Properties

Label 275.4.b.f.199.8
Level $275$
Weight $4$
Character 275.199
Analytic conductor $16.226$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,4,Mod(199,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.199"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-80] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.2255252516\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 80x^{8} + 2296x^{6} + 27417x^{4} + 110472x^{2} + 21904 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 199.8
Root \(4.72095i\) of defining polynomial
Character \(\chi\) \(=\) 275.199
Dual form 275.4.b.f.199.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.72095i q^{2} +8.29546i q^{3} -14.2874 q^{4} -39.1625 q^{6} +5.48389i q^{7} -29.6825i q^{8} -41.8147 q^{9} -11.0000 q^{11} -118.521i q^{12} -84.9102i q^{13} -25.8892 q^{14} +25.8306 q^{16} +119.626i q^{17} -197.405i q^{18} +54.4593 q^{19} -45.4914 q^{21} -51.9305i q^{22} -83.8353i q^{23} +246.230 q^{24} +400.857 q^{26} -122.895i q^{27} -78.3505i q^{28} -296.062 q^{29} -18.7281 q^{31} -115.515i q^{32} -91.2501i q^{33} -564.750 q^{34} +597.424 q^{36} +188.075i q^{37} +257.100i q^{38} +704.369 q^{39} -209.594 q^{41} -214.763i q^{42} +183.046i q^{43} +157.161 q^{44} +395.782 q^{46} +142.669i q^{47} +214.277i q^{48} +312.927 q^{49} -992.355 q^{51} +1213.15i q^{52} +610.881i q^{53} +580.182 q^{54} +162.776 q^{56} +451.766i q^{57} -1397.70i q^{58} -657.261 q^{59} +171.698 q^{61} -88.4144i q^{62} -229.307i q^{63} +751.986 q^{64} +430.788 q^{66} +116.641i q^{67} -1709.15i q^{68} +695.452 q^{69} -595.308 q^{71} +1241.17i q^{72} -629.849i q^{73} -887.895 q^{74} -778.082 q^{76} -60.3228i q^{77} +3325.29i q^{78} +935.886 q^{79} -109.526 q^{81} -989.485i q^{82} -81.2520i q^{83} +649.954 q^{84} -864.154 q^{86} -2455.98i q^{87} +326.508i q^{88} +245.174 q^{89} +465.638 q^{91} +1197.79i q^{92} -155.358i q^{93} -673.535 q^{94} +958.251 q^{96} -395.976i q^{97} +1477.31i q^{98} +459.962 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 80 q^{4} - 84 q^{6} - 62 q^{9} - 110 q^{11} + 266 q^{14} + 416 q^{16} - 46 q^{19} + 564 q^{21} + 982 q^{24} + 644 q^{26} + 366 q^{29} - 2 q^{31} + 1300 q^{34} + 2676 q^{36} + 540 q^{39} + 188 q^{41}+ \cdots + 682 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.72095i 1.66911i 0.550925 + 0.834555i \(0.314275\pi\)
−0.550925 + 0.834555i \(0.685725\pi\)
\(3\) 8.29546i 1.59646i 0.602351 + 0.798231i \(0.294231\pi\)
−0.602351 + 0.798231i \(0.705769\pi\)
\(4\) −14.2874 −1.78593
\(5\) 0 0
\(6\) −39.1625 −2.66467
\(7\) 5.48389i 0.296102i 0.988980 + 0.148051i \(0.0473000\pi\)
−0.988980 + 0.148051i \(0.952700\pi\)
\(8\) − 29.6825i − 1.31179i
\(9\) −41.8147 −1.54869
\(10\) 0 0
\(11\) −11.0000 −0.301511
\(12\) − 118.521i − 2.85116i
\(13\) − 84.9102i − 1.81153i −0.423784 0.905763i \(-0.639299\pi\)
0.423784 0.905763i \(-0.360701\pi\)
\(14\) −25.8892 −0.494227
\(15\) 0 0
\(16\) 25.8306 0.403603
\(17\) 119.626i 1.70668i 0.521352 + 0.853342i \(0.325428\pi\)
−0.521352 + 0.853342i \(0.674572\pi\)
\(18\) − 197.405i − 2.58494i
\(19\) 54.4593 0.657570 0.328785 0.944405i \(-0.393361\pi\)
0.328785 + 0.944405i \(0.393361\pi\)
\(20\) 0 0
\(21\) −45.4914 −0.472716
\(22\) − 51.9305i − 0.503255i
\(23\) − 83.8353i − 0.760037i −0.924979 0.380019i \(-0.875918\pi\)
0.924979 0.380019i \(-0.124082\pi\)
\(24\) 246.230 2.09423
\(25\) 0 0
\(26\) 400.857 3.02363
\(27\) − 122.895i − 0.875969i
\(28\) − 78.3505i − 0.528816i
\(29\) −296.062 −1.89577 −0.947887 0.318608i \(-0.896785\pi\)
−0.947887 + 0.318608i \(0.896785\pi\)
\(30\) 0 0
\(31\) −18.7281 −0.108505 −0.0542526 0.998527i \(-0.517278\pi\)
−0.0542526 + 0.998527i \(0.517278\pi\)
\(32\) − 115.515i − 0.638137i
\(33\) − 91.2501i − 0.481352i
\(34\) −564.750 −2.84864
\(35\) 0 0
\(36\) 597.424 2.76585
\(37\) 188.075i 0.835660i 0.908525 + 0.417830i \(0.137209\pi\)
−0.908525 + 0.417830i \(0.862791\pi\)
\(38\) 257.100i 1.09756i
\(39\) 704.369 2.89203
\(40\) 0 0
\(41\) −209.594 −0.798369 −0.399185 0.916871i \(-0.630707\pi\)
−0.399185 + 0.916871i \(0.630707\pi\)
\(42\) − 214.763i − 0.789015i
\(43\) 183.046i 0.649170i 0.945856 + 0.324585i \(0.105225\pi\)
−0.945856 + 0.324585i \(0.894775\pi\)
\(44\) 157.161 0.538477
\(45\) 0 0
\(46\) 395.782 1.26859
\(47\) 142.669i 0.442775i 0.975186 + 0.221388i \(0.0710586\pi\)
−0.975186 + 0.221388i \(0.928941\pi\)
\(48\) 214.277i 0.644338i
\(49\) 312.927 0.912323
\(50\) 0 0
\(51\) −992.355 −2.72466
\(52\) 1213.15i 3.23525i
\(53\) 610.881i 1.58323i 0.611022 + 0.791613i \(0.290759\pi\)
−0.611022 + 0.791613i \(0.709241\pi\)
\(54\) 580.182 1.46209
\(55\) 0 0
\(56\) 162.776 0.388425
\(57\) 451.766i 1.04979i
\(58\) − 1397.70i − 3.16425i
\(59\) −657.261 −1.45031 −0.725154 0.688587i \(-0.758231\pi\)
−0.725154 + 0.688587i \(0.758231\pi\)
\(60\) 0 0
\(61\) 171.698 0.360388 0.180194 0.983631i \(-0.442327\pi\)
0.180194 + 0.983631i \(0.442327\pi\)
\(62\) − 88.4144i − 0.181107i
