Properties

Label 275.3.x.i.101.4
Level $275$
Weight $3$
Character 275.101
Analytic conductor $7.493$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(51,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.51"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.x (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [28,5,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(7\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 101.4
Character \(\chi\) \(=\) 275.101
Dual form 275.3.x.i.226.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.101311 - 0.0329179i) q^{2} +(0.121004 - 0.0879149i) q^{3} +(-3.22689 - 2.34447i) q^{4} +(-0.0151531 + 0.00492353i) q^{6} +(-2.91426 + 4.01113i) q^{7} +(0.500198 + 0.688464i) q^{8} +(-2.77424 + 8.53823i) q^{9} +(9.59279 - 5.38315i) q^{11} -0.596582 q^{12} +(17.6682 + 5.74075i) q^{13} +(0.427284 - 0.310440i) q^{14} +(4.90223 + 15.0875i) q^{16} +(27.1482 - 8.82097i) q^{17} +(0.562122 - 0.773694i) q^{18} +(-15.5974 - 21.4680i) q^{19} +0.741571i q^{21} +(-1.14906 + 0.229597i) q^{22} +25.8328 q^{23} +(0.121052 + 0.0393323i) q^{24} +(-1.60101 - 1.16320i) q^{26} +(0.830919 + 2.55730i) q^{27} +(18.8080 - 6.11108i) q^{28} +(-6.29400 + 8.66295i) q^{29} +(0.964986 - 2.96992i) q^{31} -5.09386i q^{32} +(0.687512 - 1.49473i) q^{33} -3.04077 q^{34} +(28.9698 - 21.0478i) q^{36} +(28.2855 + 20.5506i) q^{37} +(0.873507 + 2.68838i) q^{38} +(2.64263 - 0.858642i) q^{39} +(18.9383 + 26.0664i) q^{41} +(0.0244110 - 0.0751293i) q^{42} +42.8073i q^{43} +(-43.5755 - 5.11920i) q^{44} +(-2.61714 - 0.850361i) q^{46} +(-50.2380 + 36.5001i) q^{47} +(1.91961 + 1.39468i) q^{48} +(7.54556 + 23.2228i) q^{49} +(2.50955 - 3.45410i) q^{51} +(-43.5543 - 59.9474i) q^{52} +(8.54679 - 26.3043i) q^{53} -0.286435i q^{54} -4.21923 q^{56} +(-3.77471 - 1.22648i) q^{57} +(0.922817 - 0.670466i) q^{58} +(41.7010 + 30.2976i) q^{59} +(-36.7117 + 11.9283i) q^{61} +(-0.195527 + 0.269120i) q^{62} +(-26.1631 - 36.0104i) q^{63} +(19.4413 - 59.8340i) q^{64} +(-0.118856 + 0.128802i) q^{66} +81.7051 q^{67} +(-108.285 - 35.1838i) q^{68} +(3.12588 - 2.27108i) q^{69} +(-33.2581 - 102.358i) q^{71} +(-7.26594 + 2.36085i) q^{72} +(-34.7613 + 47.8449i) q^{73} +(-2.18915 - 3.01311i) q^{74} +105.842i q^{76} +(-6.36334 + 54.1658i) q^{77} -0.295992 q^{78} +(63.1470 + 20.5177i) q^{79} +(-65.0421 - 47.2559i) q^{81} +(-1.06061 - 3.26422i) q^{82} +(12.8655 - 4.18025i) q^{83} +(1.73859 - 2.39297i) q^{84} +(1.40913 - 4.33685i) q^{86} +1.60159i q^{87} +(8.50441 + 3.91165i) q^{88} +69.3575 q^{89} +(-74.5166 + 54.1395i) q^{91} +(-83.3594 - 60.5641i) q^{92} +(-0.144333 - 0.444211i) q^{93} +(6.29117 - 2.04412i) q^{94} +(-0.447826 - 0.616379i) q^{96} +(31.7379 - 97.6793i) q^{97} -2.60111i q^{98} +(19.3499 + 96.8397i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 5 q^{2} - 14 q^{3} + 9 q^{4} + 30 q^{6} - 5 q^{7} - 15 q^{8} - 31 q^{9} - 5 q^{11} + 4 q^{12} + 45 q^{13} + 37 q^{14} - 35 q^{16} - 5 q^{17} - 35 q^{18} + 80 q^{19} + 50 q^{22} - 34 q^{23} - 13 q^{26}+ \cdots - 609 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.101311 0.0329179i −0.0506555 0.0164590i 0.283580 0.958949i \(-0.408478\pi\)
−0.334235 + 0.942490i \(0.608478\pi\)
\(3\) 0.121004 0.0879149i 0.0403348 0.0293050i −0.567435 0.823418i \(-0.692064\pi\)
0.607770 + 0.794113i \(0.292064\pi\)
\(4\) −3.22689 2.34447i −0.806722 0.586118i
\(5\) 0 0
\(6\) −0.0151531 + 0.00492353i −0.00252551 + 0.000820588i
\(7\) −2.91426 + 4.01113i −0.416322 + 0.573019i −0.964746 0.263182i \(-0.915228\pi\)
0.548424 + 0.836201i \(0.315228\pi\)
\(8\) 0.500198 + 0.688464i 0.0625248 + 0.0860580i
\(9\) −2.77424 + 8.53823i −0.308249 + 0.948692i
\(10\) 0 0
\(11\) 9.59279 5.38315i 0.872072 0.489377i
\(12\) −0.596582 −0.0497151
\(13\) 17.6682 + 5.74075i 1.35909 + 0.441596i 0.895740 0.444578i \(-0.146646\pi\)
0.463353 + 0.886174i \(0.346646\pi\)
\(14\) 0.427284 0.310440i 0.0305203 0.0221743i
\(15\) 0 0
\(16\) 4.90223 + 15.0875i 0.306390 + 0.942970i
\(17\) 27.1482 8.82097i 1.59695 0.518881i 0.630600 0.776108i \(-0.282809\pi\)
0.966351 + 0.257228i \(0.0828090\pi\)
\(18\) 0.562122 0.773694i 0.0312290 0.0429830i
\(19\) −15.5974 21.4680i −0.820916 1.12989i −0.989546 0.144215i \(-0.953934\pi\)
0.168630 0.985679i \(-0.446066\pi\)
\(20\) 0 0
\(21\) 0.741571i 0.0353129i
\(22\) −1.14906 + 0.229597i −0.0522299 + 0.0104362i
\(23\) 25.8328 1.12316 0.561582 0.827421i \(-0.310193\pi\)
0.561582 + 0.827421i \(0.310193\pi\)
\(24\) 0.121052 + 0.0393323i 0.00504385 + 0.00163885i
\(25\) 0 0
\(26\) −1.60101 1.16320i −0.0615773 0.0447385i
\(27\) 0.830919 + 2.55730i 0.0307748 + 0.0947150i
\(28\) 18.8080 6.11108i 0.671713 0.218253i
\(29\) −6.29400 + 8.66295i −0.217034 + 0.298722i −0.903627 0.428320i \(-0.859106\pi\)
0.686593 + 0.727042i \(0.259106\pi\)
\(30\) 0 0
\(31\) 0.964986 2.96992i 0.0311286 0.0958040i −0.934285 0.356527i \(-0.883961\pi\)
0.965414 + 0.260723i \(0.0839609\pi\)
\(32\) 5.09386i 0.159183i
\(33\) 0.687512 1.49473i 0.0208337 0.0452950i
\(34\) −3.04077 −0.0894345
\(35\) 0 0
\(36\) 28.9698 21.0478i 0.804717 0.584661i
\(37\) 28.2855 + 20.5506i 0.764474 + 0.555423i 0.900279 0.435313i \(-0.143362\pi\)
−0.135805 + 0.990736i \(0.543362\pi\)
\(38\) 0.873507 + 2.68838i 0.0229870 + 0.0707468i
\(39\) 2.64263 0.858642i 0.0677597 0.0220165i
\(40\) 0 0
\(41\) 18.9383 + 26.0664i 0.461910 + 0.635765i 0.974904 0.222627i \(-0.0714634\pi\)
−0.512993 + 0.858393i \(0.671463\pi\)
\(42\) 0.0244110 0.0751293i 0.000581214 0.00178879i
\(43\) 42.8073i 0.995519i 0.867315 + 0.497759i \(0.165844\pi\)
−0.867315 + 0.497759i \(0.834156\pi\)
\(44\) −43.5755 5.11920i −0.990352 0.116346i
\(45\) 0 0
\(46\) −2.61714 0.850361i −0.0568944 0.0184861i
\(47\) −50.2380 + 36.5001i −1.06889 + 0.776597i −0.975713 0.219052i \(-0.929703\pi\)
−0.0931809 + 0.995649i \(0.529703\pi\)
\(48\) 1.91961 + 1.39468i 0.0399919 + 0.0290558i
\(49\) 7.54556 + 23.2228i 0.153991 + 0.473935i
\(50\) 0 0
\(51\) 2.50955 3.45410i 0.0492069 0.0677275i
\(52\) −43.5543 59.9474i −0.837583 1.15283i
\(53\) 8.54679 26.3043i 0.161260 0.496308i −0.837481 0.546466i \(-0.815973\pi\)
0.998741 + 0.0501585i \(0.0159726\pi\)
\(54\) 0.286435i 0.00530435i
\(55\) 0 0
\(56\) −4.21923 −0.0753433
\(57\) −3.77471 1.22648i −0.0662230 0.0215172i
\(58\) 0.922817 0.670466i 0.0159106 0.0115598i
\(59\) 41.7010 + 30.2976i 0.706797 + 0.513518i 0.882139 0.470990i \(-0.156103\pi\)
−0.175342 + 0.984508i \(0.556103\pi\)
\(60\) 0 0
\(61\) −36.7117 + 11.9283i −0.601831 + 0.195547i −0.594057 0.804423i \(-0.702475\pi\)
−0.00777386 + 0.999970i \(0.502475\pi\)
\(62\) −0.195527 + 0.269120i −0.00315367 + 0.00434065i
\(63\) −26.1631 36.0104i −0.415288 0.571594i
\(64\) 19.4413 59.8340i 0.303770 0.934907i
\(65\) 0 0
\(66\) −0.118856 + 0.128802i −0.00180085 + 0.00195154i
\(67\) 81.7051 1.21948 0.609740 0.792602i \(-0.291274\pi\)
