Properties

Label 275.3.x.b.51.1
Level $275$
Weight $3$
Character 275.51
Analytic conductor $7.493$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(51,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 7])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.51"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.x (of order \(10\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-5,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 51.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 275.51
Dual form 275.3.x.b.151.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.690983 + 0.951057i) q^{2} +(1.38197 - 4.25325i) q^{3} +(0.809017 + 2.48990i) q^{4} +(3.09017 + 4.25325i) q^{6} +(7.39919 - 2.40414i) q^{7} +(-7.39919 - 2.40414i) q^{8} +(-8.89919 - 6.46564i) q^{9} +(10.8713 + 1.67760i) q^{11} +11.7082 q^{12} +(3.68034 - 5.06555i) q^{13} +(-2.82624 + 8.69827i) q^{14} +(-1.07295 + 0.779543i) q^{16} +(2.98936 + 4.11450i) q^{17} +(12.2984 - 3.99598i) q^{18} +(-15.8541 - 5.15131i) q^{19} -34.7931i q^{21} +(-9.10739 + 9.18005i) q^{22} +31.5066 q^{23} +(-20.4508 + 28.1482i) q^{24} +(2.27458 + 7.00042i) q^{26} +(-7.23607 + 5.25731i) q^{27} +(11.9721 + 16.4782i) q^{28} +(27.2984 - 8.86978i) q^{29} +(-31.4336 - 22.8379i) q^{31} -32.6789i q^{32} +(22.1591 - 43.9201i) q^{33} -5.97871 q^{34} +(8.89919 - 27.3889i) q^{36} +(-21.5689 - 66.3822i) q^{37} +(15.8541 - 11.5187i) q^{38} +(-16.4590 - 22.6538i) q^{39} +(64.5582 + 20.9762i) q^{41} +(33.0902 + 24.0414i) q^{42} +43.0471i q^{43} +(4.61803 + 28.4257i) q^{44} +(-21.7705 + 29.9645i) q^{46} +(-3.71885 + 11.4454i) q^{47} +(1.83282 + 5.64083i) q^{48} +(9.32624 - 6.77591i) q^{49} +(21.6312 - 7.02840i) q^{51} +(15.5902 + 5.06555i) q^{52} +(-30.4508 - 22.1238i) q^{53} -10.5146i q^{54} -60.5279 q^{56} +(-43.8197 + 60.3126i) q^{57} +(-10.4271 + 32.0912i) q^{58} +(17.7533 + 54.6390i) q^{59} +(66.5304 + 91.5712i) q^{61} +(43.4402 - 14.1146i) q^{62} +(-81.3911 - 26.4456i) q^{63} +(26.7877 + 19.4624i) q^{64} +(26.4590 + 51.4226i) q^{66} -93.9443 q^{67} +(-7.82624 + 10.7719i) q^{68} +(43.5410 - 134.005i) q^{69} +(-34.8090 + 25.2902i) q^{71} +(50.3024 + 69.2354i) q^{72} +(-14.9853 + 4.86902i) q^{73} +(78.0370 + 25.3557i) q^{74} -43.6426i q^{76} +(84.4721 - 13.7233i) q^{77} +32.9180 q^{78} +(-45.1099 + 62.0885i) q^{79} +(-18.2320 - 56.1123i) q^{81} +(-64.5582 + 46.9043i) q^{82} +(-15.4123 - 21.2133i) q^{83} +(86.6312 - 28.1482i) q^{84} +(-40.9402 - 29.7448i) q^{86} -128.365i q^{87} +(-76.4058 - 38.5491i) q^{88} -105.215 q^{89} +(15.0532 - 46.3290i) q^{91} +(25.4894 + 78.4482i) q^{92} +(-140.575 + 102.134i) q^{93} +(-8.31559 - 11.4454i) q^{94} +(-138.992 - 45.1612i) q^{96} +(-27.0106 - 19.6244i) q^{97} +13.5518i q^{98} +(-85.8992 - 85.2193i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{2} + 10 q^{3} + q^{4} - 10 q^{6} + 5 q^{7} - 5 q^{8} - 11 q^{9} + q^{11} + 20 q^{12} - 30 q^{13} + 20 q^{14} - 11 q^{16} - 35 q^{17} - 50 q^{19} + 15 q^{22} + 50 q^{23} + 30 q^{24} + 65 q^{26}+ \cdots - 319 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{7}{10}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.690983 + 0.951057i −0.345492 + 0.475528i −0.946035 0.324064i \(-0.894951\pi\)
0.600544 + 0.799592i \(0.294951\pi\)
\(3\) 1.38197 4.25325i 0.460655 1.41775i −0.403710 0.914887i \(-0.632280\pi\)
0.864365 0.502864i \(-0.167720\pi\)
\(4\) 0.809017 + 2.48990i 0.202254 + 0.622475i
\(5\) 0 0
\(6\) 3.09017 + 4.25325i 0.515028 + 0.708876i
\(7\) 7.39919 2.40414i 1.05703 0.343449i 0.271604 0.962409i \(-0.412446\pi\)
0.785422 + 0.618960i \(0.212446\pi\)
\(8\) −7.39919 2.40414i −0.924898 0.300518i
\(9\) −8.89919 6.46564i −0.988799 0.718404i
\(10\) 0 0
\(11\) 10.8713 + 1.67760i 0.988302 + 0.152509i
\(12\) 11.7082 0.975684
\(13\) 3.68034 5.06555i 0.283103 0.389658i −0.643656 0.765315i \(-0.722583\pi\)
0.926759 + 0.375657i \(0.122583\pi\)
\(14\) −2.82624 + 8.69827i −0.201874 + 0.621305i
\(15\) 0 0
\(16\) −1.07295 + 0.779543i −0.0670593 + 0.0487214i
\(17\) 2.98936 + 4.11450i 0.175845 + 0.242029i 0.887837 0.460158i \(-0.152207\pi\)
−0.711993 + 0.702187i \(0.752207\pi\)
\(18\) 12.2984 3.99598i 0.683243 0.221999i
\(19\) −15.8541 5.15131i −0.834426 0.271122i −0.139518 0.990220i \(-0.544555\pi\)
−0.694909 + 0.719098i \(0.744555\pi\)
\(20\) 0 0
\(21\) 34.7931i 1.65681i
\(22\) −9.10739 + 9.18005i −0.413972 + 0.417275i
\(23\) 31.5066 1.36985 0.684926 0.728613i \(-0.259835\pi\)
0.684926 + 0.728613i \(0.259835\pi\)
\(24\) −20.4508 + 28.1482i −0.852119 + 1.17284i
\(25\) 0 0
\(26\) 2.27458 + 7.00042i 0.0874837 + 0.269247i
\(27\) −7.23607 + 5.25731i −0.268003 + 0.194715i
\(28\) 11.9721 + 16.4782i 0.427576 + 0.588508i
\(29\) 27.2984 8.86978i 0.941323 0.305854i 0.202138 0.979357i \(-0.435211\pi\)
0.739185 + 0.673503i \(0.235211\pi\)
\(30\) 0 0
\(31\) −31.4336 22.8379i −1.01399 0.736705i −0.0489462 0.998801i \(-0.515586\pi\)
−0.965042 + 0.262096i \(0.915586\pi\)