\(63\) − 229.307i − 0.458572i
\(64\) 751.986 1.46872
\(65\) 0 0
\(66\) 430.788 0.803428
\(67\) 116.641i 0.212687i 0.994329 + 0.106343i \(0.0339143\pi\)
−0.994329 + 0.106343i \(0.966086\pi\)
\(68\) − 1709.15i − 3.04801i
\(69\) 695.452 1.21337
\(70\) 0 0
\(71\) −595.308 −0.995071 −0.497536 0.867444i \(-0.665762\pi\)
−0.497536 + 0.867444i \(0.665762\pi\)
\(72\) 1241.17i 2.03157i
\(73\) − 629.849i − 1.00984i −0.863166 0.504920i \(-0.831522\pi\)
0.863166 0.504920i \(-0.168478\pi\)
\(74\) −887.895 −1.39481
\(75\) 0 0
\(76\) −778.082 −1.17437
\(77\) − 60.3228i − 0.0892782i
\(78\) 3325.29i 4.82712i
\(79\) 935.886 1.33285 0.666426 0.745571i \(-0.267823\pi\)
0.666426 + 0.745571i \(0.267823\pi\)
\(80\) 0 0
\(81\) −109.526 −0.150241
\(82\) − 989.485i − 1.33257i
\(83\) − 81.2520i − 0.107453i −0.998556 0.0537263i \(-0.982890\pi\)
0.998556 0.0537263i \(-0.0171098\pi\)
\(84\) 649.954 0.844236
\(85\) 0 0
\(86\) −864.154 −1.08354
\(87\) − 2455.98i − 3.02653i
\(88\) 326.508i 0.395521i
\(89\) 245.174 0.292004 0.146002 0.989284i \(-0.453359\pi\)
0.146002 + 0.989284i \(0.453359\pi\)
\(90\) 0 0
\(91\) 465.638 0.536397
\(92\) 1197.79i 1.35737i
\(93\) − 155.358i − 0.173225i
\(94\) −673.535 −0.739040
\(95\) 0 0
\(96\) 958.251 1.01876
\(97\) − 395.976i − 0.414487i −0.978289 0.207244i \(-0.933551\pi\)
0.978289 0.207244i \(-0.0664493\pi\)
\(98\) 1477.31i 1.52277i
\(99\) 459.962 0.466949
\(100\) 0 0
\(101\) −311.696 −0.307078 −0.153539 0.988143i \(-0.549067\pi\)
−0.153539 + 0.988143i \(0.549067\pi\)
\(102\) − 4684.86i − 4.54775i
\(103\) − 948.676i − 0.907532i −0.891121 0.453766i \(-0.850080\pi\)
0.891121 0.453766i \(-0.149920\pi\)
\(104\) −2520.35 −2.37635
\(105\) 0 0
\(106\) −2883.94 −2.64258
\(107\) − 1841.53i − 1.66380i −0.554923 0.831902i \(-0.687252\pi\)
0.554923 0.831902i \(-0.312748\pi\)
\(108\) 1755.85i 1.56442i
\(109\) −1239.66 −1.08934 −0.544669 0.838651i \(-0.683345\pi\)
−0.544669 + 0.838651i \(0.683345\pi\)
\(110\) 0 0
\(111\) −1560.17 −1.33410
\(112\) 141.652i 0.119508i
\(113\) 584.293i 0.486422i 0.969973 + 0.243211i \(0.0782007\pi\)
−0.969973 + 0.243211i \(0.921799\pi\)
\(114\) −2132.76 −1.75221
\(115\) 0 0
\(116\) 4229.96 3.38571
\(117\) 3550.50i 2.80550i
\(118\) − 3102.90i − 2.42072i
\(119\) −656.017 −0.505353
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 810.577i 0.601526i
\(123\) − 1738.68i − 1.27457i
\(124\) 267.576 0.193782
\(125\) 0 0
\(126\) 1082.55 0.765406
\(127\) 1872.57i 1.30837i 0.756333 + 0.654187i \(0.226989\pi\)
−0.756333 + 0.654187i \(0.773011\pi\)
\(128\) 2625.97i 1.81332i
\(129\) −1518.46 −1.03638
\(130\) 0 0
\(131\) 1602.54 1.06881 0.534406 0.845228i \(-0.320535\pi\)
0.534406 + 0.845228i \(0.320535\pi\)
\(132\) 1303.73i 0.859658i
\(133\) 298.649i 0.194708i
\(134\) −550.659 −0.354998
\(135\) 0 0
\(136\) 3550.81 2.23882
\(137\) 475.189i 0.296337i 0.988962 + 0.148168i \(0.0473378\pi\)
−0.988962 + 0.148168i \(0.952662\pi\)
\(138\) 3283.20i 2.02525i
\(139\) −831.271 −0.507248 −0.253624 0.967303i \(-0.581623\pi\)
−0.253624 + 0.967303i \(0.581623\pi\)
\(140\) 0 0
\(141\) −1183.51 −0.706874
\(142\) − 2810.42i − 1.66088i
\(143\) 934.012i 0.546196i
\(144\) −1080.10 −0.625058
\(145\) 0 0
\(146\) 2973.49 1.68553
\(147\) 2595.87i 1.45649i
\(148\) − 2687.11i − 1.49243i
\(149\) 2274.77 1.25072 0.625358 0.780338i \(-0.284953\pi\)
0.625358 + 0.780338i \(0.284953\pi\)
\(150\) 0 0
\(151\) −2469.23 −1.33075 −0.665374 0.746510i \(-0.731728\pi\)
−0.665374 + 0.746510i \(0.731728\pi\)
\(152\) − 1616.49i − 0.862597i
\(153\) − 5002.14i − 2.64313i
\(154\) 284.781 0.149015
\(155\) 0 0
\(156\) −10063.6 −5.16496
\(157\) 241.092i 0.122556i 0.998121 + 0.0612778i \(0.0195176\pi\)
−0.998121 + 0.0612778i \(0.980482\pi\)
\(158\) 4418.27i 2.22468i
\(159\) −5067.55 −2.52756
\(160\) 0 0
\(161\) 459.743 0.225049
\(162\) − 517.066i − 0.250769i
\(163\) − 1325.45i − 0.636915i −0.947937 0.318458i \(-0.896835\pi\)
0.947937 0.318458i \(-0.103165\pi\)
\(164\) 2994.56 1.42583
\(165\) 0 0
\(166\) 383.587 0.179350
\(167\) 1154.76i 0.535077i 0.963547 + 0.267538i \(0.0862103\pi\)
−0.963547 + 0.267538i \(0.913790\pi\)
\(168\) 1350.30i 0.620107i
\(169\) −5012.73 −2.28163
\(170\) 0 0
\(171\) −2277.20 −1.01837
\(172\) − 2615.26i − 1.15937i
\(173\) 2281.20i 1.00252i 0.865296 + 0.501260i \(0.167130\pi\)
−0.865296 + 0.501260i \(0.832870\pi\)
\(174\) 11594.5 5.05161
\(175\) 0 0
\(176\) −284.137 −0.121691
\(177\) − 5452.29i − 2.31536i
\(178\) 1157.45i 0.487386i
\(179\) −2909.82 −1.21503 −0.607515 0.794308i \(-0.707834\pi\)
−0.607515 + 0.794308i \(0.707834\pi\)
\(180\) 0 0
\(181\) 1898.75 0.779739 0.389870 0.920870i \(-0.372520\pi\)
0.389870 + 0.920870i \(0.372520\pi\)
\(182\) 2198.25i 0.895305i
\(183\) 1424.31i 0.575346i
\(184\) −2488.44 −0.997013
\(185\) 0 0
\(186\) 733.439 0.289131
\(187\) − 1315.89i − 0.514585i
\(188\) − 2038.37i − 0.790764i
\(189\) 673.943 0.259377
\(190\) 0 0
\(191\) −1228.35 −0.465341 −0.232670 0.972556i \(-0.574746\pi\)