0.609740 + 0.792602i \(0.291274\pi\)
\(68\) −108.285 35.1838i −1.59242 0.517409i
\(69\) 3.12588 2.27108i 0.0453026 0.0329143i
\(70\) 0 0
\(71\) −33.2581 102.358i −0.468424 1.44166i −0.854625 0.519246i \(-0.826213\pi\)
0.386201 0.922415i \(-0.373787\pi\)
\(72\) −7.26594 + 2.36085i −0.100916 + 0.0327895i
\(73\) −34.7613 + 47.8449i −0.476183 + 0.655409i −0.977766 0.209700i \(-0.932751\pi\)
0.501583 + 0.865110i \(0.332751\pi\)
\(74\) −2.18915 3.01311i −0.0295831 0.0407177i
\(75\) 0 0
\(76\) 105.842i 1.39266i
\(77\) −6.36334 + 54.1658i −0.0826408 + 0.703452i
\(78\) −0.295992 −0.00379477
\(79\) 63.1470 + 20.5177i 0.799329 + 0.259718i 0.680072 0.733145i \(-0.261949\pi\)
0.119258 + 0.992863i \(0.461949\pi\)
\(80\) 0 0
\(81\) −65.0421 47.2559i −0.802989 0.583406i
\(82\) −1.06061 3.26422i −0.0129343 0.0398076i
\(83\) 12.8655 4.18025i 0.155006 0.0503644i −0.230486 0.973076i \(-0.574032\pi\)
0.385492 + 0.922711i \(0.374032\pi\)
\(84\) 1.73859 2.39297i 0.0206975 0.0284877i
\(85\) 0 0
\(86\) 1.40913 4.33685i 0.0163852 0.0504285i
\(87\) 1.60159i 0.0184091i
\(88\) 8.50441 + 3.91165i 0.0966410 + 0.0444506i
\(89\) 69.3575 0.779297 0.389649 0.920964i \(-0.372596\pi\)
0.389649 + 0.920964i \(0.372596\pi\)
\(90\) 0 0
\(91\) −74.5166 + 54.1395i −0.818864 + 0.594939i
\(92\) −83.3594 60.5641i −0.906080 0.658306i
\(93\) −0.144333 0.444211i −0.00155197 0.00477646i
\(94\) 6.29117 2.04412i 0.0669273 0.0217460i
\(95\) 0 0
\(96\) −0.447826 0.616379i −0.00466485 0.00642062i
\(97\) 31.7379 97.6793i 0.327195 1.00700i −0.643245 0.765661i \(-0.722412\pi\)
0.970440 0.241343i \(-0.0775877\pi\)
\(98\) 2.60111i 0.0265420i
\(99\) 19.3499 + 96.8397i 0.195453 + 0.978178i
\(100\) 0 0
\(101\) −41.1989 13.3863i −0.407910 0.132538i 0.0978725 0.995199i \(-0.468796\pi\)
−0.505783 + 0.862661i \(0.668796\pi\)
\(102\) −0.367947 + 0.267329i −0.00360733 + 0.00262088i
\(103\) −142.199 103.314i −1.38058 1.00305i −0.996826 0.0796093i \(-0.974633\pi\)
−0.383749 0.923437i \(-0.625367\pi\)
\(104\) 4.88531 + 15.0354i 0.0469741 + 0.144572i
\(105\) 0 0
\(106\) −1.73177 + 2.38357i −0.0163374 + 0.0224865i
\(107\) 17.7189 + 24.3879i 0.165597 + 0.227925i 0.883749 0.467962i \(-0.155012\pi\)
−0.718152 + 0.695887i \(0.755012\pi\)
\(108\) 3.31425 10.2002i 0.0306875 0.0944463i
\(109\) 162.867i 1.49420i −0.664714 0.747098i \(-0.731446\pi\)
0.664714 0.747098i \(-0.268554\pi\)
\(110\) 0 0
\(111\) 5.22938 0.0471116
\(112\) −74.8044 24.3054i −0.667896 0.217013i
\(113\) −146.189 + 106.213i −1.29371 + 0.939934i −0.999873 0.0159217i \(-0.994932\pi\)
−0.293835 + 0.955856i \(0.594932\pi\)
\(114\) 0.342046 + 0.248511i 0.00300041 + 0.00217992i
\(115\) 0 0
\(116\) 40.6201 13.1983i 0.350173 0.113778i
\(117\) −98.0317 + 134.929i −0.837878 + 1.15324i
\(118\) −3.22744 4.44219i −0.0273512 0.0376456i
\(119\) −43.7346 + 134.601i −0.367518 + 1.13110i
\(120\) 0 0
\(121\) 63.0434 103.279i 0.521020 0.853545i
\(122\) 4.11195 0.0337045
\(123\) 4.58324 + 1.48919i 0.0372622 + 0.0121072i
\(124\) −10.0768 + 7.32122i −0.0812645 + 0.0590421i
\(125\) 0 0
\(126\) 1.46522 + 4.50949i 0.0116287 + 0.0357896i
\(127\) 22.6358 7.35483i 0.178235 0.0579120i −0.218540 0.975828i \(-0.570129\pi\)
0.396775 + 0.917916i \(0.370129\pi\)
\(128\) −15.9156 + 21.9059i −0.124341 + 0.171140i
\(129\) 3.76340 + 5.17988i 0.0291736 + 0.0401541i
\(130\) 0 0
\(131\) 20.0018i 0.152685i 0.997082 + 0.0763426i \(0.0243243\pi\)
−0.997082 + 0.0763426i \(0.975676\pi\)
\(132\) −5.72288 + 3.21149i −0.0433552 + 0.0243295i
\(133\) 131.566 0.989216
\(134\) −8.27762 2.68956i −0.0617733 0.0200714i
\(135\) 0 0
\(136\) 19.6524 + 14.2783i 0.144503 + 0.104987i
\(137\) 27.2731 + 83.9379i 0.199074 + 0.612686i 0.999905 + 0.0137956i \(0.00439140\pi\)
−0.800831 + 0.598890i \(0.795609\pi\)
\(138\) −0.391445 + 0.127188i −0.00283656 + 0.000921654i
\(139\) 67.3531 92.7036i 0.484555 0.666932i −0.494818 0.868997i \(-0.664765\pi\)
0.979372 + 0.202065i \(0.0647651\pi\)
\(140\) 0 0
\(141\) −2.87013 + 8.83334i −0.0203555 + 0.0626478i
\(142\) 11.4648i 0.0807378i
\(143\) 200.391 40.0408i 1.40133 0.280006i
\(144\) −142.421 −0.989033
\(145\) 0 0
\(146\) 5.09666 3.70294i 0.0349086 0.0253626i
\(147\) 2.95468 + 2.14670i 0.0200999 + 0.0146034i
\(148\) −43.0939 132.629i −0.291175 0.896143i
\(149\) −110.403 + 35.8722i −0.740962 + 0.240753i −0.655088 0.755553i \(-0.727368\pi\)
−0.0858741 + 0.996306i \(0.527368\pi\)
\(150\) 0 0
\(151\) −5.47261 7.53241i −0.0362425 0.0498835i 0.790511 0.612448i \(-0.209815\pi\)
−0.826754 + 0.562564i \(0.809815\pi\)
\(152\) 6.97814 21.4765i 0.0459088 0.141293i
\(153\) 256.269i 1.67496i
\(154\) 2.42770 5.27812i 0.0157643 0.0342735i
\(155\) 0 0
\(156\) −10.5405 3.42483i −0.0675675 0.0219540i
\(157\) 102.228 74.2729i 0.651133 0.473076i −0.212524 0.977156i \(-0.568168\pi\)
0.863657 + 0.504080i \(0.168168\pi\)
\(158\) −5.72208 4.15734i −0.0362157 0.0263123i
\(159\) −1.27834 3.93433i −0.00803988 0.0247442i
\(160\) 0 0
\(161\) −75.2833 + 103.619i −0.467598 + 0.643594i
\(162\) 5.03391 + 6.92859i 0.0310735 + 0.0427691i
\(163\) 61.6337 189.689i 0.378121 1.16374i −0.563228 0.826301i \(-0.690441\pi\)
0.941349 0.337435i \(-0.109559\pi\)
\(164\) 128.514i 0.783620i
\(165\) 0 0
\(166\) −1.44102 −0.00868084
\(167\) 20.2380 + 6.57572i 0.121186 + 0.0393756i 0.368982 0.929437i \(-0.379706\pi\)
−0.247796 + 0.968812i \(0.579706\pi\)
\(168\) −0.510545 + 0.370933i −0.00303896 + 0.00220793i
\(169\) 142.486 + 103.522i 0.843110 + 0.612555i
\(170\) 0 0
\(171\) 226.570 73.6169i 1.32497 0.430508i
\(172\) 100.360 138.134i 0.583491 0.803107i
\(173\) 122.377 + 168.437i 0.707379 + 0.973624i 0.999849 + 0.0173494i \(0.00552275\pi\)
−0.292470 + 0.956275i \(0.594477\pi\)
\(174\) 0.0527211 0.162259i 0.000302995 0.000932521i
\(175\) 0 0
\(176\) 128.245 + 118.342i 0.728662 + 0.672398i
\(177\) 7.70962 0.0435571
\(178\) −7.02667 2.28310i −0.0394757 0.0128264i
\(179\) 39.4489 28.6613i 0.220385 0.160119i −0.472115 0.881537i \(-0.656509\pi\)
0.692500 + 0.721418i \(0.256509\pi\)
\(180\) 0 0
\(181\) 47.9638 + 147.617i 0.264993 + 0.815565i 0.991695 + 0.128612i \(0.0410522\pi\)
−0.726702 + 0.686953i \(0.758948\pi\)
\(182\) 9.33151 3.03199i 0.0512720 0.0166593i
\(183\) −3.39360 + 4.67088i −0.0185442 + 0.0255240i
\(184\) 12.9215 + 17.7849i 0.0702256 + 0.0966572i
\(185\) 0 0
\(186\) 0.0497545i 0.000267497i
\(187\) 212.942 230.760i 1.13873 1.23401i
\(188\) 247.686 1.31748
\(189\) −12.6792 4.11972i −0.0670857 0.0217975i
\(190\) 0 0
\(191\) −114.165 82.9456i −0.597722 0.434270i 0.247348 0.968927i \(-0.420441\pi\)
−0.845069 + 0.534657i \(0.820441\pi\)
\(192\) −2.90782 8.94936i −0.0151449 0.0466112i
\(193\) 290.300 94.3242i 1.50415 0.488727i 0.562922 0.826510i \(-0.309677\pi\)
0.941224 + 0.337783i \(0.109677\pi\)
\(194\) −6.43080 + 8.85124i −0.0331485 + 0.0456249i
\(195\) 0 0
\(196\) 30.0966 92.6278i 0.153554 0.472591i