\(32\) 32.6789i 1.02122i
\(33\) 22.1591 43.9201i 0.671486 1.33091i
\(34\) −5.97871 −0.175845
\(35\) 0 0
\(36\) 8.89919 27.3889i 0.247200 0.760802i
\(37\) −21.5689 66.3822i −0.582943 1.79411i −0.607379 0.794412i \(-0.707779\pi\)
0.0244364 0.999701i \(-0.492221\pi\)
\(38\) 15.8541 11.5187i 0.417213 0.303123i
\(39\) −16.4590 22.6538i −0.422025 0.580868i
\(40\) 0 0
\(41\) 64.5582 + 20.9762i 1.57459 + 0.511616i 0.960656 0.277741i \(-0.0895856\pi\)
0.613935 + 0.789356i \(0.289586\pi\)
\(42\) 33.0902 + 24.0414i 0.787861 + 0.572415i
\(43\) 43.0471i 1.00109i 0.865709 + 0.500547i \(0.166868\pi\)
−0.865709 + 0.500547i \(0.833132\pi\)
\(44\) 4.61803 + 28.4257i 0.104955 + 0.646039i
\(45\) 0 0
\(46\) −21.7705 + 29.9645i −0.473272 + 0.651403i
\(47\) −3.71885 + 11.4454i −0.0791244 + 0.243520i −0.982792 0.184714i \(-0.940864\pi\)
0.903668 + 0.428234i \(0.140864\pi\)
\(48\) 1.83282 + 5.64083i 0.0381837 + 0.117517i
\(49\) 9.32624 6.77591i 0.190331 0.138284i
\(50\) 0 0
\(51\) 21.6312 7.02840i 0.424141 0.137812i
\(52\) 15.5902 + 5.06555i 0.299811 + 0.0974145i
\(53\) −30.4508 22.1238i −0.574544 0.417431i 0.262209 0.965011i \(-0.415549\pi\)
−0.836753 + 0.547580i \(0.815549\pi\)
\(54\) 10.5146i 0.194715i
\(55\) 0 0
\(56\) −60.5279 −1.08085
\(57\) −43.8197 + 60.3126i −0.768766 + 1.05812i
\(58\) −10.4271 + 32.0912i −0.179777 + 0.553296i
\(59\) 17.7533 + 54.6390i 0.300903 + 0.926085i 0.981174 + 0.193124i \(0.0618620\pi\)
−0.680271 + 0.732961i \(0.738138\pi\)
\(60\) 0 0
\(61\) 66.5304 + 91.5712i 1.09066 + 1.50117i 0.847213 + 0.531254i \(0.178279\pi\)
0.243449 + 0.969914i \(0.421721\pi\)
\(62\) 43.4402 14.1146i 0.700648 0.227654i
\(63\) −81.3911 26.4456i −1.29192 0.419771i
\(64\) 26.7877 + 19.4624i 0.418558 + 0.304100i
\(65\) 0 0
\(66\) 26.4590 + 51.4226i 0.400894 + 0.779130i
\(67\) −93.9443 −1.40215 −0.701077 0.713086i \(-0.747297\pi\)
−0.701077 + 0.713086i \(0.747297\pi\)
\(68\) −7.82624 + 10.7719i −0.115092 + 0.158410i
\(69\) 43.5410 134.005i 0.631029 1.94211i
\(70\) 0 0
\(71\) −34.8090 + 25.2902i −0.490268 + 0.356200i −0.805287 0.592885i \(-0.797989\pi\)
0.315019 + 0.949085i \(0.397989\pi\)
\(72\) 50.3024 + 69.2354i 0.698645 + 0.961602i
\(73\) −14.9853 + 4.86902i −0.205278 + 0.0666989i −0.409851 0.912152i \(-0.634419\pi\)
0.204573 + 0.978851i \(0.434419\pi\)
\(74\) 78.0370 + 25.3557i 1.05455 + 0.342645i
\(75\) 0 0
\(76\) 43.6426i 0.574245i
\(77\) 84.4721 13.7233i 1.09704 0.178225i
\(78\) 32.9180 0.422025
\(79\) −45.1099 + 62.0885i −0.571011 + 0.785930i −0.992674 0.120823i \(-0.961447\pi\)
0.421663 + 0.906753i \(0.361447\pi\)
\(80\) 0 0
\(81\) −18.2320 56.1123i −0.225086 0.692745i
\(82\) −64.5582 + 46.9043i −0.787296 + 0.572004i
\(83\) −15.4123 21.2133i −0.185691 0.255582i 0.706015 0.708197i \(-0.250491\pi\)
−0.891706 + 0.452615i \(0.850491\pi\)
\(84\) 86.6312 28.1482i 1.03132 0.335097i
\(85\) 0 0
\(86\) −40.9402 29.7448i −0.476049 0.345870i
\(87\) 128.365i 1.47546i
\(88\) −76.4058 38.5491i −0.868247 0.438058i
\(89\) −105.215 −1.18219 −0.591094 0.806602i \(-0.701304\pi\)
−0.591094 + 0.806602i \(0.701304\pi\)
\(90\) 0 0
\(91\) 15.0532 46.3290i 0.165420 0.509110i
\(92\) 25.4894 + 78.4482i 0.277058 + 0.852698i
\(93\) −140.575 + 102.134i −1.51156 + 1.09822i
\(94\) −8.31559 11.4454i −0.0884638 0.121760i
\(95\) 0 0
\(96\) −138.992 45.1612i −1.44783 0.470429i
\(97\) −27.0106 19.6244i −0.278460 0.202313i 0.439785 0.898103i \(-0.355055\pi\)
−0.718246 + 0.695790i \(0.755055\pi\)
\(98\) 13.5518i 0.138284i
\(99\) −85.8992 85.2193i −0.867669 0.860801i
\(100\) 0 0
\(101\) −57.8738 + 79.6565i −0.573008 + 0.788678i −0.992907 0.118893i \(-0.962066\pi\)
0.419899 + 0.907571i \(0.362066\pi\)
\(102\) −8.26238 + 25.4290i −0.0810037 + 0.249304i
\(103\) 48.7041 + 149.896i 0.472856 + 1.45530i 0.848828 + 0.528669i \(0.177309\pi\)
−0.375972 + 0.926631i \(0.622691\pi\)
\(104\) −39.4098 + 28.6329i −0.378941 + 0.275317i
\(105\) 0 0
\(106\) 42.0820 13.6733i 0.397000 0.128993i
\(107\) −29.9139 9.71961i −0.279569 0.0908375i 0.165876 0.986147i \(-0.446955\pi\)
−0.445446 + 0.895309i \(0.646955\pi\)
\(108\) −18.9443 13.7638i −0.175410 0.127443i
\(109\) 22.2298i 0.203943i −0.994787 0.101972i \(-0.967485\pi\)
0.994787 0.101972i \(-0.0325151\pi\)
\(110\) 0 0
\(111\) −312.148 −2.81214
\(112\) −6.06482 + 8.34751i −0.0541502 + 0.0745313i
\(113\) −58.0426 + 178.637i −0.513651 + 1.58086i 0.272072 + 0.962277i \(0.412291\pi\)
−0.785723 + 0.618579i \(0.787709\pi\)
\(114\) −27.0820 83.3499i −0.237562 0.731140i
\(115\) 0 0
\(116\) 44.1697 + 60.7944i 0.380773 + 0.524089i
\(117\) −65.5041 + 21.2836i −0.559864 + 0.181911i
\(118\) −64.2320 20.8702i −0.544339 0.176866i
\(119\) 32.0106 + 23.2571i 0.268997 + 0.195438i
\(120\) 0 0
\(121\) 115.371 + 36.4754i 0.953482 + 0.301450i
\(122\) −133.061 −1.09066
\(123\) 178.435 245.594i 1.45069 1.99670i
\(124\) 31.4336 96.7428i 0.253497 0.780184i
\(125\) 0 0
\(126\) 81.3911 59.1341i 0.645961 0.469318i