−0.232670 + 0.972556i \(0.574746\pi\)
\(192\) 6238.08i 2.34476i
\(193\) 4564.93i 1.70254i 0.524724 + 0.851272i \(0.324168\pi\)
−0.524724 + 0.851272i \(0.675832\pi\)
\(194\) 1869.38 0.691824
\(195\) 0 0
\(196\) −4470.91 −1.62934
\(197\) 4619.27i 1.67061i 0.549790 + 0.835303i \(0.314708\pi\)
−0.549790 + 0.835303i \(0.685292\pi\)
\(198\) 2171.46i 0.779388i
\(199\) 1329.67 0.473658 0.236829 0.971551i \(-0.423892\pi\)
0.236829 + 0.971551i \(0.423892\pi\)
\(200\) 0 0
\(201\) −967.595 −0.339547
\(202\) − 1471.50i − 0.512547i
\(203\) − 1623.57i − 0.561343i
\(204\) 14178.2 4.86603
\(205\) 0 0
\(206\) 4478.66 1.51477
\(207\) 3505.55i 1.17707i
\(208\) − 2193.28i − 0.731138i
\(209\) −599.053 −0.198265
\(210\) 0 0
\(211\) 457.678 0.149326 0.0746632 0.997209i \(-0.476212\pi\)
0.0746632 + 0.997209i \(0.476212\pi\)
\(212\) − 8727.91i − 2.82752i
\(213\) − 4938.36i − 1.58859i
\(214\) 8693.76 2.77707
\(215\) 0 0
\(216\) −3647.84 −1.14909
\(217\) − 102.703i − 0.0321287i
\(218\) − 5852.38i − 1.81822i
\(219\) 5224.89 1.61217
\(220\) 0 0
\(221\) 10157.5 3.09170
\(222\) − 7365.51i − 2.22676i
\(223\) 1662.19i 0.499140i 0.968357 + 0.249570i \(0.0802893\pi\)
−0.968357 + 0.249570i \(0.919711\pi\)
\(224\) 633.472 0.188954
\(225\) 0 0
\(226\) −2758.42 −0.811891
\(227\) 519.278i 0.151831i 0.997114 + 0.0759156i \(0.0241880\pi\)
−0.997114 + 0.0759156i \(0.975812\pi\)
\(228\) − 6454.56i − 1.87484i
\(229\) 988.947 0.285378 0.142689 0.989768i \(-0.454425\pi\)
0.142689 + 0.989768i \(0.454425\pi\)
\(230\) 0 0
\(231\) 500.406 0.142529
\(232\) 8787.88i 2.48687i
\(233\) 5335.96i 1.50030i 0.661267 + 0.750151i \(0.270019\pi\)
−0.661267 + 0.750151i \(0.729981\pi\)
\(234\) −16761.7 −4.68268
\(235\) 0 0
\(236\) 9390.55 2.59014
\(237\) 7763.61i 2.12785i
\(238\) − 3097.03i − 0.843489i
\(239\) 4104.99 1.11100 0.555502 0.831516i \(-0.312526\pi\)
0.555502 + 0.831516i \(0.312526\pi\)
\(240\) 0 0
\(241\) −168.748 −0.0451037 −0.0225518 0.999746i \(-0.507179\pi\)
−0.0225518 + 0.999746i \(0.507179\pi\)
\(242\) 571.235i 0.151737i
\(243\) − 4226.74i − 1.11582i
\(244\) −2453.11 −0.643625
\(245\) 0 0
\(246\) 8208.24 2.12739
\(247\) − 4624.15i − 1.19121i
\(248\) 555.897i 0.142337i
\(249\) 674.023 0.171544
\(250\) 0 0
\(251\) −7749.22 −1.94871 −0.974355 0.225017i \(-0.927756\pi\)
−0.974355 + 0.225017i \(0.927756\pi\)
\(252\) 3276.21i 0.818975i
\(253\) 922.188i 0.229160i
\(254\) −8840.31 −2.18382
\(255\) 0 0
\(256\) −6381.20 −1.55791
\(257\) − 267.993i − 0.0650465i −0.999471 0.0325232i \(-0.989646\pi\)
0.999471 0.0325232i \(-0.0103543\pi\)
\(258\) − 7168.56i − 1.72982i
\(259\) −1031.39 −0.247441
\(260\) 0 0
\(261\) 12379.8 2.93597
\(262\) 7565.50i 1.78396i
\(263\) 1194.86i 0.280144i 0.990141 + 0.140072i \(0.0447335\pi\)
−0.990141 + 0.140072i \(0.955267\pi\)
\(264\) −2708.53 −0.631435
\(265\) 0 0
\(266\) −1409.91 −0.324989
\(267\) 2033.83i 0.466173i
\(268\) − 1666.50i − 0.379843i
\(269\) −1185.18 −0.268631 −0.134316 0.990939i \(-0.542884\pi\)
−0.134316 + 0.990939i \(0.542884\pi\)
\(270\) 0 0
\(271\) −3252.40 −0.729037 −0.364519 0.931196i \(-0.618766\pi\)
−0.364519 + 0.931196i \(0.618766\pi\)
\(272\) 3090.02i 0.688823i
\(273\) 3862.68i 0.856338i
\(274\) −2243.34 −0.494618
\(275\) 0 0
\(276\) −9936.21 −2.16699
\(277\) − 2904.35i − 0.629984i −0.949094 0.314992i \(-0.897998\pi\)
0.949094 0.314992i \(-0.102002\pi\)
\(278\) − 3924.39i − 0.846653i
\(279\) 783.110 0.168041
\(280\) 0 0
\(281\) 1592.03 0.337981 0.168991 0.985618i \(-0.445949\pi\)
0.168991 + 0.985618i \(0.445949\pi\)
\(282\) − 5587.28i − 1.17985i
\(283\) 4138.44i 0.869275i 0.900605 + 0.434638i \(0.143124\pi\)
−0.900605 + 0.434638i \(0.856876\pi\)
\(284\) 8505.40 1.77712
\(285\) 0 0
\(286\) −4409.43 −0.911660
\(287\) − 1149.39i − 0.236399i
\(288\) 4830.23i 0.988278i
\(289\) −9397.44 −1.91277
\(290\) 0 0
\(291\) 3284.80 0.661713
\(292\) 8998.91i 1.80350i
\(293\) 1348.05i 0.268784i 0.990928 + 0.134392i \(0.0429082\pi\)
−0.990928 + 0.134392i \(0.957092\pi\)
\(294\) −12255.0 −2.43104
\(295\) 0 0
\(296\) 5582.55 1.09621
\(297\) 1351.85i 0.264115i
\(298\) 10739.1i 2.08758i
\(299\) −7118.47 −1.37683
\(300\) 0 0
\(301\) −1003.81 −0.192221
\(302\) − 11657.1i − 2.22116i
\(303\) − 2585.66i − 0.490239i
\(304\) 1406.72 0.265397
\(305\) 0 0
\(306\) 23614.9 4.41167
\(307\) 1741.35i 0.323727i 0.986813 + 0.161863i \(0.0517504\pi\)
−0.986813 + 0.161863i \(0.948250\pi\)
\(308\) 861.856i 0.159444i
\(309\) 7869.71 1.44884
\(310\) 0 0
\(311\) −2842.37 −0.518252 −0.259126 0.965844i \(-0.583434\pi\)
−0.259126 + 0.965844i \(0.583434\pi\)
\(312\) − 20907.5i − 3.79376i
\(313\) − 7279.32i − 1.31454i −0.753654 0.657271i \(-0.771711\pi\)
0.753654 0.657271i \(-0.228289\pi\)
\(314\) −1138.18 −0.204559
\(315\) 0 0
\(316\) −13371.4 −2.38037
\(317\) 7390.30i 1.30940i 0.755888 + 0.654701i \(0.227205\pi\)
−0.755888 + 0.654701i \(0.772795\pi\)
\(318\) − 23923.6i − 4.21878i
\(319\) 3256.69 0.571597
\(320\) 0 0
\(321\) 15276.3 2.65620
