 + 43.5905i 0.0154470 + 0.0827144i
\(528\) 0 0
\(529\) 162.287 + 499.469i 0.306781 + 0.944176i
\(530\) −2273.76 738.790i −4.29012 1.39394i
\(531\) 0 0
\(532\) 179.109 0.336672
\(533\) 149.532i 0.280549i
\(534\) 0 0
\(535\) −201.874 146.670i −0.377335 0.274150i
\(536\) 409.727 + 297.684i 0.764415 + 0.555380i
\(537\) 0 0
\(538\) 231.339 + 318.411i 0.429999 + 0.591843i
\(539\) −430.898 + 140.007i −0.799439 + 0.259753i
\(540\) 0 0
\(541\) −503.228 365.617i −0.930182 0.675817i 0.0158556 0.999874i \(-0.494953\pi\)
−0.946037 + 0.324058i \(0.894953\pi\)
\(542\) 134.784 + 43.7938i 0.248678 + 0.0808004i
\(543\) 0 0
\(544\) −12.9181 + 17.7802i −0.0237464 + 0.0326842i
\(545\) −363.458 + 1118.61i −0.666895 + 2.05249i
\(546\) 0 0
\(547\) 220.311 160.066i 0.402763 0.292625i −0.367902 0.929864i \(-0.619924\pi\)
0.770666 + 0.637240i \(0.219924\pi\)
\(548\) −1246.93 + 405.152i −2.27542 + 0.739328i
\(549\) 0 0
\(550\) 1176.10 1618.76i 2.13836 2.94321i
\(551\) −135.317 186.248i −0.245584 0.338018i
\(552\) 0 0
\(553\) 239.923i 0.433857i
\(554\) 204.375 + 281.298i 0.368907 + 0.507757i
\(555\) 0 0
\(556\) −895.436 + 290.945i −1.61050 + 0.523282i
\(557\) 495.225i 0.889093i −0.895756 0.444547i \(-0.853365\pi\)
0.895756 0.444547i \(-0.146635\pi\)
\(558\) 0 0
\(559\) −131.229 −0.234757
\(560\) 157.127 + 483.587i 0.280584 + 0.863548i
\(561\) 0 0
\(562\) −662.829 + 481.574i −1.17941 + 0.856893i
\(563\) 408.055 0.724786 0.362393 0.932025i \(-0.381960\pi\)
0.362393 + 0.932025i \(0.381960\pi\)
\(564\) 0 0
\(565\) −852.568 + 619.427i −1.50897 + 1.09633i
\(566\) 201.148 + 146.143i 0.355386 + 0.258203i
\(567\) 0 0
\(568\) 315.389 + 970.667i 0.555262 + 1.70892i
\(569\) −428.278 589.474i −0.752685 1.03598i −0.997787 0.0664854i \(-0.978821\pi\)
0.245102 0.969497i \(-0.421179\pi\)
\(570\) 0 0
\(571\) −70.3591 22.8611i −0.123221 0.0400369i 0.246757 0.969077i \(-0.420635\pi\)
−0.369978 + 0.929040i \(0.620635\pi\)
\(572\) 164.193 + 119.293i 0.287051 + 0.208555i
\(573\) 0 0
\(574\) 188.553 580.305i 0.328489 1.01098i
\(575\) 60.8423 83.7422i 0.105813 0.145639i
\(576\) 0 0
\(577\) −205.039 631.046i −0.355354 1.09367i −0.955804 0.294005i \(-0.905012\pi\)
0.600450 0.799663i \(-0.294988\pi\)
\(578\) 821.118 596.577i 1.42062 1.03214i
\(579\) 0 0
\(580\) 1242.90 1710.71i 2.14294 2.94950i
\(581\) −136.338 + 187.654i −0.234662 + 0.322984i
\(582\) 0 0
\(583\) −818.704 −1.40429
\(584\) 1152.97i 1.97427i
\(585\) 0 0
\(586\) −472.426 + 1453.98i −0.806188 + 2.48119i
\(587\) −547.895 + 178.022i −0.933381 + 0.303274i −0.735944 0.677042i \(-0.763262\pi\)
−0.197436 + 0.980316i \(0.563262\pi\)
\(588\) 0 0