\(127\) −79.1788 108.980i −0.623455 0.858112i 0.374144 0.927371i \(-0.377937\pi\)
−0.997599 + 0.0692585i \(0.977937\pi\)
\(128\) 87.2984 28.3650i 0.682019 0.221601i
\(129\) 183.090 + 59.4896i 1.41930 + 0.461160i
\(130\) 0 0
\(131\) 47.8554i 0.365308i 0.983177 + 0.182654i \(0.0584688\pi\)
−0.983177 + 0.182654i \(0.941531\pi\)
\(132\) 127.284 + 19.6417i 0.964270 + 0.148801i
\(133\) −129.692 −0.975127
\(134\) 64.9139 89.3463i 0.484432 0.666764i
\(135\) 0 0
\(136\) −12.2270 37.6308i −0.0899042 0.276697i
\(137\) 123.651 89.8377i 0.902561 0.655749i −0.0365612 0.999331i \(-0.511640\pi\)
0.939123 + 0.343582i \(0.111640\pi\)
\(138\) 97.3607 + 134.005i 0.705512 + 0.971054i
\(139\) −116.732 + 37.9285i −0.839799 + 0.272867i −0.697167 0.716909i \(-0.745556\pi\)
−0.142632 + 0.989776i \(0.545556\pi\)
\(140\) 0 0
\(141\) 43.5410 + 31.6344i 0.308802 + 0.224357i
\(142\) 50.5805i 0.356200i
\(143\) 48.5081 48.8951i 0.339218 0.341924i
\(144\) 14.5886 0.101310
\(145\) 0 0
\(146\) 5.72387 17.6163i 0.0392046 0.120659i
\(147\) −15.9311 49.0309i −0.108375 0.333544i
\(148\) 147.835 107.409i 0.998887 0.725734i
\(149\) 66.6018 + 91.6695i 0.446992 + 0.615231i 0.971748 0.236021i \(-0.0758435\pi\)
−0.524756 + 0.851253i \(0.675843\pi\)
\(150\) 0 0
\(151\) 132.245 + 42.9691i 0.875796 + 0.284563i 0.712211 0.701966i \(-0.247694\pi\)
0.163585 + 0.986529i \(0.447694\pi\)
\(152\) 104.923 + 76.2310i 0.690283 + 0.501520i
\(153\) 55.9438i 0.365646i
\(154\) −45.3171 + 89.8204i −0.294267 + 0.583249i
\(155\) 0 0
\(156\) 43.0902 59.3085i 0.276219 0.380183i
\(157\) −34.6115 + 106.523i −0.220455 + 0.678491i 0.778266 + 0.627935i \(0.216099\pi\)
−0.998721 + 0.0505565i \(0.983901\pi\)
\(158\) −27.8795 85.8041i −0.176452 0.543064i
\(159\) −136.180 + 98.9408i −0.856480 + 0.622269i
\(160\) 0 0
\(161\) 233.123 75.7463i 1.44797 0.470474i
\(162\) 65.9640 + 21.4330i 0.407185 + 0.132302i
\(163\) −171.290 124.450i −1.05086 0.763495i −0.0784845 0.996915i \(-0.525008\pi\)
−0.972376 + 0.233421i \(0.925008\pi\)
\(164\) 177.714i 1.08362i
\(165\) 0 0
\(166\) 30.8247 0.185691
\(167\) −47.5623 + 65.4639i −0.284804 + 0.391999i −0.927318 0.374275i \(-0.877892\pi\)
0.642514 + 0.766274i \(0.277892\pi\)
\(168\) −83.6475 + 257.440i −0.497901 + 1.53238i
\(169\) 40.1089 + 123.443i 0.237331 + 0.730430i
\(170\) 0 0
\(171\) 107.782 + 148.349i 0.630305 + 0.867540i
\(172\) −107.183 + 34.8258i −0.623156 + 0.202476i
\(173\) −101.343 32.9285i −0.585800 0.190338i 0.00109704 0.999999i \(-0.499651\pi\)
−0.586897 + 0.809661i \(0.699651\pi\)
\(174\) 122.082 + 88.6978i 0.701621 + 0.509757i
\(175\) 0 0
\(176\) −12.9721 + 6.67469i −0.0737053 + 0.0379244i
\(177\) 256.928 1.45157
\(178\) 72.7016 100.065i 0.408436 0.562164i
\(179\) 48.1337 148.140i 0.268903 0.827599i −0.721865 0.692034i \(-0.756715\pi\)
0.990768 0.135566i \(-0.0432851\pi\)
\(180\) 0 0
\(181\) 11.4787 8.33977i 0.0634183 0.0460761i −0.555624 0.831433i \(-0.687521\pi\)
0.619043 + 0.785357i \(0.287521\pi\)
\(182\) 33.6600 + 46.3290i 0.184945 + 0.254555i
\(183\) 481.418 156.422i 2.63070 0.854767i
\(184\) −233.123 75.7463i −1.26697 0.411665i
\(185\) 0 0
\(186\) 204.268i 1.09822i
\(187\) 25.5958 + 49.7450i 0.136876 + 0.266016i
\(188\) −31.5066 −0.167588
\(189\) −40.9017 + 56.2964i −0.216411 + 0.297864i
\(190\) 0 0
\(191\) 4.77960 + 14.7101i 0.0250241 + 0.0770162i 0.962789 0.270255i \(-0.0871082\pi\)
−0.937765 + 0.347272i \(0.887108\pi\)
\(192\) 119.798 87.0386i 0.623950 0.453326i
\(193\) 56.1215 + 77.2446i 0.290785 + 0.400231i 0.929269 0.369404i \(-0.120438\pi\)
−0.638484 + 0.769635i \(0.720438\pi\)
\(194\) 37.3278 12.1285i 0.192411 0.0625182i
\(195\) 0 0
\(196\) 24.4164 + 17.7396i 0.124574 + 0.0905080i
\(197\) 226.588i 1.15020i 0.818085 + 0.575098i \(0.195036\pi\)
−0.818085 + 0.575098i \(0.804964\pi\)
\(198\) 140.403 22.8099i 0.709107 0.115201i
\(199\) −27.2887 −0.137129 −0.0685645 0.997647i \(-0.521842\pi\)
−0.0685645 + 0.997647i \(0.521842\pi\)
\(200\) 0 0
\(201\) −129.828 + 399.569i −0.645909 + 1.98790i
\(202\) −35.7680 110.083i −0.177069 0.544963i
\(203\) 180.662 131.258i 0.889958 0.646593i
\(204\) 35.0000 + 48.1734i 0.171569 + 0.236144i
\(205\) 0 0
\(206\) −176.213 57.2551i −0.855404 0.277938i
\(207\) −280.383 203.710i −1.35451 0.984107i
\(208\) 8.30406i 0.0399234i
\(209\) −163.713 82.5984i −0.783317 0.395208i
\(210\) 0 0
\(211\) 198.612 273.367i 0.941291 1.29558i −0.0139978 0.999902i \(-0.504456\pi\)
0.955289 0.295674i \(-0.0955442\pi\)
\(212\) 30.4508 93.7181i 0.143636 0.442066i
\(213\) 59.4609 + 183.002i 0.279159 + 0.859164i
\(214\) 29.9139 21.7337i 0.139785 0.101559i
\(215\) 0 0
\(216\) 66.1803 21.5033i 0.306390 0.0995523i
\(217\) −287.489 93.4108i −1.32483 0.430464i
\(218\) 21.1418 + 15.3604i 0.0969809 + 0.0704607i
\(219\) 70.4651i 0.321758i
\(220\) 0 0
\(221\) 31.8441 0.144091
\(222\) 215.689 296.870i 0.971571 1.33725i
\(223\) 16.2188 49.9165i 0.0727303 0.223841i −0.908083 0.418790i \(-0.862454\pi\)