\(197\) 300.287i 1.52430i 0.647400 + 0.762151i \(0.275856\pi\)
−0.647400 + 0.762151i \(0.724144\pi\)
\(198\) 1.22740 10.4479i 0.00619901 0.0527671i
\(199\) −328.028 −1.64838 −0.824190 0.566313i \(-0.808369\pi\)
−0.824190 + 0.566313i \(0.808369\pi\)
\(200\) 0 0
\(201\) 9.88668 7.18309i 0.0491875 0.0357368i
\(202\) 3.73325 + 2.71237i 0.0184815 + 0.0134276i
\(203\) −16.4059 50.4921i −0.0808171 0.248730i
\(204\) −16.1961 + 5.26243i −0.0793926 + 0.0257962i
\(205\) 0 0
\(206\) 11.0055 + 15.1477i 0.0534246 + 0.0735326i
\(207\) −71.6663 + 220.566i −0.346214 + 1.06554i
\(208\) 294.712i 1.41688i
\(209\) −265.188 121.975i −1.26884 0.583611i
\(210\) 0 0
\(211\) −198.717 64.5672i −0.941789 0.306006i −0.202414 0.979300i \(-0.564879\pi\)
−0.739375 + 0.673294i \(0.764879\pi\)
\(212\) −89.2492 + 64.8434i −0.420987 + 0.305865i
\(213\) −13.0232 9.46188i −0.0611416 0.0444220i
\(214\) −0.992316 3.05403i −0.00463699 0.0142712i
\(215\) 0 0
\(216\) −1.34499 + 1.85122i −0.00622680 + 0.00857045i
\(217\) 9.10053 + 12.5258i 0.0419379 + 0.0577226i
\(218\) −5.36126 + 16.5003i −0.0245929 + 0.0756892i
\(219\) 8.84548i 0.0403903i
\(220\) 0 0
\(221\) 530.298 2.39954
\(222\) −0.529794 0.172140i −0.00238646 0.000775407i
\(223\) 52.7495 38.3248i 0.236545 0.171860i −0.463198 0.886255i \(-0.653298\pi\)
0.699743 + 0.714395i \(0.253298\pi\)
\(224\) 20.4321 + 14.8448i 0.0912148 + 0.0662715i
\(225\) 0 0
\(226\) 18.3069 5.94826i 0.0810038 0.0263197i
\(227\) 14.5146 19.9777i 0.0639410 0.0880073i −0.775849 0.630919i \(-0.782678\pi\)
0.839790 + 0.542912i \(0.182678\pi\)
\(228\) 9.30513 + 12.8074i 0.0408120 + 0.0561728i
\(229\) 12.9100 39.7328i 0.0563754 0.173506i −0.918904 0.394481i \(-0.870924\pi\)
0.975279 + 0.220976i \(0.0709242\pi\)
\(230\) 0 0
\(231\) 3.99199 + 7.11374i 0.0172813 + 0.0307954i
\(232\) −9.11237 −0.0392775
\(233\) −341.939 111.103i −1.46755 0.476836i −0.537183 0.843466i \(-0.680511\pi\)
−0.930367 + 0.366630i \(0.880511\pi\)
\(234\) 14.3733 10.4428i 0.0614242 0.0446273i
\(235\) 0 0
\(236\) −63.5327 195.534i −0.269207 0.828532i
\(237\) 9.44488 3.06883i 0.0398518 0.0129486i
\(238\) 8.86160 12.1969i 0.0372336 0.0512477i
\(239\) 89.9081 + 123.748i 0.376184 + 0.517773i 0.954569 0.297991i \(-0.0963165\pi\)
−0.578384 + 0.815764i \(0.696317\pi\)
\(240\) 0 0
\(241\) 411.766i 1.70857i 0.519801 + 0.854287i \(0.326006\pi\)
−0.519801 + 0.854287i \(0.673994\pi\)
\(242\) −9.78671 + 8.38803i −0.0404410 + 0.0346613i
\(243\) −36.2251 −0.149074
\(244\) 146.430 + 47.5780i 0.600123 + 0.194992i
\(245\) 0 0
\(246\) −0.415312 0.301742i −0.00168826 0.00122659i
\(247\) −152.336 468.842i −0.616745 1.89814i
\(248\) 2.52737 0.821192i 0.0101910 0.00331126i
\(249\) 1.18927 1.63690i 0.00477620 0.00657388i
\(250\) 0 0
\(251\) 108.491 333.902i 0.432237 1.33029i −0.463655 0.886016i \(-0.653462\pi\)
0.895892 0.444272i \(-0.146538\pi\)
\(252\) 177.540i 0.704525i
\(253\) 247.808 139.062i 0.979479 0.549651i
\(254\) −2.53536 −0.00998174
\(255\) 0 0
\(256\) −201.258 + 146.222i −0.786164 + 0.571181i
\(257\) −210.588 153.001i −0.819408 0.595335i 0.0971345 0.995271i \(-0.469032\pi\)
−0.916543 + 0.399936i \(0.869032\pi\)
\(258\) −0.210763 0.648661i −0.000816910 0.00251419i
\(259\) −164.863 + 53.5671i −0.636535 + 0.206823i
\(260\) 0 0
\(261\) −56.5052 77.7727i −0.216495 0.297980i
\(262\) 0.658416 2.02640i 0.00251304 0.00773434i
\(263\) 342.750i 1.30323i 0.758549 + 0.651616i \(0.225909\pi\)
−0.758549 + 0.651616i \(0.774091\pi\)
\(264\) 1.37296 0.274337i 0.00520062 0.00103915i
\(265\) 0 0
\(266\) −13.3291 4.33087i −0.0501092 0.0162815i
\(267\) 8.39256 6.09755i 0.0314328 0.0228373i
\(268\) −263.653 191.555i −0.983781 0.714758i
\(269\) −40.8387 125.688i −0.151817 0.467243i 0.846008 0.533170i \(-0.179000\pi\)
−0.997824 + 0.0659271i \(0.979000\pi\)
\(270\) 0 0
\(271\) −68.2898 + 93.9929i −0.251992 + 0.346837i −0.916208 0.400704i \(-0.868766\pi\)
0.664216 + 0.747541i \(0.268766\pi\)
\(272\) 266.173 + 366.356i 0.978578 + 1.34690i
\(273\) −4.25717 + 13.1022i −0.0155940 + 0.0479935i
\(274\) 9.40161i 0.0343124i
\(275\) 0 0
\(276\) −15.4113 −0.0558382
\(277\) −62.1400 20.1905i −0.224332 0.0728899i 0.194694 0.980864i \(-0.437629\pi\)
−0.419026 + 0.907974i \(0.637629\pi\)
\(278\) −9.87522 + 7.17477i −0.0355224 + 0.0258085i
\(279\) 22.6808 + 16.4786i 0.0812931 + 0.0590629i
\(280\) 0 0
\(281\) −208.088 + 67.6118i −0.740526 + 0.240611i −0.654900 0.755716i \(-0.727289\pi\)
−0.0856263 + 0.996327i \(0.527289\pi\)
\(282\) 0.581550 0.800435i 0.00206224 0.00283842i
\(283\) −110.353 151.887i −0.389938 0.536704i 0.568245 0.822860i \(-0.307623\pi\)
−0.958183 + 0.286155i \(0.907623\pi\)
\(284\) −132.655 + 408.270i −0.467095 + 1.43757i
\(285\) 0 0
\(286\) −21.6198 2.53988i −0.0755939 0.00888068i
\(287\) −159.747 −0.556609
\(288\) 43.4925 + 14.1316i 0.151016 + 0.0490680i
\(289\) 425.407 309.076i 1.47200 1.06947i
\(290\) 0 0
\(291\) −4.74703 14.6099i −0.0163128 0.0502057i
\(292\) 224.342 72.8931i 0.768294 0.249634i
\(293\) −284.095 + 391.023i −0.969607 + 1.33455i −0.0273613 + 0.999626i \(0.508710\pi\)
−0.942245 + 0.334923i \(0.891290\pi\)
\(294\) −0.228676 0.314746i −0.000777811 0.00107056i
\(295\) 0 0
\(296\) 29.7530i 0.100517i
\(297\) 21.7372 + 20.0587i 0.0731892 + 0.0675378i
\(298\) 12.3659 0.0414963
\(299\) 456.419 + 148.299i 1.52648 + 0.495984i
\(300\) 0 0
\(301\) −171.706 124.752i −0.570451 0.414457i
\(302\) 0.306485 + 0.943262i 0.00101485 + 0.00312339i
\(303\) −6.16211 + 2.00219i −0.0203370 + 0.00660790i
\(304\) 247.437 340.567i 0.813936 1.12029i
\(305\) 0 0
\(306\) 8.43584 25.9628i 0.0275681 0.0848459i
\(307\) 42.8858i 0.139693i −0.997558 0.0698466i \(-0.977749\pi\)
0.997558 0.0698466i \(-0.0222510\pi\)
\(308\) 147.524 159.868i 0.478974 0.519053i
\(309\) −26.2896 −0.0850795
\(310\) 0 0
\(311\) −190.665 + 138.527i −0.613072 + 0.445423i −0.850495 0.525983i \(-0.823697\pi\)
0.237423 + 0.971406i \(0.423697\pi\)
\(312\) 1.91298 + 1.38986i 0.00613136 + 0.00445469i
\(313\) −95.7292 294.624i −0.305844 0.941291i −0.979361 0.202119i \(-0.935217\pi\)
0.673517 0.739172i \(-0.264783\pi\)
\(314\) −12.8017 + 4.15953i −0.0407698 + 0.0132469i
\(315\) 0 0
\(316\) −155.665 214.255i −0.492611 0.678021i
\(317\) 83.4626 256.871i 0.263289 0.810320i −0.728794 0.684733i \(-0.759919\pi\)
0.992083 0.125587i \(-0.0400813\pi\)
\(318\) 0.440671i 0.00138576i
\(319\) −13.7431 + 116.983i −0.0430818 + 0.366719i
\(320\) 0 0
\(321\) 4.28813 + 1.39330i 0.0133587 + 0.00434049i
\(322\) 11.0379 8.01953i 0.0342793 0.0249054i
\(323\) −612.809 445.232i −1.89724 1.37843i
\(324\) 99.0936 + 304.979i 0.305844 + 0.941292i
\(325\) 0 0
\(326\) −12.4883 + 17.1887i −0.0383078 + 0.0527261i
\(327\) −14.3185 19.7077i −0.0437874 0.0602681i
\(328\) −8.47284 + 26.0767i −0.0258318 + 0.0795022i
\(329\) 307.882i 0.935811i
\(330\) 0 0