\(589\) 228.982 + 108.836i 0.388764 + 0.184780i
\(590\) 786.214 1.33257
\(591\) 0 0
\(592\) 129.242 + 41.9933i 0.218315 + 0.0709347i
\(593\) −190.989 + 138.761i −0.322072 + 0.233999i −0.737059 0.675828i \(-0.763786\pi\)
0.414987 + 0.909827i \(0.363786\pi\)
\(594\) 0 0
\(595\) 32.4920i 0.0546085i
\(596\) 473.970 344.359i 0.795251 0.577784i
\(597\) 0 0
\(598\) 12.4864 + 9.07191i 0.0208803 + 0.0151704i
\(599\) 234.612 + 722.060i 0.391672 + 1.20544i 0.931523 + 0.363682i \(0.118481\pi\)
−0.539851 + 0.841761i \(0.681519\pi\)
\(600\) 0 0
\(601\) −529.221 + 171.954i −0.880567 + 0.286114i −0.714193 0.699949i \(-0.753206\pi\)
−0.166374 + 0.986063i \(0.553206\pi\)
\(602\) −509.273 165.473i −0.845969 0.274872i
\(603\) 0 0
\(604\) 299.876 + 97.4357i 0.496484 + 0.161317i
\(605\) −18.2676 + 56.2220i −0.0301944 + 0.0929289i
\(606\) 0 0
\(607\) −61.5468 + 189.421i −0.101395 + 0.312062i −0.988867 0.148799i \(-0.952459\pi\)
0.887472 + 0.460861i \(0.152459\pi\)
\(608\) 38.8290 + 119.504i 0.0638636 + 0.196552i
\(609\) 0 0
\(610\) −2596.38 + 843.614i −4.25635 + 1.38297i
\(611\) −50.5365 + 69.5575i −0.0827111 + 0.113842i
\(612\) 0 0
\(613\) −558.852 769.194i −0.911668 1.25480i −0.966594 0.256312i \(-0.917492\pi\)
0.0549264 0.998490i \(-0.482508\pi\)
\(614\) −470.532 −0.766338
\(615\) 0 0
\(616\) 257.986 + 355.088i 0.418809 + 0.576441i
\(617\) 76.8309 236.461i 0.124523 0.383244i −0.869291 0.494301i \(-0.835424\pi\)
0.993814 + 0.111058i \(0.0354239\pi\)
\(618\) 0 0
\(619\) 45.3246i 0.0732223i 0.999330 + 0.0366112i \(0.0116563\pi\)
−0.999330 + 0.0366112i \(0.988344\pi\)
\(620\) −300.808 + 2309.21i −0.485174 + 3.72453i
\(621\) 0 0
\(622\) −544.585 1676.06i −0.875538 2.69463i
\(623\) 147.274 + 47.8523i 0.236395 + 0.0768094i
\(624\) 0 0
\(625\) 851.953 1.36312
\(626\) 2134.22i 3.40929i
\(627\) 0 0
\(628\) 147.119 + 106.888i 0.234266 + 0.170205i
\(629\) 7.02529 + 5.10417i 0.0111690 + 0.00811474i
\(630\) 0 0
\(631\) −578.834 796.697i −0.917328 1.26259i −0.964602 0.263712i \(-0.915053\pi\)
0.0472736 0.998882i \(-0.484947\pi\)
\(632\) −1414.59 + 459.629i −2.23828 + 0.727261i
\(633\) 0 0
\(634\) −312.782 227.249i −0.493347 0.358437i
\(635\) −561.239 182.358i −0.883841 0.287177i
\(636\) 0 0
\(637\) 55.5619 76.4744i 0.0872243 0.120054i
\(638\) 328.935 1012.36i 0.515572 1.58677i
\(639\) 0 0
\(640\) 1327.92 964.789i 2.07487 1.50748i
\(641\) −231.242 + 75.1352i −0.360753 + 0.117216i −0.483785 0.875187i \(-0.660738\pi\)
0.123032 + 0.992403i \(0.460738\pi\)
\(642\) 0 0
\(643\) −351.097 + 483.243i −0.546029 + 0.751544i −0.989467 0.144761i \(-0.953759\pi\)
0.443438 + 0.896305i \(0.353759\pi\)
\(644\) 25.1821 + 34.6602i 0.0391027 + 0.0538202i