0.980813 + 0.194949i \(0.0624543\pi\)
\(224\) −78.5648 241.798i −0.350736 1.07945i
\(225\) 0 0
\(226\) −129.787 178.637i −0.574279 0.790428i
\(227\) 312.192 101.437i 1.37529 0.446860i 0.474175 0.880431i \(-0.342746\pi\)
0.901120 + 0.433570i \(0.142746\pi\)
\(228\) −185.623 60.3126i −0.814136 0.264529i
\(229\) −292.289 212.360i −1.27637 0.927337i −0.276933 0.960889i \(-0.589318\pi\)
−0.999437 + 0.0335523i \(0.989318\pi\)
\(230\) 0 0
\(231\) 58.3688 378.247i 0.252679 1.63743i
\(232\) −223.310 −0.962543
\(233\) 57.1443 78.6524i 0.245255 0.337564i −0.668588 0.743633i \(-0.733101\pi\)
0.913842 + 0.406069i \(0.133101\pi\)
\(234\) 25.0203 77.0046i 0.106924 0.329080i
\(235\) 0 0
\(236\) −121.683 + 88.4078i −0.515605 + 0.374609i
\(237\) 201.738 + 277.668i 0.851214 + 1.17159i
\(238\) −44.2376 + 14.3737i −0.185872 + 0.0603936i
\(239\) 310.267 + 100.812i 1.29819 + 0.421807i 0.874951 0.484211i \(-0.160893\pi\)
0.423239 + 0.906018i \(0.360893\pi\)
\(240\) 0 0
\(241\) 141.891i 0.588761i −0.955688 0.294381i \(-0.904887\pi\)
0.955688 0.294381i \(-0.0951133\pi\)
\(242\) −114.410 + 84.5207i −0.472768 + 0.349259i
\(243\) −344.354 −1.41710
\(244\) −174.179 + 239.737i −0.713847 + 0.982527i
\(245\) 0 0
\(246\) 110.279 + 339.403i 0.448287 + 1.37969i
\(247\) −84.4427 + 61.3512i −0.341873 + 0.248386i
\(248\) 177.678 + 244.553i 0.716443 + 0.986099i
\(249\) −111.525 + 36.2366i −0.447891 + 0.145528i
\(250\) 0 0
\(251\) −340.216 247.181i −1.35544 0.984786i −0.998720 0.0505747i \(-0.983895\pi\)
−0.356721 0.934211i \(-0.616105\pi\)
\(252\) 224.050i 0.889089i
\(253\) 342.518 + 52.8554i 1.35383 + 0.208915i
\(254\) 158.358 0.623455
\(255\) 0 0
\(256\) −74.2730 + 228.589i −0.290129 + 0.892925i
\(257\) −11.5304 35.4869i −0.0448653 0.138081i 0.926115 0.377242i \(-0.123128\pi\)
−0.970980 + 0.239161i \(0.923128\pi\)
\(258\) −183.090 + 133.023i −0.709652 + 0.515592i
\(259\) −319.184 439.320i −1.23237 1.69621i
\(260\) 0 0
\(261\) −300.282 97.5676i −1.15051 0.373822i
\(262\) −45.5132 33.0672i −0.173714 0.126211i
\(263\) 156.447i 0.594857i −0.954744 0.297428i \(-0.903871\pi\)
0.954744 0.297428i \(-0.0961289\pi\)
\(264\) −269.549 + 271.700i −1.02102 + 1.02917i
\(265\) 0 0
\(266\) 89.6149 123.344i 0.336898 0.463701i
\(267\) −145.403 + 447.505i −0.544581 + 1.67605i
\(268\) −76.0025 233.912i −0.283591 0.872805i
\(269\) 233.003 169.286i 0.866180 0.629317i −0.0633789 0.997990i \(-0.520188\pi\)
0.929559 + 0.368673i \(0.120188\pi\)
\(270\) 0 0
\(271\) −140.158 + 45.5399i −0.517186 + 0.168044i −0.555968 0.831204i \(-0.687652\pi\)
0.0387817 + 0.999248i \(0.487652\pi\)
\(272\) −6.41486 2.08431i −0.0235840 0.00766291i
\(273\) −176.246 128.050i −0.645590 0.469049i
\(274\) 179.675i 0.655749i
\(275\) 0 0
\(276\) 368.885 1.33654
\(277\) 134.375 184.951i 0.485108 0.667693i −0.494369 0.869252i \(-0.664601\pi\)
0.979476 + 0.201559i \(0.0646008\pi\)
\(278\) 44.5877 137.227i 0.160387 0.493621i
\(279\) 132.072 + 406.477i 0.473378 + 1.45691i
\(280\) 0 0
\(281\) 0.163119 + 0.224514i 0.000580495 + 0.000798982i 0.809307 0.587386i \(-0.199843\pi\)
−0.808727 + 0.588185i \(0.799843\pi\)
\(282\) −60.1722 + 19.5511i −0.213377 + 0.0693303i
\(283\) −212.931 69.1853i −0.752405 0.244471i −0.0923891 0.995723i \(-0.529450\pi\)
−0.660016 + 0.751252i \(0.729450\pi\)
\(284\) −91.1312 66.2107i −0.320884 0.233136i
\(285\) 0 0
\(286\) 12.9837 + 79.9197i 0.0453977 + 0.279439i
\(287\) 528.108 1.84010
\(288\) −211.290 + 290.816i −0.733647 + 1.00978i
\(289\) 81.3131 250.256i 0.281360 0.865937i
\(290\) 0 0
\(291\) −120.795 + 87.7629i −0.415104 + 0.301591i
\(292\) −24.2467 33.3727i −0.0830367 0.114290i
\(293\) −313.867 + 101.982i −1.07122 + 0.348060i −0.790962 0.611865i \(-0.790420\pi\)
−0.280257 + 0.959925i \(0.590420\pi\)
\(294\) 57.6393 + 18.7282i 0.196052 + 0.0637012i
\(295\) 0 0
\(296\) 543.029i 1.83456i
\(297\) −87.4853 + 45.0147i −0.294563 + 0.151565i
\(298\) −133.204 −0.446992
\(299\) 115.955 159.598i 0.387809 0.533773i
\(300\) 0 0
\(301\) 103.491 + 318.513i 0.343825 + 1.05818i
\(302\) −132.245 + 96.0817i −0.437898 + 0.318151i
\(303\) 258.820 + 356.235i 0.854190 + 1.17569i
\(304\) 21.0263 6.83186i 0.0691655 0.0224732i
\(305\) 0 0
\(306\) 53.2057 + 38.6562i 0.173875 + 0.126327i
\(307\) 300.291i 0.978146i 0.872243 + 0.489073i \(0.162665\pi\)
−0.872243 + 0.489073i \(0.837335\pi\)
\(308\) 102.509 + 199.225i 0.332822 + 0.646833i
\(309\) 704.853 2.28108
\(310\) 0 0
\(311\) −18.2877 + 56.2838i −0.0588030 + 0.180977i −0.976143 0.217127i \(-0.930332\pi\)
0.917340 + 0.398104i \(0.130332\pi\)
\(312\) 67.3200 + 207.190i 0.215769 + 0.664070i
\(313\) −119.294 + 86.6724i −0.381132 + 0.276909i −0.761812 0.647798i \(-0.775690\pi\)
0.380680 + 0.924707i \(0.375690\pi\)
\(314\) −77.3936 106.523i −0.246476 0.339246i
\(315\) 0 0
\(316\) −191.089 62.0885i −0.604711 0.196482i
\(317\) −61.5304 44.7044i −0.194102 0.141023i 0.486490 0.873686i \(-0.338277\pi\)