\(331\) 20.4547 0.0617967 0.0308983 0.999523i \(-0.490163\pi\)
0.0308983 + 0.999523i \(0.490163\pi\)
\(332\) −51.3159 16.6736i −0.154566 0.0502216i
\(333\) −253.937 + 184.496i −0.762574 + 0.554042i
\(334\) −1.83387 1.33239i −0.00549063 0.00398918i
\(335\) 0 0
\(336\) −11.1885 + 3.63536i −0.0332990 + 0.0108195i
\(337\) −74.0571 + 101.931i −0.219754 + 0.302466i −0.904633 0.426191i \(-0.859855\pi\)
0.684879 + 0.728657i \(0.259855\pi\)
\(338\) −11.0276 15.1782i −0.0326261 0.0449060i
\(339\) −8.35186 + 25.7044i −0.0246368 + 0.0758242i
\(340\) 0 0
\(341\) −6.73063 33.6845i −0.0197379 0.0987816i
\(342\) −25.3773 −0.0742026
\(343\) −346.193 112.485i −1.00931 0.327944i
\(344\) −29.4713 + 21.4121i −0.0856724 + 0.0622446i
\(345\) 0 0
\(346\) −6.85350 21.0929i −0.0198078 0.0609621i
\(347\) −451.079 + 146.564i −1.29994 + 0.422376i −0.875560 0.483109i \(-0.839508\pi\)
−0.424379 + 0.905485i \(0.639508\pi\)
\(348\) 3.75488 5.16815i 0.0107899 0.0148510i
\(349\) −164.395 226.270i −0.471046 0.648339i 0.505707 0.862705i \(-0.331232\pi\)
−0.976753 + 0.214366i \(0.931232\pi\)
\(350\) 0 0
\(351\) 49.9531i 0.142316i
\(352\) −27.4210 48.8643i −0.0779006 0.138819i
\(353\) 292.911 0.829775 0.414888 0.909873i \(-0.363821\pi\)
0.414888 + 0.909873i \(0.363821\pi\)
\(354\) −0.781069 0.253785i −0.00220641 0.000716905i
\(355\) 0 0
\(356\) −223.809 162.607i −0.628676 0.456760i
\(357\) 6.54138 + 20.1323i 0.0183232 + 0.0563930i
\(358\) −4.94007 + 1.60513i −0.0137991 + 0.00448360i
\(359\) −76.3495 + 105.086i −0.212673 + 0.292719i −0.902004 0.431727i \(-0.857904\pi\)
0.689332 + 0.724446i \(0.257904\pi\)
\(360\) 0 0
\(361\) −106.040 + 326.358i −0.293740 + 0.904040i
\(362\) 16.5341i 0.0456744i
\(363\) −1.45123 18.0397i −0.00399787 0.0496960i
\(364\) 367.385 1.00930
\(365\) 0 0
\(366\) 0.497564 0.361502i 0.00135947 0.000987709i
\(367\) −121.593 88.3422i −0.331315 0.240715i 0.409673 0.912232i \(-0.365643\pi\)
−0.740988 + 0.671518i \(0.765643\pi\)
\(368\) 126.638 + 389.752i 0.344125 + 1.05911i
\(369\) −275.100 + 89.3855i −0.745529 + 0.242237i
\(370\) 0 0
\(371\) 80.6025 + 110.940i 0.217257 + 0.299029i
\(372\) −0.575693 + 1.77180i −0.00154756 + 0.00476291i
\(373\) 563.298i 1.51018i 0.655620 + 0.755091i \(0.272407\pi\)
−0.655620 + 0.755091i \(0.727593\pi\)
\(374\) −29.1695 + 16.3689i −0.0779934 + 0.0437672i
\(375\) 0 0
\(376\) −50.2580 16.3298i −0.133665 0.0434303i
\(377\) −160.935 + 116.926i −0.426885 + 0.310150i
\(378\) 1.14893 + 0.834746i 0.00303949 + 0.00220832i
\(379\) 71.0636 + 218.711i 0.187503 + 0.577075i 0.999983 0.00591490i \(-0.00188278\pi\)
−0.812480 + 0.582990i \(0.801883\pi\)
\(380\) 0 0
\(381\) 2.09244 2.87999i 0.00549196 0.00755904i
\(382\) 8.83575 + 12.1614i 0.0231302 + 0.0318360i
\(383\) 200.665 617.582i 0.523928 1.61249i −0.242497 0.970152i \(-0.577966\pi\)
0.766425 0.642333i \(-0.222034\pi\)
\(384\) 4.04993i 0.0105467i
\(385\) 0 0
\(386\) −32.5155 −0.0842372
\(387\) −365.499 118.758i −0.944441 0.306868i
\(388\) −331.421 + 240.791i −0.854178 + 0.620597i
\(389\) 365.035 + 265.214i 0.938394 + 0.681783i 0.948034 0.318170i \(-0.103068\pi\)
−0.00963935 + 0.999954i \(0.503068\pi\)
\(390\) 0 0
\(391\) 701.312 227.870i 1.79364 0.582788i
\(392\) −12.2138 + 16.8109i −0.0311577 + 0.0428849i
\(393\) 1.75845 + 2.42030i 0.00447443 + 0.00615853i
\(394\) 9.88484 30.4224i 0.0250884 0.0772142i
\(395\) 0 0
\(396\) 164.598 357.856i 0.415651 0.903677i
\(397\) 193.392 0.487133 0.243567 0.969884i \(-0.421683\pi\)
0.243567 + 0.969884i \(0.421683\pi\)
\(398\) 33.2328 + 10.7980i 0.0834995 + 0.0271306i
\(399\) 15.9200 11.5666i 0.0398999 0.0289889i
\(400\) 0 0
\(401\) 16.6678 + 51.2982i 0.0415655 + 0.127926i 0.969686 0.244355i \(-0.0785761\pi\)
−0.928120 + 0.372280i \(0.878576\pi\)
\(402\) −1.23808 + 0.402277i −0.00307981 + 0.00100069i
\(403\) 34.0992 46.9335i 0.0846133 0.116460i
\(404\) 101.560 + 139.786i 0.251387 + 0.346005i
\(405\) 0 0
\(406\) 5.65545i 0.0139297i
\(407\) 381.965 + 44.8728i 0.938488 + 0.110252i
\(408\) 3.63330 0.00890515
\(409\) −376.937 122.474i −0.921605 0.299448i −0.190480 0.981691i \(-0.561004\pi\)
−0.731125 + 0.682243i \(0.761004\pi\)
\(410\) 0 0
\(411\) 10.6796 + 7.75915i 0.0259843 + 0.0188787i
\(412\) 216.645 + 666.764i 0.525837 + 1.61836i
\(413\) −243.055 + 78.9733i −0.588511 + 0.191219i
\(414\) 14.5212 19.9867i 0.0350753 0.0482769i
\(415\) 0 0
\(416\) 29.2425 89.9993i 0.0702946 0.216345i
\(417\) 17.1389i 0.0411004i
\(418\) 22.8513 + 21.0868i 0.0546682 + 0.0504469i
\(419\) −689.397 −1.64534 −0.822669 0.568520i \(-0.807516\pi\)
−0.822669 + 0.568520i \(0.807516\pi\)
\(420\) 0 0
\(421\) 139.546 101.386i 0.331463 0.240822i −0.409588 0.912270i \(-0.634328\pi\)
0.741051 + 0.671449i \(0.234328\pi\)
\(422\) 18.0068 + 13.0827i 0.0426702 + 0.0310017i
\(423\) −172.274 530.204i −0.407266 1.25344i
\(424\) 22.3847 7.27322i 0.0527940 0.0171538i
\(425\) 0 0
\(426\) 1.00792 + 1.38729i 0.00236602 + 0.00325654i
\(427\) 59.1411 182.018i 0.138504 0.426271i
\(428\) 120.239i 0.280931i
\(429\) 20.7280 22.4625i 0.0483170 0.0523600i
\(430\) 0 0
\(431\) −426.191 138.478i −0.988842 0.321294i −0.230444 0.973086i \(-0.574018\pi\)
−0.758398 + 0.651791i \(0.774018\pi\)
\(432\) −34.5100 + 25.0730i −0.0798843 + 0.0580394i
\(433\) 538.217 + 391.038i 1.24300 + 0.903090i 0.997794 0.0663824i \(-0.0211457\pi\)
0.245202 + 0.969472i \(0.421146\pi\)
\(434\) −0.509660 1.56857i −0.00117433 0.00361422i
\(435\) 0 0
\(436\) −381.838 + 525.555i −0.875775 + 1.20540i
\(437\) −402.924 554.577i −0.922023 1.26906i
\(438\) 0.291175 0.896145i 0.000664783 0.00204599i
\(439\) 498.050i 1.13451i −0.823542 0.567255i \(-0.808006\pi\)
0.823542 0.567255i \(-0.191994\pi\)
\(440\) 0 0
\(441\) −219.215 −0.497086
\(442\) −53.7250 17.4563i −0.121550 0.0394939i
\(443\) 409.429 297.467i 0.924219 0.671484i −0.0203518 0.999793i \(-0.506479\pi\)
0.944570 + 0.328309i \(0.106479\pi\)
\(444\) −16.8746 12.2601i −0.0380059 0.0276129i
\(445\) 0 0
\(446\) −6.60568 + 2.14631i −0.0148109 + 0.00481237i
\(447\) −10.2056 + 14.0468i −0.0228313 + 0.0314246i
\(448\) 183.345 + 252.353i 0.409253 + 0.563288i
\(449\) 182.166 560.649i 0.405715 1.24866i −0.514582 0.857441i \(-0.672053\pi\)
0.920297 0.391221i \(-0.127947\pi\)
\(450\) 0 0
\(451\) 321.991 + 148.101i 0.713948 + 0.328385i
\(452\) 720.748 1.59458
\(453\) −1.32442 0.430331i −0.00292367 0.000949957i
\(454\) −2.12811 + 1.54616i −0.00468747 + 0.00340565i
\(455\) 0 0
\(456\) −1.04372 3.21224i −0.00228886 0.00704438i
\(457\) 432.905 140.659i 0.947276 0.307789i 0.205668 0.978622i \(-0.434063\pi\)
0.741608 + 0.670833i \(0.234063\pi\)
\(458\) −2.61584 + 3.60040i −0.00571144 + 0.00786113i
\(459\) 45.1158 + 62.0966i 0.0982916 + 0.135287i
\(460\) 0 0
\(461\) 627.429i 1.36102i 0.732740 + 0.680509i \(0.238241\pi\)
−0.732740 + 0.680509i \(0.761759\pi\)
\(462\) −0.170263 0.852108i −0.000368534 0.00184439i