\(645\) 0 0
\(646\) 41.3790i 0.0640541i
\(647\) −499.498 687.500i −0.772022 1.06260i −0.996118 0.0880296i \(-0.971943\pi\)
0.224096 0.974567i \(-0.428057\pi\)
\(648\) 0 0
\(649\) 256.056 83.1977i 0.394539 0.128194i
\(650\) 417.461i 0.642248i
\(651\) 0 0
\(652\) 548.669 0.841517
\(653\) −215.935 664.580i −0.330682 1.01773i −0.968810 0.247804i \(-0.920291\pi\)
0.638129 0.769930i \(-0.279709\pi\)
\(654\) 0 0
\(655\) 1519.17 1103.74i 2.31935 1.68511i
\(656\) 1500.66 2.28759
\(657\) 0 0
\(658\) −283.830 + 206.215i −0.431353 + 0.313396i
\(659\) 280.419 + 203.736i 0.425522 + 0.309160i 0.779856 0.625959i \(-0.215292\pi\)
−0.354334 + 0.935119i \(0.615292\pi\)
\(660\) 0 0
\(661\) 136.527 + 420.188i 0.206547 + 0.635685i 0.999646 + 0.0265933i \(0.00846592\pi\)
−0.793100 + 0.609092i \(0.791534\pi\)
\(662\) −307.531 423.281i −0.464549 0.639397i
\(663\) 0 0
\(664\) −1367.60 444.361i −2.05964 0.669218i
\(665\) 150.290 + 109.192i 0.226000 + 0.164199i
\(666\) 0 0
\(667\) 17.0165 52.3715i 0.0255121 0.0785180i
\(668\) −330.836 + 455.356i −0.495263 + 0.681671i
\(669\) 0 0
\(670\) 306.272 + 942.609i 0.457123 + 1.40688i
\(671\) −756.322 + 549.500i −1.12716 + 0.818927i
\(672\) 0 0
\(673\) −10.1557 + 13.9782i −0.0150903 + 0.0207700i −0.816495 0.577352i \(-0.804086\pi\)
0.801405 + 0.598122i \(0.204086\pi\)
\(674\) 109.258 150.381i 0.162104 0.223117i
\(675\) 0 0
\(676\) 1395.92 2.06496
\(677\) 879.412i 1.29898i 0.760369 + 0.649492i \(0.225018\pi\)
−0.760369 + 0.649492i \(0.774982\pi\)
\(678\) 0 0
\(679\) −10.1604 + 31.2706i −0.0149638 + 0.0460539i
\(680\) −191.574 + 62.2462i −0.281727 + 0.0915386i
\(681\) 0 0
\(682\) 215.201 + 1152.34i 0.315544 + 1.68965i
\(683\) 1008.40 1.47643 0.738214 0.674566i \(-0.235669\pi\)
0.738214 + 0.674566i \(0.235669\pi\)
\(684\) 0 0
\(685\) −1293.29 420.216i −1.88802 0.613454i
\(686\) 672.872 488.870i 0.980863 0.712639i
\(687\) 0 0
\(688\) 1316.97i 1.91420i
\(689\) 138.189 100.400i 0.200565 0.145719i
\(690\) 0 0
\(691\) −1092.52 793.762i −1.58107 1.14871i −0.915456 0.402418i \(-0.868170\pi\)
−0.665614 0.746297i \(-0.731830\pi\)
\(692\) 221.585 + 681.969i 0.320210 + 0.985504i
\(693\) 0 0
\(694\) 1822.93 592.305i 2.62670 0.853466i
\(695\) −928.728 301.762i −1.33630 0.434190i
\(696\) 0 0
\(697\) 91.2005 + 29.6328i 0.130847 + 0.0425148i
\(698\) 334.895 1030.70i 0.479793 1.47665i
\(699\) 0 0
\(700\) −358.090 + 1102.09i −0.511557 + 1.57441i
\(701\) 290.266 + 893.346i 0.414074 + 1.27439i 0.913077 + 0.407787i \(0.133700\pi\)
−0.499003 + 0.866600i \(0.666300\pi\)
\(702\) 0 0
\(703\) 47.2181 15.3421i 0.0671666 0.0218238i
\(704\) 221.197 304.451i 0.314200 0.432459i