\(322\) 2170.43i 0.375631i
\(323\) 6514.77i 1.12226i
\(324\) 1564.84 0.268319
\(325\) 0 0
\(326\) 6257.38 1.06308
\(327\) − 10283.6i − 1.73909i
\(328\) 6221.29i 1.04730i
\(329\) −782.382 −0.131107
\(330\) 0 0
\(331\) −4830.91 −0.802209 −0.401104 0.916032i \(-0.631374\pi\)
−0.401104 + 0.916032i \(0.631374\pi\)
\(332\) 1160.88i 0.191902i
\(333\) − 7864.33i − 1.29418i
\(334\) −5451.56 −0.893102
\(335\) 0 0
\(336\) −1175.07 −0.190790
\(337\) − 2556.55i − 0.413247i −0.978421 0.206623i \(-0.933753\pi\)
0.978421 0.206623i \(-0.0662475\pi\)
\(338\) − 23664.9i − 3.80828i
\(339\) −4846.98 −0.776555
\(340\) 0 0
\(341\) 206.009 0.0327156
\(342\) − 10750.6i − 1.69978i
\(343\) 3597.03i 0.566243i
\(344\) 5433.28 0.851578
\(345\) 0 0
\(346\) −10769.4 −1.67332
\(347\) − 4704.78i − 0.727856i −0.931427 0.363928i \(-0.881435\pi\)
0.931427 0.363928i \(-0.118565\pi\)
\(348\) 35089.5i 5.40516i
\(349\) 10288.9 1.57809 0.789043 0.614338i \(-0.210577\pi\)
0.789043 + 0.614338i \(0.210577\pi\)
\(350\) 0 0
\(351\) −10435.0 −1.58684
\(352\) 1270.67i 0.192405i
\(353\) 6832.15i 1.03014i 0.857149 + 0.515069i \(0.172234\pi\)
−0.857149 + 0.515069i \(0.827766\pi\)
\(354\) 25740.0 3.86459
\(355\) 0 0
\(356\) −3502.89 −0.521497
\(357\) − 5441.97i − 0.806777i
\(358\) − 13737.1i − 2.02802i
\(359\) 11254.2 1.65452 0.827259 0.561821i \(-0.189899\pi\)
0.827259 + 0.561821i \(0.189899\pi\)
\(360\) 0 0
\(361\) −3893.18 −0.567602
\(362\) 8963.90i 1.30147i
\(363\) 1003.75i 0.145133i
\(364\) −6652.76 −0.957965
\(365\) 0 0
\(366\) −6724.11 −0.960314
\(367\) 6565.52i 0.933835i 0.884301 + 0.466917i \(0.154635\pi\)
−0.884301 + 0.466917i \(0.845365\pi\)
\(368\) − 2165.52i − 0.306754i
\(369\) 8764.13 1.23643
\(370\) 0 0
\(371\) −3350.01 −0.468797
\(372\) 2219.66i 0.309366i
\(373\) 2568.81i 0.356590i 0.983977 + 0.178295i \(0.0570582\pi\)
−0.983977 + 0.178295i \(0.942942\pi\)
\(374\) 6212.25 0.858898
\(375\) 0 0
\(376\) 4234.78 0.580830
\(377\) 25138.7i 3.43424i
\(378\) 3181.65i 0.432928i
\(379\) −9975.58 −1.35201 −0.676004 0.736898i \(-0.736290\pi\)
−0.676004 + 0.736898i \(0.736290\pi\)
\(380\) 0 0
\(381\) −15533.8 −2.08877
\(382\) − 5798.97i − 0.776704i
\(383\) 5769.21i 0.769695i 0.922980 + 0.384847i \(0.125746\pi\)
−0.922980 + 0.384847i \(0.874254\pi\)
\(384\) −21783.7 −2.89490
\(385\) 0 0
\(386\) −21550.8 −2.84173
\(387\) − 7654.04i − 1.00537i
\(388\) 5657.47i 0.740243i
\(389\) 3040.21 0.396259 0.198129 0.980176i \(-0.436513\pi\)
0.198129 + 0.980176i \(0.436513\pi\)
\(390\) 0 0
\(391\) 10028.9 1.29714
\(392\) − 9288.46i − 1.19678i
\(393\) 13293.8i 1.70632i
\(394\) −21807.4 −2.78842
\(395\) 0 0
\(396\) −6571.66 −0.833936
\(397\) 7428.51i 0.939109i 0.882903 + 0.469555i \(0.155586\pi\)
−0.882903 + 0.469555i \(0.844414\pi\)
\(398\) 6277.32i 0.790587i
\(399\) −2477.43 −0.310844
\(400\) 0 0
\(401\) −4832.93 −0.601858 −0.300929 0.953647i \(-0.597297\pi\)
−0.300929 + 0.953647i \(0.597297\pi\)
\(402\) − 4567.97i − 0.566741i
\(403\) 1590.20i 0.196560i
\(404\) 4453.32 0.548418
\(405\) 0 0
\(406\) 7664.82 0.936942
\(407\) − 2068.83i − 0.251961i
\(408\) 29455.6i 3.57419i
\(409\) −2479.52 −0.299766 −0.149883 0.988704i \(-0.547890\pi\)
−0.149883 + 0.988704i \(0.547890\pi\)
\(410\) 0 0
\(411\) −3941.91 −0.473091
\(412\) 13554.1i 1.62078i
\(413\) − 3604.35i − 0.429439i
\(414\) −16549.5 −1.96465
\(415\) 0 0
\(416\) −9808.40 −1.15600
\(417\) − 6895.78i − 0.809803i
\(418\) − 2828.10i − 0.330926i
\(419\) −470.068 −0.0548074 −0.0274037 0.999624i \(-0.508724\pi\)
−0.0274037 + 0.999624i \(0.508724\pi\)
\(420\) 0 0
\(421\) 425.224 0.0492260 0.0246130 0.999697i \(-0.492165\pi\)
0.0246130 + 0.999697i \(0.492165\pi\)
\(422\) 2160.68i 0.249242i
\(423\) − 5965.68i − 0.685724i
\(424\) 18132.5 2.07687
\(425\) 0 0
\(426\) 23313.8 2.65154
\(427\) 941.572i 0.106712i
\(428\) 26310.6i 2.97143i
\(429\) −7748.06 −0.871981
\(430\) 0 0
\(431\) 9509.32 1.06276 0.531378 0.847135i \(-0.321674\pi\)
0.531378 + 0.847135i \(0.321674\pi\)
\(432\) − 3174.46i − 0.353544i
\(433\) − 17742.8i − 1.96920i −0.174811 0.984602i \(-0.555932\pi\)
0.174811 0.984602i \(-0.444068\pi\)
\(434\) 484.855 0.0536262
\(435\) 0 0
\(436\) 17711.5 1.94548
\(437\) − 4565.61i − 0.499778i
\(438\) 24666.5i 2.69089i
\(439\) 2146.35 0.233348 0.116674 0.993170i \(-0.462777\pi\)
0.116674 + 0.993170i \(0.462777\pi\)
\(440\) 0 0
\(441\) −13085.0 −1.41291
\(442\) 47953.0i 5.16039i
\(443\) − 1174.80i − 0.125996i −0.998014 0.0629980i \(-0.979934\pi\)
0.998014 0.0629980i \(-0.0200662\pi\)
\(444\) 22290.8 2.38260
\(445\) 0 0
\(446\) −7847.11 −0.833119
\(447\) 18870.3i 1.99672i
\(448\) 4123.81i 0.434892i
\(449\) 1293.65 0.135971 0.0679857 0.997686i \(-0.478343\pi\)
0.0679857 + 0.997686i \(0.478343\pi\)
\(450\) 0 0
\(451\) 2305.54 0.240717
\(452\) − 8348.03i − 0.868713i
\(453\) − 20483.4i − 2.12449i
\(454\) −2451.49 −0.253423
\(455\) 0 0
\(456\) 13409.5 1.37710
\(457\) − 4489.28i − 0.459518i −0.973248 0.229759i \(-0.926206\pi\)