\(463\) 546.399 1.18013 0.590064 0.807357i \(-0.299103\pi\)
0.590064 + 0.807357i \(0.299103\pi\)
\(464\) −161.557 52.4931i −0.348183 0.113132i
\(465\) 0 0
\(466\) 30.9849 + 22.5118i 0.0664912 + 0.0483087i
\(467\) −44.7840 137.831i −0.0958972 0.295141i 0.891589 0.452845i \(-0.149591\pi\)
−0.987486 + 0.157704i \(0.949591\pi\)
\(468\) 632.675 205.568i 1.35187 0.439249i
\(469\) −238.110 + 327.730i −0.507697 + 0.698784i
\(470\) 0 0
\(471\) 5.84034 17.9747i 0.0123999 0.0381629i
\(472\) 43.8644i 0.0929331i
\(473\) 230.438 + 410.642i 0.487184 + 0.868164i
\(474\) −1.05789 −0.00223183
\(475\) 0 0
\(476\) 456.696 331.809i 0.959445 0.697078i
\(477\) 200.882 + 145.949i 0.421135 + 0.305973i
\(478\) −5.03515 15.4966i −0.0105338 0.0324197i
\(479\) 451.686 146.762i 0.942977 0.306392i 0.203119 0.979154i \(-0.434892\pi\)
0.739859 + 0.672762i \(0.234892\pi\)
\(480\) 0 0
\(481\) 381.779 + 525.473i 0.793719 + 1.09246i
\(482\) 13.5545 41.7165i 0.0281214 0.0865487i
\(483\) 19.1568i 0.0396622i
\(484\) −445.568 + 185.466i −0.920596 + 0.383194i
\(485\) 0 0
\(486\) 3.67000 + 1.19245i 0.00755143 + 0.00245361i
\(487\) 61.4734 44.6630i 0.126229 0.0917105i −0.522879 0.852407i \(-0.675142\pi\)
0.649108 + 0.760696i \(0.275142\pi\)
\(488\) −26.5754 19.3081i −0.0544577 0.0395658i
\(489\) −9.21853 28.3717i −0.0188518 0.0580199i
\(490\) 0 0
\(491\) 521.848 718.262i 1.06283 1.46286i 0.185694 0.982608i \(-0.440547\pi\)
0.877133 0.480248i \(-0.159453\pi\)
\(492\) −11.2983 15.5507i −0.0229639 0.0316072i
\(493\) −94.4549 + 290.702i −0.191592 + 0.589660i
\(494\) 52.5134i 0.106302i
\(495\) 0 0
\(496\) 49.5394 0.0998777
\(497\) 507.494 + 164.895i 1.02111 + 0.331780i
\(498\) −0.174370 + 0.126687i −0.000350140 + 0.000254392i
\(499\) −116.418 84.5823i −0.233302 0.169504i 0.464992 0.885315i \(-0.346057\pi\)
−0.698294 + 0.715811i \(0.746057\pi\)
\(500\) 0 0
\(501\) 3.02699 0.983529i 0.00604190 0.00196313i
\(502\) −21.9827 + 30.2566i −0.0437903 + 0.0602722i
\(503\) −47.7249 65.6877i −0.0948805 0.130592i 0.758937 0.651164i \(-0.225719\pi\)
−0.853818 + 0.520572i \(0.825719\pi\)
\(504\) 11.7051 36.0247i 0.0232245 0.0714777i
\(505\) 0 0
\(506\) −29.6833 + 5.93113i −0.0586627 + 0.0117216i
\(507\) 26.3425 0.0519576
\(508\) −90.2864 29.3358i −0.177729 0.0577477i
\(509\) −743.157 + 539.935i −1.46003 + 1.06078i −0.476679 + 0.879077i \(0.658160\pi\)
−0.983354 + 0.181699i \(0.941840\pi\)
\(510\) 0 0
\(511\) −90.6086 278.865i −0.177316 0.545723i
\(512\) 128.211 41.6582i 0.250412 0.0813638i
\(513\) 41.9400 57.7255i 0.0817544 0.112525i
\(514\) 16.2984 + 22.4328i 0.0317089 + 0.0436436i
\(515\) 0 0
\(516\) 25.5381i 0.0494924i
\(517\) −285.438 + 620.576i −0.552104 + 1.20034i
\(518\) 18.4657 0.0356481
\(519\) 29.6162 + 9.62290i 0.0570640 + 0.0185412i
\(520\) 0 0
\(521\) 118.489 + 86.0876i 0.227427 + 0.165235i 0.695663 0.718368i \(-0.255110\pi\)
−0.468237 + 0.883603i \(0.655110\pi\)
\(522\) 3.16448 + 9.73926i 0.00606222 + 0.0186576i
\(523\) 417.876 135.776i 0.798998 0.259610i 0.119067 0.992886i \(-0.462010\pi\)
0.679931 + 0.733276i \(0.262010\pi\)
\(524\) 46.8935 64.5434i 0.0894915 0.123174i
\(525\) 0 0
\(526\) 11.2826 34.7243i 0.0214499 0.0660159i
\(527\) 89.1400i 0.169146i
\(528\) 25.9222 + 3.04531i 0.0490950 + 0.00576763i
\(529\) 138.331 0.261496
\(530\) 0 0
\(531\) −374.376 + 272.000i −0.705040 + 0.512242i
\(532\) −424.548 308.452i −0.798022 0.579797i
\(533\) 184.966 + 569.266i 0.347028 + 1.06804i
\(534\) −1.05098 + 0.341483i −0.00196812 + 0.000639482i
\(535\) 0 0
\(536\) 40.8688 + 56.2510i 0.0762477 + 0.104946i
\(537\) 2.25374 6.93629i 0.00419690 0.0129167i
\(538\) 14.0779i 0.0261672i
\(539\) 197.395 + 182.153i 0.366224 + 0.337946i
\(540\) 0 0
\(541\) 366.080 + 118.946i 0.676672 + 0.219864i 0.627138 0.778908i \(-0.284226\pi\)
0.0495344 + 0.998772i \(0.484226\pi\)
\(542\) 10.0126 7.27455i 0.0184734 0.0134217i
\(543\) 18.7816 + 13.6456i 0.0345886 + 0.0251301i
\(544\) −44.9328 138.289i −0.0825970 0.254207i
\(545\) 0 0
\(546\) 0.862597 1.18726i 0.00157985 0.00217447i
\(547\) −117.808 162.149i −0.215372 0.296434i 0.687638 0.726054i \(-0.258648\pi\)
−0.903010 + 0.429620i \(0.858648\pi\)
\(548\) 108.783 334.799i 0.198509 0.610948i
\(549\) 346.545i 0.631229i
\(550\) 0 0
\(551\) 284.146 0.515692
\(552\) 3.12712 + 1.01606i 0.00566507 + 0.00184069i
\(553\) −266.326 + 193.497i −0.481602 + 0.349904i
\(554\) 5.63083 + 4.09104i 0.0101640 + 0.00738455i
\(555\) 0 0
\(556\) −434.682 + 141.237i −0.781802 + 0.254023i
\(557\) −529.229 + 728.421i −0.950142 + 1.30776i 0.00132234 + 0.999999i \(0.499579\pi\)
−0.951464 + 0.307759i \(0.900421\pi\)
\(558\) −1.75537 2.41606i −0.00314583 0.00432986i
\(559\) −245.746 + 756.328i −0.439617 + 1.35300i
\(560\) 0 0
\(561\) 5.47966 46.6438i 0.00976767 0.0831441i
\(562\) 23.3072 0.0414719
\(563\) 139.504 + 45.3275i 0.247786 + 0.0805106i 0.430277 0.902697i \(-0.358416\pi\)
−0.182491 + 0.983208i \(0.558416\pi\)
\(564\) 29.9711 21.7753i 0.0531402 0.0386086i
\(565\) 0 0
\(566\) 6.18011 + 19.0204i 0.0109189 + 0.0336050i
\(567\) 379.099 123.177i 0.668605 0.217243i
\(568\) 53.8341 74.0963i 0.0947783 0.130451i
\(569\) −566.352 779.517i −0.995347 1.36998i −0.928137 0.372238i \(-0.878590\pi\)
−0.0672092 0.997739i \(-0.521410\pi\)
\(570\) 0 0
\(571\) 706.490i 1.23729i −0.785672 0.618643i \(-0.787683\pi\)
0.785672 0.618643i \(-0.212317\pi\)
\(572\) −740.513 340.603i −1.29460 0.595460i
\(573\) −21.1066 −0.0368353
\(574\) 16.1841 + 5.25853i 0.0281953 + 0.00916121i
\(575\) 0 0
\(576\) 456.942 + 331.988i 0.793302 + 0.576368i
\(577\) −124.587 383.441i −0.215923 0.664542i −0.999087 0.0427267i \(-0.986396\pi\)
0.783164 0.621815i \(-0.213604\pi\)
\(578\) −53.2726 + 17.3093i −0.0921671 + 0.0299469i
\(579\) 26.8351 36.9354i 0.0463473 0.0637916i
\(580\) 0 0
\(581\) −20.7258 + 63.7875i −0.0356726 + 0.109789i
\(582\) 1.63640i 0.00281169i
\(583\) −59.6125 298.341i −0.102251 0.511733i
\(584\) −50.3271 −0.0861765
\(585\) 0 0
\(586\) 41.6536 30.2631i 0.0710812 0.0516435i
\(587\) 565.400 + 410.787i 0.963203 + 0.699808i 0.953892 0.300149i \(-0.0970364\pi\)
0.00931024 + 0.999957i \(0.497036\pi\)
\(588\) −4.50154 13.8543i −0.00765568 0.0235618i
\(589\) −78.8095 + 25.6068i −0.133802 + 0.0434750i
\(590\) 0 0
\(591\) 26.3997 + 36.3361i 0.0446696 + 0.0614824i
\(592\) −171.396 + 527.503i −0.289520 + 0.891052i
\(593\) 531.446i 0.896198i −0.893984 0.448099i \(-0.852101\pi\)
0.893984 0.448099i \(-0.147899\pi\)
\(594\) −1.54192 2.74771i −0.00259583 0.00462578i
\(595\) 0 0
\(596\) 440.360 + 143.082i 0.738860 + 0.240070i
\(597\) −39.6928 + 28.8385i −0.0664871 + 0.0483057i
\(598\) −41.3585 30.0487i −0.0691614 0.0502487i
\(599\) −133.793 411.773i −0.223361 0.687434i −0.998454 0.0555866i \(-0.982297\pi\)
0.775093 0.631847i \(-0.217703\pi\)
\(600\) 0 0