\(705\) 0 0
\(706\) 1099.10 + 1512.79i 1.55681 + 2.14276i
\(707\) −290.103 −0.410329
\(708\) 0 0
\(709\) 86.1836 + 118.622i 0.121557 + 0.167308i 0.865459 0.500980i \(-0.167027\pi\)
−0.743902 + 0.668289i \(0.767027\pi\)
\(710\) −617.213 + 1899.59i −0.869314 + 2.67547i
\(711\) 0 0
\(712\) 960.006i 1.34832i
\(713\) 11.1328 + 59.6133i 0.0156141 + 0.0836091i
\(714\) 0 0
\(715\) 65.0480 + 200.197i 0.0909763 + 0.279996i
\(716\) 461.879 + 150.074i 0.645082 + 0.209600i
\(717\) 0 0
\(718\) −1907.45 −2.65662
\(719\) 327.196i 0.455071i −0.973770 0.227536i \(-0.926933\pi\)
0.973770 0.227536i \(-0.0730668\pi\)
\(720\) 0 0
\(721\) 145.670 + 105.835i 0.202038 + 0.146789i
\(722\) −841.605 611.462i −1.16566 0.846900i
\(723\) 0 0
\(724\) 669.216 + 921.097i 0.924332 + 1.27223i
\(725\) 1416.55 460.265i 1.95386 0.634848i
\(726\) 0 0
\(727\) 468.043 + 340.053i 0.643800 + 0.467748i 0.861154 0.508345i \(-0.169742\pi\)
−0.217354 + 0.976093i \(0.569742\pi\)
\(728\) −87.0913 28.2977i −0.119631 0.0388704i
\(729\) 0 0
\(730\) −1326.25 + 1825.43i −1.81678 + 2.50059i
\(731\) 26.0056 80.0371i 0.0355754 0.109490i
\(732\) 0 0
\(733\) −333.818 + 242.533i −0.455414 + 0.330877i −0.791730 0.610872i \(-0.790819\pi\)
0.336316 + 0.941749i \(0.390819\pi\)
\(734\) −1484.15 + 482.229i −2.02200 + 0.656987i
\(735\) 0 0
\(736\) −17.6664 + 24.3157i −0.0240033 + 0.0330377i
\(737\) 199.495 + 274.581i 0.270685 + 0.372566i
\(738\) 0 0
\(739\) 484.270i 0.655305i −0.944798 0.327653i \(-0.893742\pi\)
0.944798 0.327653i \(-0.106258\pi\)
\(740\) 268.044 + 368.931i 0.362222 + 0.498556i
\(741\) 0 0
\(742\) 662.885 215.384i 0.893376 0.290276i
\(743\) 1194.64i 1.60786i 0.594724 + 0.803930i \(0.297261\pi\)
−0.594724 + 0.803930i \(0.702739\pi\)
\(744\) 0 0
\(745\) 607.641 0.815626
\(746\) −88.9512 273.764i −0.119238 0.366975i
\(747\) 0 0
\(748\) −105.296 + 76.5018i −0.140770 + 0.102275i
\(749\) 72.7472 0.0971258
\(750\) 0 0
\(751\) 211.035 153.326i 0.281005 0.204162i −0.438350 0.898804i \(-0.644437\pi\)
0.719356 + 0.694642i \(0.244437\pi\)
\(752\) −698.056 507.168i −0.928267 0.674425i
\(753\) 0 0
\(754\) 68.6279 + 211.215i 0.0910184 + 0.280126i
\(755\) 192.224 + 264.574i 0.254602 + 0.350429i
\(756\) 0 0
\(757\) 636.366 + 206.768i 0.840641 + 0.273141i 0.697521 0.716564i \(-0.254286\pi\)
0.143120 + 0.989705i \(0.454286\pi\)
\(758\) 99.6155 + 72.3749i 0.131419 + 0.0954814i
\(759\) 0 0
\(760\) −355.884 + 1095.30i −0.468268 + 1.44118i
\(761\) 305.231 420.114i 0.401091 0.552055i −0.559926 0.828543i \(-0.689170\pi\)
0.961017 + 0.276488i \(0.0891705\pi\)
\(762\) 0 0
\(763\) −105.961 326.115i −0.138874 0.427412i