0.973248 0.229759i \(-0.0737937\pi\)
\(458\) 4668.77i 0.476326i
\(459\) 14701.5 1.49500
\(460\) 0 0
\(461\) −3695.39 −0.373344 −0.186672 0.982422i \(-0.559770\pi\)
−0.186672 + 0.982422i \(0.559770\pi\)
\(462\) 2362.39i 0.237897i
\(463\) 13467.7i 1.35183i 0.736980 + 0.675915i \(0.236251\pi\)
−0.736980 + 0.675915i \(0.763749\pi\)
\(464\) −7647.47 −0.765140
\(465\) 0 0
\(466\) −25190.8 −2.50417
\(467\) − 19019.3i − 1.88460i −0.334769 0.942300i \(-0.608658\pi\)
0.334769 0.942300i \(-0.391342\pi\)
\(468\) − 50727.4i − 5.01041i
\(469\) −639.649 −0.0629771
\(470\) 0 0
\(471\) −1999.97 −0.195656
\(472\) 19509.2i 1.90251i
\(473\) − 2013.51i − 0.195732i
\(474\) −36651.6 −3.55161
\(475\) 0 0
\(476\) 9372.78 0.902522
\(477\) − 25543.8i − 2.45193i
\(478\) 19379.5i 1.85439i
\(479\) 8105.77 0.773199 0.386599 0.922248i \(-0.373650\pi\)
0.386599 + 0.922248i \(0.373650\pi\)
\(480\) 0 0
\(481\) 15969.5 1.51382
\(482\) − 796.650i − 0.0752830i
\(483\) 3813.78i 0.359282i
\(484\) −1728.78 −0.162357
\(485\) 0 0
\(486\) 19954.2 1.86243
\(487\) − 13979.7i − 1.30078i −0.759601 0.650390i \(-0.774606\pi\)
0.759601 0.650390i \(-0.225394\pi\)
\(488\) − 5096.42i − 0.472755i
\(489\) 10995.2 1.01681
\(490\) 0 0
\(491\) 8699.28 0.799578 0.399789 0.916607i \(-0.369083\pi\)
0.399789 + 0.916607i \(0.369083\pi\)
\(492\) 24841.3i 2.27628i
\(493\) − 35416.8i − 3.23549i
\(494\) 21830.4 1.98825
\(495\) 0 0
\(496\) −483.758 −0.0437931
\(497\) − 3264.60i − 0.294643i
\(498\) 3182.03i 0.286326i
\(499\) −18008.7 −1.61559 −0.807795 0.589463i \(-0.799339\pi\)
−0.807795 + 0.589463i \(0.799339\pi\)
\(500\) 0 0
\(501\) −9579.25 −0.854231
\(502\) − 36583.7i − 3.25261i
\(503\) − 6633.20i − 0.587991i −0.955807 0.293996i \(-0.905015\pi\)
0.955807 0.293996i \(-0.0949851\pi\)
\(504\) −6806.42 −0.601552
\(505\) 0 0
\(506\) −4353.61 −0.382493
\(507\) − 41583.0i − 3.64253i
\(508\) − 26754.1i − 2.33666i
\(509\) 13765.3 1.19869 0.599347 0.800489i \(-0.295427\pi\)
0.599347 + 0.800489i \(0.295427\pi\)
\(510\) 0 0
\(511\) 3454.02 0.299016
\(512\) − 9117.57i − 0.786999i
\(513\) − 6692.79i − 0.576011i
\(514\) 1265.18 0.108570
\(515\) 0 0
\(516\) 21694.8 1.85089
\(517\) − 1569.36i − 0.133502i
\(518\) − 4869.12i − 0.413006i
\(519\) −18923.6 −1.60049
\(520\) 0 0
\(521\) −4547.84 −0.382427 −0.191214 0.981548i \(-0.561242\pi\)
−0.191214 + 0.981548i \(0.561242\pi\)
\(522\) 58444.3i 4.90046i
\(523\) 20913.6i 1.74855i 0.485434 + 0.874273i \(0.338662\pi\)
−0.485434 + 0.874273i \(0.661338\pi\)
\(524\) −22896.1 −1.90882
\(525\) 0 0
\(526\) −5640.86 −0.467591
\(527\) − 2240.37i − 0.185184i
\(528\) − 2357.05i − 0.194275i
\(529\) 5138.65 0.422343
\(530\) 0 0
\(531\) 27483.2 2.24608
\(532\) − 4266.92i − 0.347734i
\(533\) 17796.7i 1.44627i
\(534\) −9601.61 −0.778094
\(535\) 0 0
\(536\) 3462.21 0.279002
\(537\) − 24138.3i − 1.93975i
\(538\) − 5595.19i − 0.448375i
\(539\) −3442.20 −0.275076
\(540\) 0 0
\(541\) 6198.74 0.492615 0.246308 0.969192i \(-0.420783\pi\)
0.246308 + 0.969192i \(0.420783\pi\)
\(542\) − 15354.4i − 1.21684i
\(543\) 15751.0i 1.24482i
\(544\) 13818.6 1.08910
\(545\) 0 0
\(546\) −18235.5 −1.42932
\(547\) 11376.1i 0.889228i 0.895722 + 0.444614i \(0.146659\pi\)
−0.895722 + 0.444614i \(0.853341\pi\)
\(548\) − 6789.22i − 0.529235i
\(549\) −7179.50 −0.558130
\(550\) 0 0
\(551\) −16123.4 −1.24660
\(552\) − 20642.8i − 1.59169i
\(553\) 5132.29i 0.394661i
\(554\) 13711.3 1.05151
\(555\) 0 0
\(556\) 11876.7 0.905907
\(557\) − 16917.9i − 1.28696i −0.765465 0.643478i \(-0.777491\pi\)
0.765465 0.643478i \(-0.222509\pi\)
\(558\) 3697.03i 0.280480i
\(559\) 15542.5 1.17599
\(560\) 0 0
\(561\) 10915.9 0.821515
\(562\) 7515.92i 0.564128i
\(563\) 8104.37i 0.606676i 0.952883 + 0.303338i \(0.0981011\pi\)
−0.952883 + 0.303338i \(0.901899\pi\)
\(564\) 16909.2 1.26242
\(565\) 0 0
\(566\) −19537.4 −1.45092
\(567\) − 600.627i − 0.0444867i
\(568\) 17670.2i 1.30533i
\(569\) 10154.5 0.748150 0.374075 0.927398i \(-0.377960\pi\)
0.374075 + 0.927398i \(0.377960\pi\)
\(570\) 0 0
\(571\) 2508.21 0.183827 0.0919135 0.995767i \(-0.470702\pi\)
0.0919135 + 0.995767i \(0.470702\pi\)
\(572\) − 13344.6i − 0.975465i
\(573\) − 10189.7i − 0.742899i
\(574\) 5426.23 0.394576
\(575\) 0 0
\(576\) −31444.1 −2.27460
\(577\) 13325.7i 0.961447i 0.876872 + 0.480724i \(0.159626\pi\)
−0.876872 + 0.480724i \(0.840374\pi\)
\(578\) − 44364.9i − 3.19262i
\(579\) −37868.2 −2.71805
\(580\) 0 0
\(581\) 445.577 0.0318170
\(582\) 15507.4i 1.10447i
\(583\) − 6719.70i − 0.477361i
\(584\) −18695.5 −1.32470
\(585\) 0 0
\(586\) −6364.07 −0.448630
\(587\) 16860.6i 1.18554i 0.805373 + 0.592769i \(0.201965\pi\)
−0.805373 + 0.592769i \(0.798035\pi\)
\(588\) − 37088.3i − 2.60118i
\(589\) −1019.92 −0.0713498
\(590\) 0 0
\(591\) −38319.0 −2.66706
\(592\) 4858.10i 0.337275i
\(593\) − 20931.0i − 1.44946i −0.689031 0.724732i \(-0.741964\pi\)
0.689031 0.724732i \(-0.258036\pi\)
\(594\) −6382.00 −0.440836
\(595\) 0 0
\(596\) −32500.6 −2.23369
