Properties

Label 275.4.b
Level $275$
Weight $4$
Character orbit 275.b
Rep. character $\chi_{275}(199,\cdot)$
Character field $\Q$
Dimension $44$
Newform subspaces $7$
Sturm bound $120$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 275.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(120\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(275, [\chi])\).

Total New Old
Modular forms 96 44 52
Cusp forms 84 44 40
Eisenstein series 12 0 12

Trace form

\( 44 q - 192 q^{4} - 8 q^{6} - 336 q^{9} + O(q^{10}) \) \( 44 q - 192 q^{4} - 8 q^{6} - 336 q^{9} - 44 q^{11} + 52 q^{14} + 592 q^{16} + 24 q^{19} + 64 q^{21} + 428 q^{24} - 568 q^{26} - 320 q^{29} - 688 q^{31} - 104 q^{34} + 1344 q^{36} - 1752 q^{39} + 680 q^{41} + 1056 q^{44} - 912 q^{46} - 2588 q^{49} - 800 q^{51} + 3076 q^{54} - 3588 q^{56} + 124 q^{59} + 4600 q^{61} - 964 q^{64} - 528 q^{66} + 6716 q^{69} - 184 q^{71} - 9180 q^{74} - 6364 q^{76} + 2864 q^{79} + 5116 q^{81} - 5684 q^{84} + 6172 q^{86} - 3136 q^{89} - 2072 q^{91} + 6952 q^{94} + 2592 q^{96} + 968 q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(275, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
275.4.b.a 275.b 5.b $2$ $16.226$ \(\Q(\sqrt{-1}) \) None 55.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}+3iq^{3}+7q^{4}-3q^{6}-9iq^{7}+\cdots\)
275.4.b.b 275.b 5.b $4$ $16.226$ \(\Q(i, \sqrt{17})\) None 55.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{1}+2\beta _{2})q^{2}+(-\beta _{1}-\beta _{2})q^{3}+(-5+\cdots)q^{4}+\cdots\)
275.4.b.c 275.b 5.b $4$ $16.226$ \(\Q(\zeta_{12})\) None 11.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\zeta_{12}-\zeta_{12}^{2})q^{2}+(\zeta_{12}-4\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
275.4.b.d 275.b 5.b $6$ $16.226$ 6.0.5161984.1 None 55.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-\beta _{3}+\beta _{4}-\beta _{5})q^{2}+(-\beta _{3}-3\beta _{4}+\cdots)q^{3}+\cdots\)
275.4.b.e 275.b 5.b $8$ $16.226$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 55.4.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-\beta _{3}-\beta _{4})q^{3}+(-5+\beta _{2}+\cdots)q^{4}+\cdots\)
275.4.b.f 275.b 5.b $10$ $16.226$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 275.4.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{8})q^{3}+(-8+\beta _{2}+\cdots)q^{4}+\cdots\)
275.4.b.g 275.b 5.b $10$ $16.226$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 275.4.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{6}q^{3}+(-2+\beta _{2})q^{4}+(1+\cdots)q^{6}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(275, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(275, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(55, [\chi])\)\(^{\oplus 2}\)