\(764\) 997.225 724.527i 1.30527 0.948333i
\(765\) 0 0
\(766\) 375.051 516.213i 0.489622 0.673907i
\(767\) −33.0170 + 45.4440i −0.0430470 + 0.0592491i
\(768\) 0 0
\(769\) 559.218 0.727202 0.363601 0.931555i \(-0.381547\pi\)
0.363601 + 0.931555i \(0.381547\pi\)
\(770\) 858.948i 1.11552i
\(771\) 0 0
\(772\) 65.8851 202.773i 0.0853434 0.262660i
\(773\) −1128.97 + 366.823i −1.46050 + 0.474545i −0.928222 0.372026i \(-0.878663\pi\)
−0.532276 + 0.846571i \(0.678663\pi\)
\(774\) 0 0
\(775\) −1127.48 + 1191.37i −1.45482 + 1.53725i
\(776\) −203.837 −0.262677
\(777\) 0 0
\(778\) −384.732 125.007i −0.494515 0.160678i
\(779\) 443.551 322.259i 0.569386 0.413683i
\(780\) 0 0
\(781\) 683.976i 0.875769i
\(782\) −8.00743 + 5.81774i −0.0102397 + 0.00743956i
\(783\) 0 0
\(784\) 767.472 + 557.601i 0.978918 + 0.711226i
\(785\) 58.2839 + 179.379i 0.0742470 + 0.228509i
\(786\) 0 0
\(787\) 60.0244 19.5031i 0.0762699 0.0247816i −0.270634 0.962682i \(-0.587233\pi\)
0.346903 + 0.937901i \(0.387233\pi\)
\(788\) −1107.82 359.951i −1.40586 0.456791i
\(789\) 0 0
\(790\) −2768.34 899.490i −3.50423 1.13859i
\(791\) 94.9395 292.194i 0.120025 0.369398i
\(792\) 0 0
\(793\) 60.2729 185.501i 0.0760062 0.233923i
\(794\) 448.238 + 1379.54i 0.564532 + 1.73745i
\(795\) 0 0
\(796\) −411.956 + 133.853i −0.517533 + 0.168157i
\(797\) 464.198 638.914i 0.582432 0.801649i −0.411527 0.911397i \(-0.635005\pi\)
0.993959 + 0.109749i \(0.0350045\pi\)
\(798\) 0 0
\(799\) −32.4086 44.6066i −0.0405615 0.0558281i
\(800\) −812.954 −1.01619
\(801\) 0 0
\(802\) −1427.03 1964.13i −1.77933 2.44904i
\(803\) −238.769 + 734.855i −0.297346 + 0.915137i
\(804\) 0 0
\(805\) 44.4353i 0.0551991i
\(806\) −177.640 168.114i −0.220397 0.208578i
\(807\) 0 0
\(808\) −555.761 1710.46i −0.687823 2.11690i
\(809\) −557.372 181.101i −0.688965 0.223858i −0.0564487 0.998405i \(-0.517978\pi\)
−0.632516 + 0.774547i \(0.717978\pi\)
\(810\) 0 0
\(811\) −1257.33 −1.55034 −0.775170 0.631753i \(-0.782336\pi\)
−0.775170 + 0.631753i \(0.782336\pi\)
\(812\) 616.470i 0.759199i
\(813\) 0 0
\(814\) 185.718 + 134.932i 0.228155 + 0.165764i
\(815\) 460.386 + 334.490i 0.564891 + 0.410418i
\(816\) 0 0
\(817\) −282.813 389.259i −0.346160 0.476449i
\(818\) −2062.86 + 670.263i −2.52183 + 0.819393i
\(819\) 0 0
\(820\) 4074.08 + 2959.99i 4.96839 + 3.60975i
\(821\) −697.843 226.743i −0.849992 0.276179i −0.148549 0.988905i \(-0.547460\pi\)
−0.701443 + 0.712726i \(0.747460\pi\)
\(822\) 0 0
\(823\) 843.839 1161.44i 1.02532 1.41123i 0.116915 0.993142i \(-0.462700\pi\)
0.908406 0.418090i \(-0.137300\pi\)
\(824\) −344.943 + 1061.63i −0.418620 + 1.28838i
\(825\) 0 0