\(597\) 11030.3i 0.756178i
\(598\) − 33605.9i − 2.29808i
\(599\) −2001.46 −0.136523 −0.0682616 0.997667i \(-0.521745\pi\)
−0.0682616 + 0.997667i \(0.521745\pi\)
\(600\) 0 0
\(601\) 24221.9 1.64398 0.821990 0.569502i \(-0.192864\pi\)
0.821990 + 0.569502i \(0.192864\pi\)
\(602\) − 4738.92i − 0.320837i
\(603\) − 4877.33i − 0.329387i
\(604\) 35278.9 2.37662
\(605\) 0 0
\(606\) 12206.8 0.818262
\(607\) 10737.9i 0.718017i 0.933334 + 0.359009i \(0.116885\pi\)
−0.933334 + 0.359009i \(0.883115\pi\)
\(608\) − 6290.88i − 0.419620i
\(609\) 13468.3 0.896163
\(610\) 0 0
\(611\) 12114.1 0.802099
\(612\) 71467.6i 4.72043i
\(613\) − 13890.6i − 0.915233i −0.889150 0.457616i \(-0.848703\pi\)
0.889150 0.457616i \(-0.151297\pi\)
\(614\) −8220.84 −0.540335
\(615\) 0 0
\(616\) −1790.53 −0.117115
\(617\) − 3195.60i − 0.208509i −0.994551 0.104254i \(-0.966754\pi\)
0.994551 0.104254i \(-0.0332456\pi\)
\(618\) 37152.5i 2.41827i
\(619\) 15177.6 0.985521 0.492761 0.870165i \(-0.335988\pi\)
0.492761 + 0.870165i \(0.335988\pi\)
\(620\) 0 0
\(621\) −10302.9 −0.665770
\(622\) − 13418.7i − 0.865019i
\(623\) 1344.50i 0.0864630i
\(624\) 18194.3 1.16723
\(625\) 0 0
\(626\) 34365.4 2.19411
\(627\) − 4969.42i − 0.316522i
\(628\) − 3444.58i − 0.218875i
\(629\) −22498.8 −1.42621
\(630\) 0 0
\(631\) 20594.6 1.29930 0.649649 0.760234i \(-0.274916\pi\)
0.649649 + 0.760234i \(0.274916\pi\)
\(632\) − 27779.4i − 1.74843i
\(633\) 3796.65i 0.238394i
\(634\) −34889.2 −2.18553
\(635\) 0 0
\(636\) 72402.0 4.51404
\(637\) − 26570.7i − 1.65270i
\(638\) 15374.7i 0.954058i
\(639\) 24892.6 1.54106
\(640\) 0 0
\(641\) −21402.0 −1.31876 −0.659381 0.751809i \(-0.729182\pi\)
−0.659381 + 0.751809i \(0.729182\pi\)
\(642\) 72118.7i 4.43349i
\(643\) − 21970.6i − 1.34749i −0.738963 0.673746i \(-0.764684\pi\)
0.738963 0.673746i \(-0.235316\pi\)
\(644\) −6568.54 −0.401920
\(645\) 0 0
\(646\) −30755.9 −1.87318
\(647\) − 7164.99i − 0.435370i −0.976019 0.217685i \(-0.930149\pi\)
0.976019 0.217685i \(-0.0698506\pi\)
\(648\) 3251.00i 0.197085i
\(649\) 7229.87 0.437284
\(650\) 0 0
\(651\) 851.967 0.0512922
\(652\) 18937.2i 1.13748i
\(653\) 6995.87i 0.419249i 0.977782 + 0.209624i \(0.0672241\pi\)
−0.977782 + 0.209624i \(0.932776\pi\)
\(654\) 48548.2 2.90273
\(655\) 0 0
\(656\) −5413.95 −0.322224
\(657\) 26337.0i 1.56393i
\(658\) − 3693.59i − 0.218831i
\(659\) 2079.61 0.122929 0.0614644 0.998109i \(-0.480423\pi\)
0.0614644 + 0.998109i \(0.480423\pi\)
\(660\) 0 0
\(661\) −15601.7 −0.918055 −0.459028 0.888422i \(-0.651802\pi\)
−0.459028 + 0.888422i \(0.651802\pi\)
\(662\) − 22806.5i − 1.33897i
\(663\) 84261.0i 4.93579i
\(664\) −2411.76 −0.140956
\(665\) 0 0
\(666\) 37127.1 2.16013
\(667\) 24820.5i 1.44086i
\(668\) − 16498.5i − 0.955607i
\(669\) −13788.6 −0.796859
\(670\) 0 0
\(671\) −1888.68 −0.108661
\(672\) 5254.94i 0.301658i
\(673\) 13140.4i 0.752636i 0.926490 + 0.376318i \(0.122810\pi\)
−0.926490 + 0.376318i \(0.877190\pi\)
\(674\) 12069.4 0.689754
\(675\) 0 0
\(676\) 71618.9 4.07481
\(677\) 15337.7i 0.870716i 0.900257 + 0.435358i \(0.143378\pi\)
−0.900257 + 0.435358i \(0.856622\pi\)
\(678\) − 22882.4i − 1.29615i
\(679\) 2171.49 0.122731
\(680\) 0 0
\(681\) −4307.65 −0.242393
\(682\) 972.559i 0.0546059i
\(683\) − 21513.6i − 1.20526i −0.798019 0.602632i \(-0.794119\pi\)
0.798019 0.602632i \(-0.205881\pi\)
\(684\) 32535.3 1.81874
\(685\) 0 0
\(686\) −16981.4 −0.945122
\(687\) 8203.78i 0.455595i
\(688\) 4728.20i 0.262007i
\(689\) 51870.0 2.86806
\(690\) 0 0
\(691\) 19044.3 1.04845 0.524226 0.851579i \(-0.324355\pi\)
0.524226 + 0.851579i \(0.324355\pi\)
\(692\) − 32592.4i − 1.79043i
\(693\) 2522.38i 0.138265i
\(694\) 22211.1 1.21487
\(695\) 0 0
\(696\) −72899.6 −3.97019
\(697\) − 25073.0i − 1.36256i
\(698\) 48573.4i 2.63400i
\(699\) −44264.3 −2.39518
\(700\) 0 0
\(701\) 15942.4 0.858968 0.429484 0.903074i \(-0.358695\pi\)
0.429484 + 0.903074i \(0.358695\pi\)
\(702\) − 49263.4i − 2.64861i
\(703\) 10242.5i 0.549505i
\(704\) −8271.85 −0.442837
\(705\) 0 0
\(706\) −32254.3 −1.71941
\(707\) − 1709.30i − 0.0909265i
\(708\) 77899.0i 4.13506i
\(709\) −444.064 −0.0235221 −0.0117611 0.999931i \(-0.503744\pi\)
−0.0117611 + 0.999931i \(0.503744\pi\)
\(710\) 0 0
\(711\) −39133.8 −2.06418
\(712\) − 7277.37i − 0.383049i
\(713\) 1570.07i 0.0824681i
\(714\) 25691.3 1.34660
\(715\) 0 0
\(716\) 41573.8 2.16995
\(717\) 34052.8i 1.77368i
\(718\) 53130.4i 2.76157i
\(719\) −13715.0 −0.711379 −0.355689 0.934604i \(-0.615754\pi\)
−0.355689 + 0.934604i \(0.615754\pi\)
\(720\) 0 0
\(721\) 5202.43 0.268722
\(722\) − 18379.5i − 0.947389i
\(723\) − 1399.84i − 0.0720064i
\(724\) −27128.2 −1.39256
\(725\) 0 0
\(726\) −4738.66 −0.242243
\(727\) 18642.9i 0.951067i 0.879698 + 0.475534i \(0.157745\pi\)
−0.879698 + 0.475534i \(0.842255\pi\)
\(728\) − 13821.3i − 0.703643i
\(729\) 32105.5 1.63113
\(730\) 0 0
\(731\) −21897.2 −1.10793
\(732\) − 20349.7i − 1.02752i
\(733\) 14418.4i 0.726541i 0.931684 + 0.363270i \(0.118340\pi\)