−0.680592 + 0.732663i \(0.738277\pi\)
\(318\) 197.882i 0.622269i
\(319\) 311.649 50.6305i 0.976957 0.158716i
\(320\) 0 0
\(321\) −82.6800 + 113.799i −0.257570 + 0.354515i
\(322\) −89.0451 + 274.053i −0.276538 + 0.851095i
\(323\) −26.1985 80.6308i −0.0811100 0.249631i
\(324\) 124.964 90.7917i 0.385691 0.280221i
\(325\) 0 0
\(326\) 236.717 76.9141i 0.726127 0.235933i
\(327\) −94.5492 30.7209i −0.289141 0.0939476i
\(328\) −427.249 310.414i −1.30259 0.946385i
\(329\) 93.6275i 0.284582i
\(330\) 0 0
\(331\) 581.731 1.75750 0.878748 0.477285i \(-0.158379\pi\)
0.878748 + 0.477285i \(0.158379\pi\)
\(332\) 40.3500 55.5371i 0.121536 0.167280i
\(333\) −237.258 + 730.204i −0.712486 + 2.19281i
\(334\) −29.3951 90.4689i −0.0880093 0.270865i
\(335\) 0 0
\(336\) 27.1227 + 37.3312i 0.0807223 + 0.111105i
\(337\) −401.264 + 130.379i −1.19070 + 0.386880i −0.836330 0.548227i \(-0.815303\pi\)
−0.354365 + 0.935107i \(0.615303\pi\)
\(338\) −145.116 47.1509i −0.429336 0.139500i
\(339\) 679.574 + 493.740i 2.00464 + 1.45646i
\(340\) 0 0
\(341\) −303.412 301.011i −0.889772 0.882730i
\(342\) −215.564 −0.630305
\(343\) −171.358 + 235.854i −0.499586 + 0.687622i
\(344\) 103.491 318.513i 0.300847 0.925911i
\(345\) 0 0
\(346\) 101.343 73.6303i 0.292900 0.212804i
\(347\) 90.1393 + 124.066i 0.259767 + 0.357539i 0.918902 0.394486i \(-0.129077\pi\)
−0.659135 + 0.752025i \(0.729077\pi\)
\(348\) 319.615 103.849i 0.918434 0.298417i
\(349\) 221.620 + 72.0087i 0.635014 + 0.206329i 0.608795 0.793328i \(-0.291653\pi\)
0.0262192 + 0.999656i \(0.491653\pi\)
\(350\) 0 0
\(351\) 56.0034i 0.159554i
\(352\) 54.8222 355.263i 0.155745 1.00927i
\(353\) −122.947 −0.348293 −0.174146 0.984720i \(-0.555717\pi\)
−0.174146 + 0.984720i \(0.555717\pi\)
\(354\) −177.533 + 244.353i −0.501505 + 0.690263i
\(355\) 0 0
\(356\) −85.1205 261.974i −0.239103 0.735882i
\(357\) 143.156 104.009i 0.400997 0.291341i
\(358\) 107.630 + 148.140i 0.300643 + 0.413800i
\(359\) −653.554 + 212.352i −1.82048 + 0.591511i −0.820686 + 0.571379i \(0.806409\pi\)
−0.999797 + 0.0201317i \(0.993591\pi\)
\(360\) 0 0
\(361\) −67.2386 48.8517i −0.186256 0.135323i
\(362\) 16.6795i 0.0460761i
\(363\) 314.579 440.296i 0.866608 1.21294i
\(364\) 127.533 0.350365
\(365\) 0 0
\(366\) −183.885 + 565.941i −0.502419 + 1.54629i
\(367\) 4.43577 + 13.6519i 0.0120866 + 0.0371987i 0.956918 0.290359i \(-0.0937746\pi\)
−0.944831 + 0.327557i \(0.893775\pi\)
\(368\) −33.8050 + 24.5607i −0.0918613 + 0.0667411i
\(369\) −438.891 604.082i −1.18941 1.63708i
\(370\) 0 0
\(371\) −278.500 90.4903i −0.750675 0.243909i
\(372\) −368.031 267.390i −0.989332 0.718791i
\(373\) 172.936i 0.463636i −0.972759 0.231818i \(-0.925533\pi\)
0.972759 0.231818i \(-0.0744674\pi\)
\(374\) −64.9965 10.0299i −0.173788 0.0268179i
\(375\) 0 0
\(376\) 55.0329 75.7463i 0.146364 0.201453i
\(377\) 55.5370 170.925i 0.147313 0.453382i
\(378\) −25.2786 77.7997i −0.0668747 0.205819i
\(379\) −69.8895 + 50.7777i −0.184405 + 0.133978i −0.676158 0.736757i \(-0.736356\pi\)
0.491753 + 0.870735i \(0.336356\pi\)
\(380\) 0 0
\(381\) −572.943 + 186.160i −1.50379 + 0.488610i
\(382\) −17.2928 5.61876i −0.0452690 0.0147088i
\(383\) 154.549 + 112.287i 0.403523 + 0.293176i 0.770974 0.636866i \(-0.219770\pi\)
−0.367452 + 0.930043i \(0.619770\pi\)
\(384\) 410.502i 1.06901i
\(385\) 0 0
\(386\) −112.243 −0.290785
\(387\) 278.327 383.084i 0.719191 0.989881i
\(388\) 27.0106 83.1302i 0.0696151 0.214253i
\(389\) 154.529 + 475.593i 0.397248 + 1.22260i 0.927197 + 0.374574i \(0.122211\pi\)
−0.529949 + 0.848029i \(0.677789\pi\)
\(390\) 0 0
\(391\) 94.1844 + 129.634i 0.240881 + 0.331544i
\(392\) −85.2968 + 27.7146i −0.217594 + 0.0707006i
\(393\) 203.541 + 66.1345i 0.517916 + 0.168281i
\(394\) −215.498 156.569i −0.546950 0.397383i
\(395\) 0 0
\(396\) 142.693 282.824i 0.360337 0.714202i
\(397\) 73.5298 0.185214 0.0926068 0.995703i \(-0.470480\pi\)
0.0926068 + 0.995703i \(0.470480\pi\)
\(398\) 18.8560 25.9531i 0.0473769 0.0652088i
\(399\) −179.230 + 551.613i −0.449198 + 1.38249i
\(400\) 0 0
\(401\) −40.0664 + 29.1099i −0.0999161 + 0.0725933i −0.636622 0.771176i \(-0.719669\pi\)
0.536705 + 0.843770i \(0.319669\pi\)
\(402\) −290.304 399.569i −0.722149 0.993952i
\(403\) −231.373 + 75.1776i −0.574126 + 0.186545i
\(404\) −245.158 79.6565i −0.606825 0.197170i
\(405\) 0 0
\(406\) 262.517i 0.646593i
\(407\) −123.120 757.846i −0.302505 1.86203i
\(408\) −176.950 −0.433702
\(409\) 416.798 573.673i 1.01907 1.40262i 0.106208 0.994344i \(-0.466129\pi\)
0.912857 0.408279i \(-0.133871\pi\)
\(410\) 0 0
\(411\) −211.221 650.071i −0.513920 1.58168i
\(412\) −333.823 + 242.537i −0.810250 + 0.588681i
\(413\) 262.720 + 361.603i 0.636125 + 0.875552i
\(414\) 387.480 125.900i 0.935941 0.304106i
\(415\) 0 0
\(416\) −165.537 120.270i −0.397925 0.289110i
\(417\) 548.907i 1.31632i
\(418\) 191.679 98.6265i 0.458562 0.235948i
\(419\) −512.689 −1.22360 −0.611801 0.791012i \(-0.709554\pi\)