\(826\) −185.435 + 134.726i −0.224498 + 0.163107i
\(827\) 654.954 212.807i 0.791964 0.257325i 0.115024 0.993363i \(-0.463306\pi\)
0.676940 + 0.736038i \(0.263306\pi\)
\(828\) 0 0
\(829\) −207.064 + 284.999i −0.249776 + 0.343787i −0.915433 0.402471i \(-0.868151\pi\)
0.665657 + 0.746258i \(0.268151\pi\)
\(830\) −1654.10 2276.67i −1.99289 2.74297i
\(831\) 0 0
\(832\) 78.5146i 0.0943685i
\(833\) 35.6314 + 49.0424i 0.0427747 + 0.0588744i
\(834\) 0 0
\(835\) −555.206 + 180.397i −0.664917 + 0.216045i
\(836\) 744.130i 0.890107i
\(837\) 0 0
\(838\) 1097.51 1.30968
\(839\) 82.9070 + 255.162i 0.0988165 + 0.304126i 0.988229 0.152979i \(-0.0488866\pi\)
−0.889413 + 0.457104i \(0.848887\pi\)
\(840\) 0 0
\(841\) −39.3439 + 28.5850i −0.0467823 + 0.0339893i
\(842\) −65.3744 −0.0776418
\(843\) 0 0
\(844\) 442.229 321.298i 0.523968 0.380685i
\(845\) 1171.31 + 851.005i 1.38616 + 1.00711i
\(846\) 0 0
\(847\) −5.32568 16.3908i −0.00628770 0.0193516i
\(848\) 1007.59 + 1386.82i 1.18819 + 1.63541i
\(849\) 0 0
\(850\) −254.611 82.7283i −0.299543 0.0973274i
\(851\) 9.60761 + 6.98034i 0.0112898 + 0.00820252i
\(852\) 0 0
\(853\) 271.541 835.717i 0.318336 0.979739i −0.656023 0.754741i \(-0.727763\pi\)
0.974359 0.224998i \(-0.0722375\pi\)
\(854\) 467.814 643.891i 0.547792 0.753970i
\(855\) 0 0
\(856\) 139.365 + 428.920i 0.162809 + 0.501075i
\(857\) −236.019 + 171.478i −0.275401 + 0.200090i −0.716909 0.697167i \(-0.754444\pi\)
0.441508 + 0.897257i \(0.354444\pi\)
\(858\) 0 0
\(859\) −665.151 + 915.502i −0.774332 + 1.06578i 0.221552 + 0.975148i \(0.428888\pi\)
−0.995885 + 0.0906286i \(0.971112\pi\)
\(860\) 2597.67 3575.39i 3.02055 4.15743i
\(861\) 0 0
\(862\) 296.484 0.343949
\(863\) 1140.02i 1.32100i −0.750826 0.660500i \(-0.770344\pi\)
0.750826 0.660500i \(-0.229656\pi\)
\(864\) 0 0
\(865\) −229.824 + 707.325i −0.265692 + 0.817717i
\(866\) 2045.65 664.673i 2.36219 0.767521i
\(867\) 0 0
\(868\) −324.760 596.192i −0.374148 0.686857i
\(869\) −996.786 −1.14705
\(870\) 0 0
\(871\) −67.3457 21.8819i −0.0773200 0.0251228i
\(872\) 1719.79 1249.50i 1.97224 1.43292i
\(873\) 0 0
\(874\) 56.5888i 0.0647470i
\(875\) −512.938 + 372.672i −0.586215 + 0.425910i
\(876\) 0 0
\(877\) 909.106 + 660.504i 1.03661 + 0.753140i 0.969621 0.244613i \(-0.0786611\pi\)
0.0669880 + 0.997754i \(0.478661\pi\)
\(878\) −473.971 1458.73i −0.539830 1.66143i
\(879\) 0 0
\(880\) −2009.11 + 652.801i −2.28309 + 0.741819i
\(881\) −555.443 180.474i −0.630469 0.204852i −0.0236860 0.999719i \(-0.507540\pi\)
−0.606783 + 0.794868i \(0.707540\pi\)
\(882\) 0 0
\(883\) 1387.15 + 450.713i 1.57095 + 0.510434i 0.959706 0.281005i \(-0.0906677\pi\)