\(601\) 335.144 461.286i 0.557644 0.767531i −0.433381 0.901211i \(-0.642679\pi\)
0.991025 + 0.133680i \(0.0426794\pi\)
\(602\) 13.2891 + 18.2909i 0.0220749 + 0.0303835i
\(603\) −226.670 + 697.617i −0.375903 + 1.15691i
\(604\) 37.1366i 0.0614845i
\(605\) 0 0
\(606\) 0.690198 0.00113894
\(607\) 215.125 + 69.8984i 0.354407 + 0.115154i 0.480809 0.876825i \(-0.340343\pi\)
−0.126402 + 0.991979i \(0.540343\pi\)
\(608\) −109.355 + 79.4509i −0.179860 + 0.130676i
\(609\) −6.42419 4.66745i −0.0105488 0.00766412i
\(610\) 0 0
\(611\) −1097.15 + 356.487i −1.79567 + 0.583448i
\(612\) 600.815 826.951i 0.981724 1.35123i
\(613\) −359.606 494.956i −0.586634 0.807432i 0.407769 0.913085i \(-0.366307\pi\)
−0.994403 + 0.105653i \(0.966307\pi\)
\(614\) −1.41171 + 4.34480i −0.00229920 + 0.00707622i
\(615\) 0 0
\(616\) −40.4742 + 22.7127i −0.0657048 + 0.0368713i
\(617\) −155.555 −0.252116 −0.126058 0.992023i \(-0.540232\pi\)
−0.126058 + 0.992023i \(0.540232\pi\)
\(618\) 2.66342 + 0.865398i 0.00430974 + 0.00140032i
\(619\) 4.15106 3.01592i 0.00670607 0.00487225i −0.584427 0.811446i \(-0.698681\pi\)
0.591133 + 0.806574i \(0.298681\pi\)
\(620\) 0 0
\(621\) 21.4649 + 66.0622i 0.0345651 + 0.106380i
\(622\) 23.8765 7.75795i 0.0383867 0.0124726i
\(623\) −202.125 + 278.202i −0.324439 + 0.446552i
\(624\) 25.9096 + 35.6615i 0.0415217 + 0.0571498i
\(625\) 0 0
\(626\) 32.9999i 0.0527154i
\(627\) −42.8123 + 8.55449i −0.0682812 + 0.0136435i
\(628\) −504.009 −0.802562
\(629\) 949.177 + 308.406i 1.50903 + 0.490312i
\(630\) 0 0
\(631\) −810.728 589.028i −1.28483 0.933484i −0.285143 0.958485i \(-0.592041\pi\)
−0.999687 + 0.0250010i \(0.992041\pi\)
\(632\) 17.4603 + 53.7374i 0.0276271 + 0.0850275i
\(633\) −29.7221 + 9.65730i −0.0469544 + 0.0152564i
\(634\) −16.9114 + 23.2765i −0.0266741 + 0.0367137i
\(635\) 0 0
\(636\) −5.09886 + 15.6927i −0.00801707 + 0.0246740i
\(637\) 453.623i 0.712124i
\(638\) 5.24318 11.3993i 0.00821814 0.0178673i
\(639\) 966.221 1.51208
\(640\) 0 0
\(641\) −88.7231 + 64.4611i −0.138414 + 0.100563i −0.654837 0.755770i \(-0.727263\pi\)
0.516424 + 0.856333i \(0.327263\pi\)
\(642\) −0.388570 0.282312i −0.000605249 0.000439739i
\(643\) −0.444667 1.36855i −0.000691551 0.00212838i 0.950710 0.310081i \(-0.100356\pi\)
−0.951402 + 0.307953i \(0.900356\pi\)
\(644\) 485.861 157.866i 0.754443 0.245133i
\(645\) 0 0
\(646\) 47.4282 + 65.2793i 0.0734182 + 0.101052i
\(647\) 312.650 962.237i 0.483230 1.48723i −0.351298 0.936264i \(-0.614260\pi\)
0.834528 0.550966i \(-0.185740\pi\)
\(648\) 68.4165i 0.105581i
\(649\) 563.126 + 66.1554i 0.867682 + 0.101934i
\(650\) 0 0
\(651\) 2.20241 + 0.715606i 0.00338312 + 0.00109924i
\(652\) −643.605 + 467.607i −0.987125 + 0.717188i
\(653\) −51.7809 37.6210i −0.0792969 0.0576126i 0.547431 0.836851i \(-0.315606\pi\)
−0.626727 + 0.779239i \(0.715606\pi\)
\(654\) 0.801882 + 2.46794i 0.00122612 + 0.00377361i
\(655\) 0 0
\(656\) −300.437 + 413.516i −0.457983 + 0.630360i
\(657\) −312.074 429.534i −0.474999 0.653780i
\(658\) −10.1348 + 31.1918i −0.0154025 + 0.0474040i
\(659\) 1088.54i 1.65180i 0.563816 + 0.825900i \(0.309333\pi\)
−0.563816 + 0.825900i \(0.690667\pi\)
\(660\) 0 0
\(661\) −730.366 −1.10494 −0.552471 0.833532i \(-0.686315\pi\)
−0.552471 + 0.833532i \(0.686315\pi\)
\(662\) −2.07229 0.673326i −0.00313034 0.00101711i
\(663\) 64.1685 46.6211i 0.0967850 0.0703184i
\(664\) 9.31324 + 6.76647i 0.0140260 + 0.0101905i
\(665\) 0 0
\(666\) 31.7998 10.3324i 0.0477475 0.0155141i
\(667\) −162.591 + 223.788i −0.243765 + 0.335514i
\(668\) −49.8891 68.6665i −0.0746843 0.102794i
\(669\) 3.01361 9.27494i 0.00450465 0.0138639i
\(670\) 0 0
\(671\) −287.955 + 312.051i −0.429144 + 0.465053i
\(672\) 3.77746 0.00562122
\(673\) 457.745 + 148.730i 0.680156 + 0.220996i 0.628664 0.777677i \(-0.283602\pi\)
0.0514924 + 0.998673i \(0.483602\pi\)
\(674\) 10.8582 7.88891i 0.0161100 0.0117046i
\(675\) 0 0
\(676\) −217.081 668.106i −0.321126 0.988323i
\(677\) −343.772 + 111.698i −0.507787 + 0.164990i −0.551695 0.834046i \(-0.686019\pi\)
0.0439087 + 0.999036i \(0.486019\pi\)
\(678\) 1.69227 2.32921i 0.00249597 0.00343541i
\(679\) 299.312 + 411.968i 0.440813 + 0.606727i
\(680\) 0 0
\(681\) 3.69344i 0.00542355i
\(682\) −0.426938 + 3.63417i −0.000626009 + 0.00532869i
\(683\) −886.073 −1.29732 −0.648662 0.761076i \(-0.724671\pi\)
−0.648662 + 0.761076i \(0.724671\pi\)
\(684\) −903.707 293.632i −1.32121 0.429287i
\(685\) 0 0
\(686\) 31.3703 + 22.7919i 0.0457293 + 0.0332243i
\(687\) −1.93094 5.94282i −0.00281068 0.00865039i
\(688\) −645.856 + 209.851i −0.938744 + 0.305017i
\(689\) 302.013 415.685i 0.438335 0.603317i
\(690\) 0 0
\(691\) 18.7077 57.5762i 0.0270733 0.0833231i −0.936607 0.350382i \(-0.886052\pi\)
0.963680 + 0.267059i \(0.0860518\pi\)
\(692\) 830.436i 1.20005i
\(693\) −444.827 204.601i −0.641886 0.295239i
\(694\) 50.5238 0.0728009
\(695\) 0 0
\(696\) −1.10264 + 0.801113i −0.00158425 + 0.00115102i
\(697\) 744.072 + 540.600i 1.06753 + 0.775609i
\(698\) 9.20667 + 28.3352i 0.0131901 + 0.0405949i
\(699\) −51.1437 + 16.6176i −0.0731670 + 0.0237734i
\(700\) 0 0
\(701\) −260.778 358.930i −0.372009 0.512026i 0.581437 0.813592i \(-0.302491\pi\)
−0.953445 + 0.301565i \(0.902491\pi\)
\(702\) 1.64435 5.06080i 0.00234238 0.00720911i
\(703\) 927.770i 1.31973i
\(704\) −135.600 678.631i −0.192613 0.963964i
\(705\) 0 0
\(706\) −29.6751 9.64201i −0.0420327 0.0136572i
\(707\) 173.759 126.243i 0.245769 0.178562i
\(708\) −24.8781 18.0750i −0.0351385 0.0255296i
\(709\) 152.584 + 469.605i 0.215210 + 0.662349i 0.999139 + 0.0414975i \(0.0132129\pi\)
−0.783928 + 0.620851i \(0.786787\pi\)
\(710\) 0 0
\(711\) −350.370 + 482.243i −0.492785 + 0.678260i
\(712\) 34.6925 + 47.7501i 0.0487254 + 0.0670648i
\(713\) 24.9283 76.7213i 0.0349625 0.107603i
\(714\) 2.25495i 0.00315819i
\(715\) 0 0
\(716\) −194.493 −0.271638
\(717\) 21.7586 + 7.06978i 0.0303467 + 0.00986023i
\(718\) 11.1943 8.13311i 0.0155909 0.0113274i
\(719\) 38.7270 + 28.1368i 0.0538623 + 0.0391332i 0.614391 0.789002i \(-0.289402\pi\)
−0.560528 + 0.828135i \(0.689402\pi\)
\(720\) 0 0
\(721\) 828.810 269.297i 1.14953 0.373505i
\(722\) 21.4861 29.5731i 0.0297591 0.0409599i
\(723\) 36.2004 + 49.8256i 0.0500697 + 0.0689150i
\(724\) 191.311 588.794i 0.264241 0.813251i
\(725\) 0 0
\(726\) −0.446803 + 1.87539i −0.000615431 + 0.00258318i
\(727\) −988.659 −1.35992 −0.679958 0.733251i \(-0.738002\pi\)
−0.679958 + 0.733251i \(0.738002\pi\)
\(728\) −74.5462 24.2215i −0.102399 0.0332713i
\(729\) 580.996 422.118i 0.796976 0.579037i
\(730\) 0 0
\(731\) 377.602 + 1162.14i 0.516555 + 1.58979i
\(732\) 21.9015 7.11623i 0.0299201 0.00972163i
\(733\) 32.5550 44.8081i 0.0444134 0.0611297i −0.786233 0.617930i \(-0.787971\pi\)
0.830646 + 0.556801i \(0.187971\pi\)
\(734\) 9.41063 + 12.9526i 0.0128210 + 0.0176466i
\(735\) 0 0
\(736\) 131.588i 0.178788i