−0.611801 + 0.791012i \(0.709554\pi\)
\(420\) 0 0
\(421\) −47.9662 + 147.625i −0.113934 + 0.350652i −0.991723 0.128395i \(-0.959018\pi\)
0.877789 + 0.479047i \(0.159018\pi\)
\(422\) 122.749 + 377.783i 0.290875 + 0.895221i
\(423\) 107.097 77.8103i 0.253184 0.183949i
\(424\) 172.123 + 236.907i 0.405950 + 0.558742i
\(425\) 0 0
\(426\) −215.132 69.9005i −0.505004 0.164086i
\(427\) 712.421 + 517.604i 1.66843 + 1.21219i
\(428\) 82.3459i 0.192397i
\(429\) −140.927 273.889i −0.328501 0.638435i
\(430\) 0 0
\(431\) 413.259 568.802i 0.958837 1.31973i 0.0113492 0.999936i \(-0.496387\pi\)
0.947488 0.319791i \(-0.103613\pi\)
\(432\) 3.66563 11.2817i 0.00848526 0.0261149i
\(433\) 154.137 + 474.384i 0.355974 + 1.09558i 0.955442 + 0.295177i \(0.0953787\pi\)
−0.599468 + 0.800398i \(0.704621\pi\)
\(434\) 287.489 208.873i 0.662417 0.481274i
\(435\) 0 0
\(436\) 55.3500 17.9843i 0.126950 0.0412484i
\(437\) −499.508 162.300i −1.14304 0.371396i
\(438\) −67.0163 48.6902i −0.153005 0.111165i
\(439\) 564.968i 1.28694i 0.765470 + 0.643472i \(0.222507\pi\)
−0.765470 + 0.643472i \(0.777493\pi\)
\(440\) 0 0
\(441\) −126.807 −0.287543
\(442\) −22.0037 + 30.2855i −0.0497821 + 0.0685192i
\(443\) −60.4950 + 186.184i −0.136558 + 0.420281i −0.995829 0.0912390i \(-0.970917\pi\)
0.859272 + 0.511520i \(0.170917\pi\)
\(444\) −252.533 777.216i −0.568768 1.75049i
\(445\) 0 0
\(446\) 36.2664 + 49.9165i 0.0813149 + 0.111920i
\(447\) 481.935 156.590i 1.07815 0.350314i
\(448\) 244.998 + 79.6046i 0.546870 + 0.177689i
\(449\) 140.159 + 101.832i 0.312158 + 0.226796i 0.732822 0.680420i \(-0.238203\pi\)
−0.420664 + 0.907217i \(0.638203\pi\)
\(450\) 0 0
\(451\) 666.644 + 336.342i 1.47815 + 0.745770i
\(452\) −491.745 −1.08793
\(453\) 365.517 503.090i 0.806880 1.11058i
\(454\) −119.247 + 367.004i −0.262658 + 0.808378i
\(455\) 0 0
\(456\) 469.230 340.915i 1.02901 0.747622i
\(457\) 176.869 + 243.440i 0.387022 + 0.532690i 0.957428 0.288673i \(-0.0932140\pi\)
−0.570406 + 0.821363i \(0.693214\pi\)
\(458\) 403.933 131.246i 0.881950 0.286563i
\(459\) −43.2624 14.0568i −0.0942535 0.0306248i
\(460\) 0 0
\(461\) 389.513i 0.844930i −0.906379 0.422465i \(-0.861165\pi\)
0.906379 0.422465i \(-0.138835\pi\)
\(462\) 319.402 + 316.874i 0.691346 + 0.685875i
\(463\) 36.6718 0.0792048 0.0396024 0.999216i \(-0.487391\pi\)
0.0396024 + 0.999216i \(0.487391\pi\)
\(464\) −22.3754 + 30.7971i −0.0482228 + 0.0663730i
\(465\) 0 0
\(466\) 35.3171 + 108.695i 0.0757879 + 0.233251i
\(467\) 87.4468 63.5338i 0.187252 0.136047i −0.490210 0.871604i \(-0.663080\pi\)
0.677462 + 0.735558i \(0.263080\pi\)
\(468\) −105.988 145.880i −0.226470 0.311709i
\(469\) −695.111 + 225.855i −1.48211 + 0.481568i
\(470\) 0 0
\(471\) 405.238 + 294.423i 0.860378 + 0.625101i
\(472\) 446.966i 0.946961i
\(473\) −72.2157 + 467.979i −0.152676 + 0.989384i
\(474\) −403.475 −0.851214
\(475\) 0 0
\(476\) −32.0106 + 98.5186i −0.0672493 + 0.206972i
\(477\) 127.943 + 393.768i 0.268224 + 0.825510i
\(478\) −310.267 + 225.422i −0.649095 + 0.471595i
\(479\) 241.542 + 332.454i 0.504262 + 0.694057i 0.982939 0.183934i \(-0.0588833\pi\)
−0.478676 + 0.877991i \(0.658883\pi\)
\(480\) 0 0
\(481\) −415.643 135.051i −0.864123 0.280771i
\(482\) 134.947 + 98.0446i 0.279973 + 0.203412i
\(483\) 1096.21i 2.26959i
\(484\) 2.51722 + 316.772i 0.00520087 + 0.654488i
\(485\) 0 0
\(486\) 237.943 327.501i 0.489595 0.673869i
\(487\) 98.1616 302.110i 0.201564 0.620350i −0.798273 0.602295i \(-0.794253\pi\)
0.999837 0.0180541i \(-0.00574710\pi\)
\(488\) −272.121 837.501i −0.557624 1.71619i
\(489\) −766.033 + 556.556i −1.56653 + 1.13815i
\(490\) 0 0
\(491\) 248.678 80.8004i 0.506473 0.164563i −0.0446247 0.999004i \(-0.514209\pi\)
0.551098 + 0.834441i \(0.314209\pi\)
\(492\) 755.861 + 245.594i 1.53630 + 0.499175i
\(493\) 118.099 + 85.8041i 0.239552 + 0.174045i
\(494\) 122.702i 0.248386i
\(495\) 0 0
\(496\) 51.5298 0.103891
\(497\) −196.757 + 270.813i −0.395890 + 0.544895i
\(498\) 42.5987 131.105i 0.0855395 0.263263i
\(499\) −186.253 573.229i −0.373253 1.14875i −0.944650 0.328081i \(-0.893598\pi\)
0.571397 0.820674i \(-0.306402\pi\)
\(500\) 0 0
\(501\) 212.705 + 292.763i 0.424561 + 0.584358i
\(502\) 470.167 152.766i 0.936587 0.304316i
\(503\) −458.794 149.071i −0.912115 0.296364i −0.184887 0.982760i \(-0.559192\pi\)
−0.727228 + 0.686396i \(0.759192\pi\)
\(504\) 538.649 + 391.351i 1.06875 + 0.776491i
\(505\) 0 0
\(506\) −286.943 + 289.232i −0.567080 + 0.571605i
\(507\) 580.462 1.14490
\(508\) 207.293 285.314i 0.408057 0.561642i
\(509\) −88.1190 + 271.202i −0.173122 + 0.532814i −0.999543 0.0302387i \(-0.990373\pi\)
0.826421 + 0.563053i \(0.190373\pi\)
\(510\) 0 0
\(511\) −99.1732 + 72.0535i −0.194077 + 0.141005i
\(512\) 49.7339 + 68.4529i 0.0971366 + 0.133697i
\(513\) 141.803 46.0747i 0.276420 0.0898143i
\(514\) 41.7173 + 13.5548i 0.0811621 + 0.0263711i
\(515\) 0 0
\(516\) 504.004i 0.976752i
\(517\) −59.6296 + 118.188i −0.115338 + 0.228604i