0.611248 + 0.791439i \(0.290668\pi\)
\(884\) 8.39123 25.8256i 0.00949235 0.0292144i
\(885\) 0 0
\(886\) 264.820 815.033i 0.298894 0.919902i
\(887\) 80.5351 + 247.862i 0.0907949 + 0.279438i 0.986135 0.165945i \(-0.0530675\pi\)
−0.895340 + 0.445383i \(0.853067\pi\)
\(888\) 0 0
\(889\) 163.622 53.1640i 0.184052 0.0598020i
\(890\) −1104.29 + 1519.92i −1.24077 + 1.70777i
\(891\) 0 0
\(892\) −1197.81 1648.64i −1.34283 1.84825i
\(893\) −315.237 −0.353009
\(894\) 0 0
\(895\) 296.070 + 407.506i 0.330805 + 0.455314i
\(896\) −147.873 + 455.107i −0.165037 + 0.507932i
\(897\) 0 0
\(898\) 1649.56i 1.83692i
\(899\) −374.598 + 788.126i −0.416683 + 0.876670i
\(900\) 0 0
\(901\) 33.8497 + 104.179i 0.0375690 + 0.115626i
\(902\) 2410.94 + 783.363i 2.67289 + 0.868473i
\(903\) 0 0
\(904\) 1904.66 2.10693
\(905\) 1180.87i 1.30483i
\(906\) 0 0
\(907\) 1245.31 + 904.769i 1.37300 + 0.997540i 0.997496 + 0.0707175i \(0.0225289\pi\)
0.375500 + 0.926823i \(0.377471\pi\)
\(908\) 1636.10 + 1188.70i 1.80187 + 1.30914i
\(909\) 0 0
\(910\) −105.336 144.982i −0.115754 0.159321i
\(911\) 971.241 315.575i 1.06613 0.346406i 0.277149 0.960827i \(-0.410611\pi\)
0.788978 + 0.614422i \(0.210611\pi\)
\(912\) 0 0
\(913\) −779.628 566.433i −0.853919 0.620409i
\(914\) 1142.08 + 371.085i 1.24954 + 0.406001i
\(915\) 0 0
\(916\) 1840.58 2533.34i 2.00936 2.76565i
\(917\) −169.171 + 520.654i −0.184483 + 0.567780i
\(918\) 0 0
\(919\) −1098.42 + 798.050i −1.19524 + 0.868390i −0.993808 0.111113i \(-0.964558\pi\)
−0.201428 + 0.979503i \(0.564558\pi\)
\(920\) −261.992 + 85.1264i −0.284774 + 0.0925287i
\(921\) 0 0
\(922\) −879.452 + 1210.46i −0.953852 + 1.31286i
\(923\) −83.8783 115.449i −0.0908757 0.125080i
\(924\) 0 0
\(925\) 321.214i 0.347258i
\(926\) −745.132 1025.59i −0.804678 1.10754i
\(927\) 0 0
\(928\) −411.315 + 133.644i −0.443227 + 0.144013i
\(929\) 1535.49i 1.65285i −0.563049 0.826423i \(-0.690372\pi\)
0.563049 0.826423i \(-0.309628\pi\)
\(930\) 0 0
\(931\) 346.585 0.372271
\(932\) −635.256 1955.12i −0.681606 2.09777i
\(933\) 0 0
\(934\) 419.170 304.545i 0.448790 0.326065i
\(935\) −134.992 −0.144376
\(936\) 0 0
\(937\) −82.5709 + 59.9913i −0.0881226 + 0.0640249i −0.630974 0.775804i \(-0.717345\pi\)
0.542852 + 0.839829i \(0.317345\pi\)
\(938\) −233.763 169.839i −0.249214 0.181065i
\(939\) 0 0
\(940\) −894.757 2753.78i −0.951869 2.92955i
\(941\) −746.278 1027.16i −0.793069 1.09157i −0.993719 0.111903i \(-0.964305\pi\)
0.200650 0.979663i \(-0.435695\pi\)
\(942\) 0 0
\(943\) 124.723 + 40.5251i 0.132262 + 0.0429747i
\(944\) −456.061 331.348i −0.483116 0.351004i
\(945\) 0 0
\(946\) 687.476 2115.83i 0.726719 2.23661i