\(737\) 783.780 439.831i 1.06347 0.596785i
\(738\) 30.8131 0.0417521
\(739\) −364.147 118.319i −0.492757 0.160106i 0.0520894 0.998642i \(-0.483412\pi\)
−0.544846 + 0.838536i \(0.683412\pi\)
\(740\) 0 0
\(741\) −59.6515 43.3393i −0.0805013 0.0584876i
\(742\) −4.51401 13.8927i −0.00608357 0.0187233i
\(743\) −1137.86 + 369.712i −1.53144 + 0.497594i −0.948999 0.315280i \(-0.897901\pi\)
−0.582439 + 0.812875i \(0.697901\pi\)
\(744\) 0.233628 0.321561i 0.000314016 0.000432206i
\(745\) 0 0
\(746\) 18.5426 57.0682i 0.0248560 0.0764990i
\(747\) 121.445i 0.162578i
\(748\) −1228.15 + 245.401i −1.64191 + 0.328077i
\(749\) −149.461 −0.199547
\(750\) 0 0
\(751\) 614.130 446.192i 0.817750 0.594130i −0.0983169 0.995155i \(-0.531346\pi\)
0.916067 + 0.401025i \(0.131346\pi\)
\(752\) −796.974 579.035i −1.05981 0.769994i
\(753\) −16.2270 49.9417i −0.0215498 0.0663236i
\(754\) 20.1535 6.54827i 0.0267288 0.00868471i
\(755\) 0 0
\(756\) 31.2558 + 43.0199i 0.0413436 + 0.0569046i
\(757\) −411.505 + 1266.48i −0.543600 + 1.67303i 0.180697 + 0.983539i \(0.442165\pi\)
−0.724296 + 0.689489i \(0.757835\pi\)
\(758\) 24.4971i 0.0323181i
\(759\) 17.7603 38.6131i 0.0233996 0.0508737i
\(760\) 0 0
\(761\) −921.263 299.337i −1.21060 0.393346i −0.366947 0.930242i \(-0.619597\pi\)
−0.843649 + 0.536896i \(0.819597\pi\)
\(762\) −0.306790 + 0.222896i −0.000402612 + 0.000292515i
\(763\) 653.283 + 474.638i 0.856203 + 0.622068i
\(764\) 173.933 + 535.312i 0.227662 + 0.700671i
\(765\) 0 0
\(766\) −40.6590 + 55.9624i −0.0530797 + 0.0730579i
\(767\) 562.852 + 774.699i 0.733835 + 1.01004i
\(768\) −11.4980 + 35.3871i −0.0149713 + 0.0460770i
\(769\) 1183.94i 1.53958i 0.638296 + 0.769791i \(0.279640\pi\)
−0.638296 + 0.769791i \(0.720360\pi\)
\(770\) 0 0
\(771\) −38.9332 −0.0504970
\(772\) −1157.91 376.227i −1.49988 0.487340i
\(773\) 394.318 286.489i 0.510114 0.370619i −0.302753 0.953069i \(-0.597906\pi\)
0.812867 + 0.582450i \(0.197906\pi\)
\(774\) 33.1198 + 24.0629i 0.0427904 + 0.0310890i
\(775\) 0 0
\(776\) 83.1239 27.0086i 0.107118 0.0348049i
\(777\) −15.2398 + 20.9757i −0.0196136 + 0.0269958i
\(778\) −28.2518 38.8853i −0.0363134 0.0499811i
\(779\) 264.204 813.136i 0.339158 1.04382i
\(780\) 0 0
\(781\) −870.046 802.865i −1.11402 1.02800i
\(782\) −78.5516 −0.100450
\(783\) −27.3836 8.89747i −0.0349727 0.0113633i
\(784\) −313.385 + 227.687i −0.399726 + 0.290418i
\(785\) 0 0
\(786\) −0.0984791 0.303088i −0.000125292 0.000385608i
\(787\) −1125.42 + 365.670i −1.43001 + 0.464638i −0.918767 0.394800i \(-0.870814\pi\)
−0.511240 + 0.859438i \(0.670814\pi\)
\(788\) 704.015 968.994i 0.893420 1.22969i
\(789\) 30.1328 + 41.4743i 0.0381912 + 0.0525656i
\(790\) 0 0
\(791\) 895.914i 1.13264i
\(792\) −56.9918 + 61.7607i −0.0719594 + 0.0779807i
\(793\) −717.107 −0.904296
\(794\) −19.5927 6.36606i −0.0246760 0.00801771i
\(795\) 0 0
\(796\) 1058.51 + 769.052i 1.32979 + 0.966145i
\(797\) 116.700 + 359.167i 0.146425 + 0.450649i 0.997191 0.0748947i \(-0.0238621\pi\)
−0.850767 + 0.525543i \(0.823862\pi\)
\(798\) −1.99362 + 0.647767i −0.00249827 + 0.000811739i
\(799\) −1041.90 + 1434.06i −1.30401 + 1.79482i
\(800\) 0 0
\(801\) −192.414 + 592.190i −0.240217 + 0.739313i
\(802\) 5.74574i 0.00716426i
\(803\) −75.9021 + 646.092i −0.0945232 + 0.804597i
\(804\) −48.7438 −0.0606266
\(805\) 0 0
\(806\) −4.99957 + 3.63240i −0.00620294 + 0.00450670i
\(807\) −15.9915 11.6185i −0.0198160 0.0143972i
\(808\) −11.3916 35.0598i −0.0140985 0.0433909i
\(809\) −26.8844 + 8.73528i −0.0332317 + 0.0107976i −0.325586 0.945513i \(-0.605561\pi\)
0.292354 + 0.956310i \(0.405561\pi\)
\(810\) 0 0
\(811\) −649.305 893.692i −0.800623 1.10196i −0.992703 0.120584i \(-0.961523\pi\)
0.192080 0.981379i \(-0.438477\pi\)
\(812\) −65.4374 + 201.395i −0.0805879 + 0.248024i
\(813\) 17.3772i 0.0213742i
\(814\) −37.2201 17.1196i −0.0457249 0.0210314i
\(815\) 0 0
\(816\) 64.4163 + 20.9301i 0.0789415 + 0.0256497i
\(817\) 918.987 667.683i 1.12483 0.817237i
\(818\) 34.1562 + 24.8159i 0.0417558 + 0.0303373i
\(819\) −255.529 786.436i −0.312001 0.960239i
\(820\) 0 0
\(821\) 370.247 509.601i 0.450971 0.620708i −0.521635 0.853169i \(-0.674678\pi\)
0.972606 + 0.232461i \(0.0746777\pi\)
\(822\) −0.826541 1.13764i −0.00100552 0.00138399i
\(823\) −130.777 + 402.491i −0.158903 + 0.489054i −0.998535 0.0541017i \(-0.982770\pi\)
0.839632 + 0.543155i \(0.182770\pi\)
\(824\) 149.576i 0.181525i
\(825\) 0 0
\(826\) 27.2238 0.0329586
\(827\) 998.161 + 324.322i 1.20697 + 0.392167i 0.842319 0.538979i \(-0.181190\pi\)
0.364647 + 0.931146i \(0.381190\pi\)
\(828\) 748.370 543.722i 0.903828 0.656670i
\(829\) −510.030 370.559i −0.615236 0.446995i 0.236019 0.971749i \(-0.424157\pi\)
−0.851254 + 0.524754i \(0.824157\pi\)
\(830\) 0 0
\(831\) −9.29426 + 3.01989i −0.0111844 + 0.00363404i
\(832\) 686.984 945.553i 0.825702 1.13648i
\(833\) 409.696 + 563.898i 0.491832 + 0.676948i
\(834\) −0.564177 + 1.73636i −0.000676471 + 0.00208196i
\(835\) 0 0
\(836\) 569.766 + 1015.32i 0.681538 + 1.21450i
\(837\) 8.39682 0.0100320
\(838\) 69.8435 + 22.6935i 0.0833454 + 0.0270806i
\(839\) 864.090 627.798i 1.02991 0.748270i 0.0616154 0.998100i \(-0.480375\pi\)
0.968290 + 0.249830i \(0.0803748\pi\)
\(840\) 0 0
\(841\) 224.451 + 690.789i 0.266886 + 0.821390i
\(842\) −17.4749 + 5.67795i −0.0207541 + 0.00674341i
\(843\) −19.2355 + 26.4753i −0.0228179 + 0.0314061i
\(844\) 489.863 + 674.239i 0.580406 + 0.798861i
\(845\) 0 0
\(846\) 59.3863i 0.0701966i
\(847\) 230.541 + 553.857i 0.272185 + 0.653904i
\(848\) 438.765 0.517412
\(849\) −26.7063 8.67741i −0.0314562 0.0102207i
\(850\) 0 0
\(851\) 730.693 + 530.880i 0.858629 + 0.623830i
\(852\) 19.8412 + 61.0648i 0.0232878 + 0.0716724i
\(853\) −18.6827 + 6.07037i −0.0219023 + 0.00711649i −0.319948 0.947435i \(-0.603665\pi\)
0.298045 + 0.954552i \(0.403665\pi\)
\(854\) −11.9833 + 16.4936i −0.0140319 + 0.0193133i
\(855\) 0 0
\(856\) −7.92727 + 24.3976i −0.00926083 + 0.0285019i
\(857\) 1638.89i 1.91236i −0.292785 0.956178i \(-0.594582\pi\)
0.292785 0.956178i \(-0.405418\pi\)
\(858\) −2.83939 + 1.59337i −0.00330931 + 0.00185707i
\(859\) 108.616 0.126445 0.0632223 0.997999i \(-0.479862\pi\)
0.0632223 + 0.997999i \(0.479862\pi\)
\(860\) 0 0
\(861\) −19.3301 + 14.0441i −0.0224507 + 0.0163114i
\(862\) 38.6194 + 28.0586i 0.0448021 + 0.0325506i
\(863\) 123.617 + 380.453i 0.143241 + 0.440849i 0.996781 0.0801782i \(-0.0255489\pi\)
−0.853540 + 0.521027i \(0.825549\pi\)
\(864\) 13.0265 4.23258i 0.0150770 0.00489882i
\(865\) 0 0
\(866\) −41.6552 57.3334i −0.0481007 0.0662049i
\(867\) 24.3037 74.7992i 0.0280320 0.0862736i
\(868\) 61.7553i 0.0711467i
\(869\) 716.206 143.108i 0.824173 0.164681i
\(870\) 0 0
\(871\) 1443.58 + 469.048i 1.65739 + 0.538517i
\(872\) 112.128 81.4660i 0.128588 0.0934243i
\(873\) 745.960 + 541.972i 0.854479 + 0.620815i