\(518\) 638.369 1.23237
\(519\) −280.106 + 385.533i −0.539704 + 0.742839i
\(520\) 0 0
\(521\) 159.996 + 492.417i 0.307094 + 0.945138i 0.978888 + 0.204400i \(0.0655242\pi\)
−0.671794 + 0.740738i \(0.734476\pi\)
\(522\) 300.282 218.168i 0.575253 0.417946i
\(523\) −314.428 432.773i −0.601201 0.827482i 0.394617 0.918846i \(-0.370877\pi\)
−0.995818 + 0.0913639i \(0.970877\pi\)
\(524\) −119.155 + 38.7158i −0.227395 + 0.0738851i
\(525\) 0 0
\(526\) 148.790 + 108.102i 0.282871 + 0.205518i
\(527\) 197.604i 0.374960i
\(528\) 10.4621 + 64.3980i 0.0198146 + 0.121966i
\(529\) 463.664 0.876492
\(530\) 0 0
\(531\) 195.286 601.029i 0.367771 1.13188i
\(532\) −104.923 322.920i −0.197224 0.606992i
\(533\) 343.853 249.824i 0.645127 0.468712i
\(534\) −325.132 447.505i −0.608861 0.838025i
\(535\) 0 0
\(536\) 695.111 + 225.855i 1.29685 + 0.421372i
\(537\) −563.559 409.450i −1.04946 0.762476i
\(538\) 338.572i 0.629317i
\(539\) 112.756 58.0174i 0.209194 0.107639i
\(540\) 0 0
\(541\) −176.151 + 242.451i −0.325602 + 0.448153i −0.940167 0.340713i \(-0.889332\pi\)
0.614565 + 0.788866i \(0.289332\pi\)
\(542\) 53.5354 164.765i 0.0987738 0.303995i
\(543\) −19.6080 60.3472i −0.0361105 0.111137i
\(544\) 134.457 97.6890i 0.247164 0.179575i
\(545\) 0 0
\(546\) 243.566 79.1394i 0.446092 0.144944i
\(547\) −431.699 140.268i −0.789212 0.256431i −0.113444 0.993544i \(-0.536188\pi\)
−0.675769 + 0.737114i \(0.736188\pi\)
\(548\) 323.722 + 235.198i 0.590734 + 0.429193i
\(549\) 1245.07i 2.26789i
\(550\) 0 0
\(551\) −478.482 −0.868389
\(552\) −644.336 + 886.853i −1.16728 + 1.60662i
\(553\) −184.507 + 567.855i −0.333648 + 1.02686i
\(554\) 83.0482 + 255.596i 0.149906 + 0.461365i
\(555\) 0 0
\(556\) −188.876 259.966i −0.339706 0.467565i
\(557\) 338.185 109.883i 0.607155 0.197277i 0.0107261 0.999942i \(-0.496586\pi\)
0.596429 + 0.802666i \(0.296586\pi\)
\(558\) −477.842 155.260i −0.856348 0.278244i
\(559\) 218.057 + 158.428i 0.390085 + 0.283413i
\(560\) 0 0
\(561\) 246.950 40.1195i 0.440197 0.0715143i
\(562\) −0.326238 −0.000580495
\(563\) 288.909 397.649i 0.513160 0.706305i −0.471288 0.881979i \(-0.656211\pi\)
0.984448 + 0.175675i \(0.0562107\pi\)
\(564\) −43.5410 + 134.005i −0.0772004 + 0.237598i
\(565\) 0 0
\(566\) 212.931 154.703i 0.376202 0.273327i
\(567\) −269.804 371.353i −0.475845 0.654944i
\(568\) 318.360 103.441i 0.560492 0.182115i
\(569\) 275.249 + 89.4339i 0.483742 + 0.157177i 0.540728 0.841198i \(-0.318149\pi\)
−0.0569857 + 0.998375i \(0.518149\pi\)
\(570\) 0 0
\(571\) 566.789i 0.992626i −0.868144 0.496313i \(-0.834687\pi\)
0.868144 0.496313i \(-0.165313\pi\)
\(572\) 160.988 + 81.2233i 0.281447 + 0.141999i
\(573\) 69.1710 0.120717
\(574\) −364.914 + 502.261i −0.635738 + 0.875019i
\(575\) 0 0
\(576\) −112.552 346.400i −0.195403 0.601388i
\(577\) −182.749 + 132.775i −0.316723 + 0.230113i −0.734776 0.678310i \(-0.762713\pi\)
0.418053 + 0.908423i \(0.362713\pi\)
\(578\) 181.822 + 250.256i 0.314570 + 0.432969i
\(579\) 406.099 131.950i 0.701380 0.227892i
\(580\) 0 0
\(581\) −165.039 119.907i −0.284059 0.206381i
\(582\) 175.526i 0.301591i
\(583\) −293.926 291.600i −0.504161 0.500171i
\(584\) 122.585 0.209905
\(585\) 0 0
\(586\) 119.887 368.973i 0.204585 0.629647i
\(587\) −142.055 437.200i −0.242001 0.744803i −0.996115 0.0880598i \(-0.971933\pi\)
0.754114 0.656744i \(-0.228067\pi\)
\(588\) 109.193 79.3337i 0.185703 0.134921i
\(589\) 380.707 + 523.998i 0.646362 + 0.889641i
\(590\) 0 0
\(591\) 963.738 + 313.138i 1.63069 + 0.529844i
\(592\) 74.8901 + 54.4108i 0.126504 + 0.0919102i
\(593\) 810.678i 1.36708i 0.729914 + 0.683539i \(0.239560\pi\)
−0.729914 + 0.683539i \(0.760440\pi\)
\(594\) 17.6393 114.308i 0.0296958 0.192437i
\(595\) 0 0
\(596\) −174.366 + 239.994i −0.292560 + 0.402674i
\(597\) −37.7120 + 116.066i −0.0631693 + 0.194415i
\(598\) 71.6641 + 220.559i 0.119840 + 0.368828i
\(599\) −193.976 + 140.932i −0.323832 + 0.235278i −0.737809 0.675009i \(-0.764140\pi\)
0.413977 + 0.910288i \(0.364140\pi\)
\(600\) 0 0
\(601\) −754.088 + 245.018i −1.25472 + 0.407684i −0.859611 0.510949i \(-0.829294\pi\)
−0.395112 + 0.918633i \(0.629294\pi\)
\(602\) −374.435 121.661i −0.621985 0.202095i
\(603\) 836.028 + 607.410i 1.38645 + 1.00731i
\(604\) 364.040i 0.602715i
\(605\) 0 0
\(606\) −517.639 −0.854190
\(607\) −134.536 + 185.173i −0.221640 + 0.305062i −0.905328 0.424713i \(-0.860375\pi\)
0.683688 + 0.729775i \(0.260375\pi\)
\(608\) −168.339 + 518.095i −0.276874 + 0.852131i
\(609\) −308.607 949.794i −0.506744 1.55960i
\(610\) 0 0
\(611\) 44.2908 + 60.9611i 0.0724891 + 0.0997727i
\(612\) 139.294 45.2595i 0.227605 0.0739534i
\(613\) 1084.01 + 352.217i 1.76837 + 0.574579i 0.998012 0.0630314i \(-0.0200768\pi\)
0.770359 + 0.637610i \(0.220077\pi\)
\(614\) −285.594 207.496i −0.465136 0.337941i
\(615\) 0 0
\(616\) −658.018 101.541i −1.06821 0.164840i
\(617\) −640.748 −1.03849 −0.519244 0.854626i \(-0.673787\pi\)