\(947\) 582.450 801.674i 0.615048 0.846541i −0.381933 0.924190i \(-0.624741\pi\)
0.996981 + 0.0776491i \(0.0247414\pi\)
\(948\) 0 0
\(949\) −49.8159 153.318i −0.0524931 0.161557i
\(950\) −1238.30 + 899.675i −1.30347 + 0.947027i
\(951\) 0 0
\(952\) 34.5178 47.5096i 0.0362581 0.0499051i
\(953\) −314.054 + 432.258i −0.329542 + 0.453576i −0.941351 0.337430i \(-0.890442\pi\)
0.611808 + 0.791006i \(0.290442\pi\)
\(954\) 0 0
\(955\) 1278.47 1.33871
\(956\) 3791.09i 3.96557i
\(957\) 0 0
\(958\) 68.0453 209.422i 0.0710285 0.218603i
\(959\) 377.042 122.508i 0.393161 0.127746i
\(960\) 0 0
\(961\) −52.9136 959.542i −0.0550610 0.998483i
\(962\) −47.8947 −0.0497866
\(963\) 0 0
\(964\) 16.7956 + 5.45722i 0.0174228 + 0.00566102i
\(965\) 178.903 129.980i 0.185391 0.134695i
\(966\) 0 0
\(967\) 396.208i 0.409729i 0.978790 + 0.204865i \(0.0656754\pi\)
−0.978790 + 0.204865i \(0.934325\pi\)
\(968\) 86.4379 62.8008i 0.0892954 0.0648769i
\(969\) 0 0
\(970\) −322.723 234.472i −0.332704 0.241724i
\(971\) −200.452 616.927i −0.206439 0.635353i −0.999651 0.0264079i \(-0.991593\pi\)
0.793213 0.608945i \(-0.208407\pi\)
\(972\) 0 0
\(973\) 270.758 87.9747i 0.278272 0.0904160i
\(974\) 3254.61 + 1057.49i 3.34149 + 1.08572i
\(975\) 0 0
\(976\) 1861.63 + 604.879i 1.90740 + 0.619753i
\(977\) 413.927 1273.94i 0.423671 1.30393i −0.480590 0.876946i \(-0.659577\pi\)
0.904261 0.426980i \(-0.140423\pi\)
\(978\) 0 0
\(979\) −198.808 + 611.867i −0.203072 + 0.624992i
\(980\) 983.732 + 3027.62i 1.00381 + 3.08940i
\(981\) 0 0
\(982\) 1640.94 533.175i 1.67102 0.542948i
\(983\) −842.335 + 1159.37i −0.856902 + 1.17943i 0.125397 + 0.992107i \(0.459980\pi\)
−0.982299 + 0.187318i \(0.940020\pi\)
\(984\) 0 0
\(985\) −710.124 977.401i −0.720938 0.992286i
\(986\) −142.421 −0.144443
\(987\) 0 0
\(988\) −91.2552 125.602i −0.0923636 0.127128i
\(989\) 35.5647 109.457i 0.0359602 0.110674i
\(990\) 0 0
\(991\) 1165.24i 1.17582i −0.808926 0.587910i \(-0.799951\pi\)
0.808926 0.587910i \(-0.200049\pi\)
\(992\) 327.381 345.931i 0.330021 0.348721i
\(993\) 0 0
\(994\) −179.940 553.799i −0.181026 0.557142i
\(995\) −427.273 138.829i −0.429420 0.139527i
\(996\) 0 0
\(997\) −24.6995 −0.0247738 −0.0123869 0.999923i \(-0.503943\pi\)
−0.0123869 + 0.999923i \(0.503943\pi\)
\(998\) 1011.79i 1.01382i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 279.3.v.a.244.1 20
3.2 odd 2 31.3.f.a.27.5 yes 20
31.23 odd 10 inner 279.3.v.a.271.1 20
93.23 even 10 31.3.f.a.23.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
31.3.f.a.23.5 20 93.23 even 10
31.3.f.a.27.5 yes 20 3.2 odd 2
279.3.v.a.244.1 20 1.1 even 1 trivial
279.3.v.a.271.1 20 31.23 odd 10 inner