\(874\) 22.5651 + 69.4482i 0.0258182 + 0.0794602i
\(875\) 0 0
\(876\) 20.7380 28.5434i 0.0236735 0.0325838i
\(877\) 323.764 + 445.623i 0.369172 + 0.508122i 0.952676 0.303989i \(-0.0983185\pi\)
−0.583503 + 0.812111i \(0.698319\pi\)
\(878\) −16.3948 + 50.4579i −0.0186728 + 0.0574691i
\(879\) 72.2917i 0.0822431i
\(880\) 0 0
\(881\) −546.029 −0.619784 −0.309892 0.950772i \(-0.600293\pi\)
−0.309892 + 0.950772i \(0.600293\pi\)
\(882\) 22.2089 + 7.21611i 0.0251802 + 0.00818153i
\(883\) 897.053 651.747i 1.01592 0.738106i 0.0504738 0.998725i \(-0.483927\pi\)
0.965442 + 0.260620i \(0.0839269\pi\)
\(884\) −1711.21 1243.27i −1.93576 1.40641i
\(885\) 0 0
\(886\) −51.2716 + 16.6592i −0.0578687 + 0.0188027i
\(887\) −166.275 + 228.858i −0.187458 + 0.258013i −0.892394 0.451257i \(-0.850976\pi\)
0.704936 + 0.709271i \(0.250976\pi\)
\(888\) 2.61573 + 3.60024i 0.00294564 + 0.00405433i
\(889\) −36.4655 + 112.229i −0.0410185 + 0.126242i
\(890\) 0 0
\(891\) −878.321 103.184i −0.985770 0.115807i
\(892\) −260.068 −0.291556
\(893\) 1567.17 + 509.203i 1.75494 + 0.570216i
\(894\) 1.49633 1.08715i 0.00167375 0.00121605i
\(895\) 0 0
\(896\) −41.4855 127.679i −0.0463007 0.142499i
\(897\) 68.2664 22.1811i 0.0761052 0.0247281i
\(898\) −36.9108 + 50.8034i −0.0411034 + 0.0565739i
\(899\) 19.6547 + 27.0523i 0.0218628 + 0.0300916i
\(900\) 0 0
\(901\) 789.505i 0.876254i
\(902\) −27.7460 25.6036i −0.0307605 0.0283853i
\(903\) −31.7447 −0.0351547
\(904\) −146.247 47.5186i −0.161778 0.0525648i
\(905\) 0 0
\(906\) 0.120013 + 0.0871944i 0.000132464 + 9.62411e-5i
\(907\) 41.2383 + 126.918i 0.0454666 + 0.139932i 0.971213 0.238214i \(-0.0765619\pi\)
−0.925746 + 0.378146i \(0.876562\pi\)
\(908\) −93.6740 + 30.4365i −0.103165 + 0.0335204i
\(909\) 228.591 314.629i 0.251476 0.346127i
\(910\) 0 0
\(911\) −235.346 + 724.320i −0.258338 + 0.795082i 0.734816 + 0.678267i \(0.237269\pi\)
−0.993154 + 0.116815i \(0.962731\pi\)
\(912\) 62.9635i 0.0690389i
\(913\) 100.913 109.357i 0.110529 0.119778i
\(914\) −48.4882 −0.0530506
\(915\) 0 0
\(916\) −134.811 + 97.9462i −0.147174 + 0.106928i
\(917\) −80.2296 58.2903i −0.0874914 0.0635662i
\(918\) −2.52664 7.77619i −0.00275233 0.00847079i
\(919\) −871.649 + 283.216i −0.948476 + 0.308179i −0.742096 0.670293i \(-0.766168\pi\)
−0.206380 + 0.978472i \(0.566168\pi\)
\(920\) 0 0
\(921\) −3.77030 5.18937i −0.00409370 0.00563450i
\(922\) 20.6537 63.5654i 0.0224009 0.0689430i
\(923\) 1999.41i 2.16620i
\(924\) 3.79625 32.3143i 0.00410850 0.0349722i
\(925\) 0 0
\(926\) −55.3562 17.9863i −0.0597799 0.0194237i
\(927\) 1276.61 927.513i 1.37714 1.00055i
\(928\) 44.1278 + 32.0607i 0.0475515 + 0.0345482i
\(929\) −129.241 397.763i −0.139118 0.428162i 0.857089 0.515168i \(-0.172270\pi\)
−0.996208 + 0.0870052i \(0.972270\pi\)
\(930\) 0 0
\(931\) 380.856 524.204i 0.409083 0.563055i
\(932\) 842.922 + 1160.18i 0.904422 + 1.24483i
\(933\) −10.8928 + 33.5247i −0.0116751 + 0.0359321i
\(934\) 15.4380i 0.0165289i
\(935\) 0 0
\(936\) −141.929 −0.151634
\(937\) 723.691 + 235.141i 0.772349 + 0.250951i 0.668570 0.743649i \(-0.266907\pi\)
0.103779 + 0.994600i \(0.466907\pi\)
\(938\) 34.9113 25.3645i 0.0372189 0.0270411i
\(939\) −37.4855 27.2348i −0.0399207 0.0290041i
\(940\) 0 0
\(941\) 129.727 42.1508i 0.137861 0.0447936i −0.239274 0.970952i \(-0.576909\pi\)
0.377135 + 0.926158i \(0.376909\pi\)
\(942\) −1.18338 + 1.62878i −0.00125624 + 0.00172907i
\(943\) 489.229 + 673.366i 0.518801 + 0.714068i
\(944\) −252.687 + 777.691i −0.267677 + 0.823825i
\(945\) 0 0
\(946\) −9.82844 49.1880i −0.0103895 0.0519958i
\(947\) −873.748 −0.922648 −0.461324 0.887232i \(-0.652625\pi\)
−0.461324 + 0.887232i \(0.652625\pi\)
\(948\) −37.6724 12.2405i −0.0397388 0.0129119i
\(949\) −888.836 + 645.777i −0.936603 + 0.680482i
\(950\) 0 0
\(951\) −12.4835 38.4202i −0.0131267 0.0403998i
\(952\) −114.544 + 37.2177i −0.120320 + 0.0390942i
\(953\) 471.312 648.705i 0.494556 0.680698i −0.486664 0.873589i \(-0.661786\pi\)
0.981220 + 0.192891i \(0.0617864\pi\)
\(954\) −15.5472 21.3988i −0.0162968 0.0224306i
\(955\) 0 0
\(956\) 610.107i 0.638188i
\(957\) 8.62161 + 15.3637i 0.00900899 + 0.0160541i
\(958\) −50.5918 −0.0528099
\(959\) −416.167 135.221i −0.433959 0.141002i
\(960\) 0 0
\(961\) 769.576 + 559.130i 0.800808 + 0.581821i
\(962\) −21.3809 65.8036i −0.0222254 0.0684029i
\(963\) −257.386 + 83.6299i −0.267276 + 0.0868431i
\(964\) 965.375 1328.72i 1.00143 1.37834i
\(965\) 0 0
\(966\) 0.630603 1.94080i 0.000652798 0.00200911i
\(967\) 1090.91i 1.12813i 0.825729 + 0.564067i \(0.190764\pi\)
−0.825729 + 0.564067i \(0.809236\pi\)
\(968\) 102.638 8.25686i 0.106031 0.00852981i
\(969\) −113.295 −0.116920
\(970\) 0 0
\(971\) 250.955 182.330i 0.258450 0.187775i −0.451013 0.892517i \(-0.648937\pi\)
0.709464 + 0.704742i \(0.248937\pi\)
\(972\) 116.894 + 84.9286i 0.120262 + 0.0873751i
\(973\) 175.562 + 540.324i 0.180434 + 0.555318i
\(974\) −7.69814 + 2.50128i −0.00790364 + 0.00256805i
\(975\) 0 0
\(976\) −359.938 495.412i −0.368789 0.507595i
\(977\) 67.8062 208.686i 0.0694024 0.213599i −0.910340 0.413862i \(-0.864180\pi\)
0.979742 + 0.200263i \(0.0641797\pi\)
\(978\) 3.17782i 0.00324931i
\(979\) 665.332 373.362i 0.679603 0.381370i
\(980\) 0 0
\(981\) 1390.60 + 451.833i 1.41753 + 0.460584i
\(982\) −76.5126 + 55.5897i −0.0779151 + 0.0566086i
\(983\) 1050.44 + 763.188i 1.06860 + 0.776386i 0.975661 0.219285i \(-0.0703725\pi\)
0.0929433 + 0.995671i \(0.470372\pi\)
\(984\) 1.26728 + 3.90029i 0.00128789 + 0.00396371i
\(985\) 0 0
\(986\) 19.1386 26.3421i 0.0194104 0.0267161i
\(987\) −27.0674 37.2551i −0.0274239 0.0377458i
\(988\) −607.615 + 1870.05i −0.614995 + 1.89276i
\(989\) 1105.83i 1.11813i
\(990\) 0 0
\(991\) 1411.24 1.42406 0.712030 0.702149i \(-0.247776\pi\)
0.712030 + 0.702149i \(0.247776\pi\)
\(992\) −15.1284 4.91550i −0.0152504 0.00495514i
\(993\) 2.47511 1.79827i 0.00249256 0.00181095i
\(994\) −45.9867 33.4113i −0.0462643 0.0336129i
\(995\) 0 0
\(996\) −7.67531 + 2.49386i −0.00770614 + 0.00250388i
\(997\) −221.858 + 305.362i −0.222526 + 0.306280i −0.905654 0.424018i \(-0.860619\pi\)
0.683128 + 0.730299i \(0.260619\pi\)
\(998\) 9.01010 + 12.4013i 0.00902815 + 0.0124262i
\(999\) −29.0513 + 89.4106i −0.0290804 + 0.0895001i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.x.i.101.4 yes 28
5.2 odd 4 275.3.q.g.24.8 56
5.3 odd 4 275.3.q.g.24.7 56
5.4 even 2 275.3.x.h.101.4 28
11.6 odd 10 inner 275.3.x.i.226.4 yes 28
55.17 even 20 275.3.q.g.149.7 56
55.28 even 20 275.3.q.g.149.8 56
55.39 odd 10 275.3.x.h.226.4 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.q.g.24.7 56 5.3 odd 4
275.3.q.g.24.8 56 5.2 odd 4
275.3.q.g.149.7 56 55.17 even 20
275.3.q.g.149.8 56 55.28 even 20
275.3.x.h.101.4 28 5.4 even 2
275.3.x.h.226.4 yes 28 55.39 odd 10
275.3.x.i.101.4 yes 28 1.1 even 1 trivial
275.3.x.i.226.4 yes 28 11.6 odd 10 inner