−0.931684 + 0.363270i \(0.881660\pi\)
\(734\) −30995.5 −1.55867
\(735\) 0 0
\(736\) −9684.24 −0.485008
\(737\) − 1283.06i − 0.0641275i
\(738\) 41375.1i 2.06374i
\(739\) −22187.3 −1.10443 −0.552215 0.833702i \(-0.686217\pi\)
−0.552215 + 0.833702i \(0.686217\pi\)
\(740\) 0 0
\(741\) 38359.5 1.90171
\(742\) − 15815.2i − 0.782473i
\(743\) − 3770.05i − 0.186150i −0.995659 0.0930752i \(-0.970330\pi\)
0.995659 0.0930752i \(-0.0296697\pi\)
\(744\) −4611.42 −0.227235
\(745\) 0 0
\(746\) −12127.2 −0.595188
\(747\) 3397.53i 0.166411i
\(748\) 18800.6i 0.919009i
\(749\) 10098.7 0.492656
\(750\) 0 0
\(751\) 28939.6 1.40615 0.703076 0.711115i \(-0.251810\pi\)
0.703076 + 0.711115i \(0.251810\pi\)
\(752\) 3685.23i 0.178706i
\(753\) − 64283.3i − 3.11104i
\(754\) −118679. −5.73213
\(755\) 0 0
\(756\) −9628.90 −0.463227
\(757\) 31242.6i 1.50004i 0.661415 + 0.750020i \(0.269956\pi\)
−0.661415 + 0.750020i \(0.730044\pi\)
\(758\) − 47094.2i − 2.25665i
\(759\) −7649.98 −0.365845
\(760\) 0 0
\(761\) −3138.07 −0.149481 −0.0747404 0.997203i \(-0.523813\pi\)
−0.0747404 + 0.997203i \(0.523813\pi\)
\(762\) − 73334.5i − 3.48639i
\(763\) − 6798.16i − 0.322555i
\(764\) 17549.9 0.831064
\(765\) 0 0
\(766\) −27236.2 −1.28470
\(767\) 55808.2i 2.62727i
\(768\) − 52935.0i − 2.48714i
\(769\) 1548.14 0.0725974 0.0362987 0.999341i \(-0.488443\pi\)
0.0362987 + 0.999341i \(0.488443\pi\)
\(770\) 0 0
\(771\) 2223.13 0.103844
\(772\) − 65221.0i − 3.04062i
\(773\) 22990.0i 1.06972i 0.844941 + 0.534860i \(0.179635\pi\)
−0.844941 + 0.534860i \(0.820365\pi\)
\(774\) 36134.4 1.67807
\(775\) 0 0
\(776\) −11753.6 −0.543722
\(777\) − 8555.82i − 0.395030i
\(778\) 14352.7i 0.661399i
\(779\) −11414.4 −0.524984
\(780\) 0 0
\(781\) 6548.39 0.300025
\(782\) 47346.0i 2.16507i
\(783\) 36384.6i 1.66064i
\(784\) 8083.09 0.368217
\(785\) 0 0
\(786\) −62759.4 −2.84803
\(787\) − 1913.05i − 0.0866493i −0.999061 0.0433246i \(-0.986205\pi\)
0.999061 0.0433246i \(-0.0137950\pi\)
\(788\) − 65997.4i − 2.98358i
\(789\) −9911.88 −0.447240
\(790\) 0 0
\(791\) −3204.20 −0.144031
\(792\) − 13652.8i − 0.612541i
\(793\) − 14578.9i − 0.652852i
\(794\) −35069.7 −1.56748
\(795\) 0 0
\(796\) −18997.6 −0.845918
\(797\) − 32560.8i − 1.44713i −0.690256 0.723565i \(-0.742502\pi\)
0.690256 0.723565i \(-0.257498\pi\)
\(798\) − 11695.8i − 0.518833i
\(799\) −17067.0 −0.755678
\(800\) 0 0
\(801\) −10251.9 −0.452225
\(802\) − 22816.0i − 1.00457i
\(803\) 6928.34i 0.304478i
\(804\) 13824.4 0.606405
\(805\) 0 0
\(806\) −7507.28 −0.328080
\(807\) − 9831.63i − 0.428860i
\(808\) 9251.91i 0.402823i
\(809\) 26822.2 1.16566 0.582831 0.812594i \(-0.301945\pi\)
0.582831 + 0.812594i \(0.301945\pi\)
\(810\) 0 0
\(811\) −30337.2 −1.31354 −0.656771 0.754090i \(-0.728078\pi\)
−0.656771 + 0.754090i \(0.728078\pi\)
\(812\) 23196.7i 1.00252i
\(813\) − 26980.2i − 1.16388i
\(814\) 9766.85 0.420550
\(815\) 0 0
\(816\) −25633.1 −1.09968
\(817\) 9968.59i 0.426875i
\(818\) − 11705.7i − 0.500342i
\(819\) −19470.5 −0.830715
\(820\) 0 0
\(821\) −19389.4 −0.824231 −0.412115 0.911132i \(-0.635210\pi\)
−0.412115 + 0.911132i \(0.635210\pi\)
\(822\) − 18609.6i − 0.789640i
\(823\) − 19189.1i − 0.812744i −0.913708 0.406372i \(-0.866794\pi\)
0.913708 0.406372i \(-0.133206\pi\)
\(824\) −28159.1 −1.19050
\(825\) 0 0
\(826\) 17016.0 0.716781
\(827\) 33109.8i 1.39219i 0.717949 + 0.696095i \(0.245081\pi\)
−0.717949 + 0.696095i \(0.754919\pi\)
\(828\) − 50085.2i − 2.10215i
\(829\) 23075.7 0.966771 0.483385 0.875408i \(-0.339407\pi\)
0.483385 + 0.875408i \(0.339407\pi\)
\(830\) 0 0
\(831\) 24092.9 1.00575
\(832\) − 63851.3i − 2.66063i
\(833\) 37434.3i 1.55705i
\(834\) 32554.7 1.35165
\(835\) 0 0
\(836\) 8558.91 0.354086
\(837\) 2301.59i 0.0950473i
\(838\) − 2219.17i − 0.0914796i
\(839\) 35936.4 1.47874 0.739369 0.673300i \(-0.235124\pi\)
0.739369 + 0.673300i \(0.235124\pi\)
\(840\) 0 0
\(841\) 63264.0 2.59396
\(842\) 2007.46i 0.0821636i
\(843\) 13206.7i 0.539575i
\(844\) −6539.03 −0.266686
\(845\) 0 0
\(846\) 28163.7 1.14455
\(847\) 663.551i 0.0269184i
\(848\) 15779.4i 0.638996i
\(849\) −34330.3 −1.38777
\(850\) 0 0
\(851\) 15767.4 0.635133
\(852\) 70556.3i 2.83711i
\(853\) 2359.85i 0.0947242i 0.998878 + 0.0473621i \(0.0150815\pi\)
−0.998878 + 0.0473621i \(0.984919\pi\)
\(854\) −4445.12 −0.178113
\(855\) 0 0
\(856\) −54661.1 −2.18257
\(857\) 32425.6i 1.29246i 0.763142 + 0.646230i \(0.223655\pi\)
−0.763142 + 0.646230i \(0.776345\pi\)
\(858\) − 36578.2i − 1.45543i
\(859\) −48098.2 −1.91046 −0.955232 0.295857i \(-0.904395\pi\)
−0.955232 + 0.295857i \(0.904395\pi\)
\(860\) 0 0
\(861\) 9534.74 0.377402
\(862\) 44893.1i 1.77386i
\(863\) 23607.2i 0.931167i 0.885004 + 0.465584i \(0.154156\pi\)
−0.885004 + 0.465584i \(0.845844\pi\)
\(864\) −14196.2 −0.558988
\(865\) 0 0
\(866\) 83763.0 3.28682
\(867\) − 77956.1i − 3.05367i
\(868\) 1467.36i 0.0573794i
\(869\) −10294.7 −0.401870
\(870\) 0 0
\(871\) 9904.04 0.385288
\(872\) 36796.2i 1.42899i
\(873\) 16557.6i 0.641914i
\(874\) 21554.0 0.834184
\(875\) 0 0
\(876\) −74650.1 −2.87922
\(877\) 30843.7i 1.18759i 0.804616 + 0.593795i \(0.202371\pi\)
−0.804616 + 0.593795i \(0.797629\pi\)
\(878\) 10132.8i 0.389483i
\(879\) −11182.7 −0.429104
\(880\) 0 0
\(881\) −15477.7 −0.591891 −0.295946 0.955205i \(-0.595635\pi\)
−0.295946 + 0.955205i \(0.595635\pi\)
\(882\) − 61773.5i − 2.35830i
\(883\) − 27661.4i − 1.05423i −0.849795 0.527113i \(-0.823274\pi\)
0.849795 0.527113i \(-0.176726\pi\)
\(884\) −145124. −5.52155
\(885\) 0 0
\(886\) 5546.16 0.210301
\(887\) − 17217.1i − 0.651740i −0.945415 0.325870i \(-0.894343\pi\)
0.945415 0.325870i \(-0.105657\pi\)
\(888\) 46309.9i 1.75007i
\(889\) −10269.0 −0.387413
\(890\) 0 0
\(891\) 1204.78 0.0452994
\(892\) − 23748.3i − 0.891427i
\(893\) 7769.67i 0.291156i
\(894\) −89085.9 −3.33275
\(895\) 0 0
\(896\) −14400.5 −0.536929
\(897\) − 59051.0i − 2.19805i
\(898\) 6107.27i 0.226951i
\(899\) 5544.68 0.205701
\(900\) 0 0
\(901\) −73077.5 −2.70207
\(902\) 10884.3i 0.401784i
\(903\) − 8327.04i − 0.306873i
\(904\) 17343.3 0.638086
\(905\) 0 0
\(906\) 96701.2 3.54601
\(907\) − 20648.2i − 0.755910i −0.925824 0.377955i \(-0.876627\pi\)
0.925824 0.377955i \(-0.123373\pi\)
\(908\) − 7419.13i − 0.271159i
\(909\) 13033.5 0.475570
\(910\) 0 0
\(911\) 14434.1 0.524944 0.262472 0.964940i \(-0.415462\pi\)
0.262472 + 0.964940i \(0.415462\pi\)
\(912\) 11669.4i 0.423697i
\(913\) 893.772i 0.0323982i
\(914\) 21193.7 0.766985
\(915\) 0 0
\(916\) −14129.5 −0.509663
\(917\) 8788.14i 0.316478i
\(918\) 69405.0i 2.49532i
\(919\) 53819.1 1.93180 0.965902 0.258907i \(-0.0833624\pi\)
0.965902 + 0.258907i \(0.0833624\pi\)
\(920\) 0 0
\(921\) −14445.3 −0.516818
\(922\) − 17445.8i − 0.623152i
\(923\) 50547.7i 1.80260i
\(924\) −7149.49 −0.254547
\(925\) 0 0
\(926\) −63580.4 −2.25635
\(927\) 39668.6i 1.40549i
\(928\) 34199.7i 1.20976i
\(929\) 6549.01 0.231288 0.115644 0.993291i \(-0.463107\pi\)
0.115644 + 0.993291i \(0.463107\pi\)
\(930\) 0 0
\(931\) 17041.8 0.599917
\(932\) − 76237.0i − 2.67943i
\(933\) − 23578.8i − 0.827370i
\(934\) 89789.2 3.14560
\(935\) 0 0
\(936\) 105388. 3.68024
\(937\) 14481.1i 0.504885i 0.967612 + 0.252443i \(0.0812339\pi\)
−0.967612 + 0.252443i \(0.918766\pi\)
\(938\) − 3019.75i − 0.105116i
\(939\) 60385.4 2.09862
\(940\) 0 0
\(941\) 27311.0 0.946134 0.473067 0.881026i \(-0.343147\pi\)
0.473067 + 0.881026i \(0.343147\pi\)
\(942\) − 9441.77i − 0.326570i
\(943\) 17571.4i 0.606790i
\(944\) −16977.5 −0.585349
\(945\) 0 0
\(946\) 9505.69 0.326698
\(947\) 4437.34i 0.152264i 0.997098 + 0.0761322i \(0.0242571\pi\)
−0.997098 + 0.0761322i \(0.975743\pi\)
\(948\) − 110922.i − 3.80018i
\(949\) −53480.6 −1.82935
\(950\) 0 0
\(951\) −61305.9 −2.09041
\(952\) 19472.2i 0.662919i
\(953\) − 41059.5i − 1.39564i −0.716272 0.697821i \(-0.754153\pi\)
0.716272 0.697821i \(-0.245847\pi\)
\(954\) 120591. 4.09254
\(955\) 0 0
\(956\) −58649.6 −1.98417
\(957\) 27015.7i 0.912534i
\(958\) 38267.0i 1.29055i
\(959\) −2605.88 −0.0877460
\(960\) 0 0
\(961\) −29440.3 −0.988227
\(962\) 75391.3i 2.52673i
\(963\) 77002.9i 2.57672i
\(964\) 2410.96 0.0805518
\(965\) 0 0
\(966\) −18004.7 −0.599681
\(967\) − 23044.5i − 0.766351i −0.923676 0.383175i \(-0.874831\pi\)
0.923676 0.383175i \(-0.125169\pi\)
\(968\) − 3591.59i − 0.119254i
\(969\) −54043.0 −1.79165
\(970\) 0 0
\(971\) 42514.9 1.40512 0.702559 0.711626i \(-0.252041\pi\)
0.702559 + 0.711626i \(0.252041\pi\)
\(972\) 60389.1i 1.99278i
\(973\) − 4558.60i − 0.150197i
\(974\) 65997.4 2.17114
\(975\) 0 0
\(976\) 4435.06 0.145454
\(977\) 30875.5i 1.01105i 0.862812 + 0.505525i \(0.168701\pi\)
−0.862812 + 0.505525i \(0.831299\pi\)
\(978\) 51907.9i 1.69717i
\(979\) −2696.91 −0.0880425
\(980\) 0 0
\(981\) 51836.0 1.68705
\(982\) 41068.9i 1.33458i
\(983\) 50025.0i 1.62314i 0.584254 + 0.811571i \(0.301387\pi\)
−0.584254 + 0.811571i \(0.698613\pi\)
\(984\) −51608.5 −1.67197
\(985\) 0 0
\(986\) 167201. 5.40038
\(987\) − 6490.22i − 0.209307i
\(988\) 66067.1i 2.12740i
\(989\) 15345.7 0.493394
\(990\) 0 0
\(991\) −38794.2 −1.24353 −0.621765 0.783204i \(-0.713584\pi\)
−0.621765 + 0.783204i \(0.713584\pi\)
\(992\) 2163.38i 0.0692412i
\(993\) − 40074.7i − 1.28070i
\(994\) 15412.0 0.491791
\(995\) 0 0
\(996\) −9630.04 −0.306365
\(997\) − 22826.4i − 0.725094i −0.931966 0.362547i \(-0.881907\pi\)
0.931966 0.362547i \(-0.118093\pi\)
\(998\) − 85018.2i − 2.69660i
\(999\) 23113.6 0.732013
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.4.b.f.199.8 10
5.2 odd 4 275.4.a.g.1.2 5
5.3 odd 4 275.4.a.h.1.4 yes 5
5.4 even 2 inner 275.4.b.f.199.3 10
15.2 even 4 2475.4.a.bl.1.4 5
15.8 even 4 2475.4.a.bh.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.4.a.g.1.2 5 5.2 odd 4
275.4.a.h.1.4 yes 5 5.3 odd 4
275.4.b.f.199.3 10 5.4 even 2 inner
275.4.b.f.199.8 10 1.1 even 1 trivial
2475.4.a.bh.1.2 5 15.8 even 4
2475.4.a.bl.1.4 5 15.2 even 4