−0.519244 + 0.854626i \(0.673787\pi\)
\(618\) −487.041 + 670.355i −0.788093 + 1.08472i
\(619\) 272.338 838.172i 0.439965 1.35407i −0.447947 0.894060i \(-0.647845\pi\)
0.887912 0.460013i \(-0.152155\pi\)
\(620\) 0 0
\(621\) −227.984 + 165.640i −0.367124 + 0.266731i
\(622\) −40.8926 56.2838i −0.0657437 0.0904885i
\(623\) −778.504 + 252.951i −1.24960 + 0.406021i
\(624\) 35.3193 + 11.4759i 0.0566014 + 0.0183909i
\(625\) 0 0
\(626\) 173.345i 0.276909i
\(627\) −577.558 + 582.166i −0.921145 + 0.928494i
\(628\) −293.233 −0.466931
\(629\) 208.652 287.185i 0.331721 0.456574i
\(630\) 0 0
\(631\) 27.5482 + 84.7846i 0.0436580 + 0.134365i 0.970510 0.241062i \(-0.0774958\pi\)
−0.926852 + 0.375428i \(0.877496\pi\)
\(632\) 483.046 350.953i 0.764313 0.555306i
\(633\) −888.222 1222.53i −1.40319 1.93133i
\(634\) 85.0329 27.6289i 0.134121 0.0435786i
\(635\) 0 0
\(636\) −356.525 259.030i −0.560574 0.407281i
\(637\) 72.1802i 0.113313i
\(638\) −167.192 + 331.381i −0.262056 + 0.519406i
\(639\) 473.289 0.740672
\(640\) 0 0
\(641\) 159.465 490.782i 0.248775 0.765650i −0.746218 0.665702i \(-0.768132\pi\)
0.994993 0.0999481i \(-0.0318677\pi\)
\(642\) −51.0990 157.267i −0.0795935 0.244964i
\(643\) 835.995 607.386i 1.30015 0.944612i 0.300190 0.953879i \(-0.402950\pi\)
0.999957 + 0.00926699i \(0.00294982\pi\)
\(644\) 377.201 + 519.173i 0.585716 + 0.806169i
\(645\) 0 0
\(646\) 94.7871 + 30.7982i 0.146729 + 0.0476752i
\(647\) 5.09172 + 3.69935i 0.00786974 + 0.00571770i 0.591713 0.806149i \(-0.298452\pi\)
−0.583843 + 0.811866i \(0.698452\pi\)
\(648\) 459.018i 0.708361i
\(649\) 101.339 + 623.781i 0.156147 + 0.961142i
\(650\) 0 0
\(651\) −794.599 + 1093.67i −1.22058 + 1.67999i
\(652\) 171.290 527.177i 0.262715 0.808554i
\(653\) −3.92609 12.0833i −0.00601239 0.0185042i 0.948005 0.318254i \(-0.103097\pi\)
−0.954018 + 0.299750i \(0.903097\pi\)
\(654\) 94.5492 68.6940i 0.144571 0.105037i
\(655\) 0 0
\(656\) −85.6196 + 27.8195i −0.130518 + 0.0424078i
\(657\) 164.838 + 53.5592i 0.250895 + 0.0815208i
\(658\) −89.0451 64.6950i −0.135327 0.0983207i
\(659\) 14.9239i 0.0226463i −0.999936 0.0113232i \(-0.996396\pi\)
0.999936 0.0113232i \(-0.00360435\pi\)
\(660\) 0 0
\(661\) −1024.09 −1.54931 −0.774654 0.632386i \(-0.782076\pi\)
−0.774654 + 0.632386i \(0.782076\pi\)
\(662\) −401.967 + 553.259i −0.607200 + 0.835739i
\(663\) 44.0074 135.441i 0.0663762 0.204285i
\(664\) 63.0391 + 194.014i 0.0949384 + 0.292190i
\(665\) 0 0
\(666\) −530.524 730.204i −0.796583 1.09640i
\(667\) 860.078 279.456i 1.28947 0.418975i
\(668\) −201.477 65.4639i −0.301613 0.0979998i
\(669\) −189.894 137.966i −0.283847 0.206227i
\(670\) 0 0
\(671\) 569.653 + 1107.11i 0.848962 + 1.64994i
\(672\) −1137.00 −1.69197
\(673\) −54.2376 + 74.6517i −0.0805908 + 0.110924i −0.847409 0.530941i \(-0.821839\pi\)
0.766818 + 0.641864i \(0.221839\pi\)
\(674\) 153.269 471.714i 0.227403 0.699873i
\(675\) 0 0
\(676\) −274.911 + 199.734i −0.406673 + 0.295465i
\(677\) 276.561 + 380.654i 0.408510 + 0.562265i 0.962854 0.270022i \(-0.0870309\pi\)
−0.554344 + 0.832287i \(0.687031\pi\)
\(678\) −939.149 + 305.148i −1.38517 + 0.450071i
\(679\) −247.037 80.2671i −0.363824 0.118214i
\(680\) 0 0
\(681\) 1468.01i 2.15567i
\(682\) 495.931 80.5689i 0.727172 0.118136i
\(683\) 72.7933 0.106579 0.0532894 0.998579i \(-0.483029\pi\)
0.0532894 + 0.998579i \(0.483029\pi\)
\(684\) −282.177 + 388.384i −0.412540 + 0.567812i
\(685\) 0 0
\(686\) −105.905 325.943i −0.154381 0.475135i
\(687\) −1307.15 + 949.704i −1.90270 + 1.38239i
\(688\) −33.5571 46.1873i −0.0487748 0.0671327i
\(689\) −224.139 + 72.8272i −0.325311 + 0.105700i
\(690\) 0 0
\(691\) −186.180 135.268i −0.269435 0.195756i 0.444861 0.895600i \(-0.353253\pi\)
−0.714296 + 0.699843i \(0.753253\pi\)
\(692\) 278.975i 0.403142i
\(693\) −840.463 424.040i −1.21279 0.611890i
\(694\) −180.279 −0.259767
\(695\) 0 0
\(696\) −308.607 + 949.794i −0.443401 + 1.36465i
\(697\) 106.681 + 328.330i 0.153057 + 0.471062i
\(698\) −221.620 + 161.016i −0.317507 + 0.230682i
\(699\) −255.557 351.744i −0.365604 0.503211i
\(700\) 0 0
\(701\) 938.374 + 304.896i 1.33862 + 0.434944i 0.888850 0.458199i \(-0.151505\pi\)
0.449772 + 0.893144i \(0.351505\pi\)
\(702\) −53.2624 38.6974i −0.0758723 0.0551245i
\(703\) 1163.54i 1.65510i
\(704\) 258.568 + 256.521i 0.367284 + 0.364377i
\(705\) 0 0
\(706\) 84.9545 116.930i 0.120332 0.165623i
\(707\) −236.714 + 728.530i −0.334814 + 1.03045i
\(708\) 207.859 + 639.725i 0.293586 + 0.903566i
\(709\) 682.272 495.700i 0.962302 0.699153i 0.00861746 0.999963i \(-0.497257\pi\)
0.953684 + 0.300810i \(0.0972569\pi\)
\(710\) 0 0
\(711\) 802.883 260.872i 1.12923 0.366909i
\(712\) 778.504 + 252.951i 1.09340 + 0.355269i
\(713\) −990.366 719.543i −1.38901 1.00918i
\(714\) 208.018i 0.291341i
\(715\) 0 0
\(716\) 407.795 0.569546
\(717\) 857.558 1180.33i 1.19604 1.64620i
\(718\) 249.635 768.298i 0.347681 1.07005i
\(719\) 98.8044 + 304.089i 0.137419 + 0.422933i 0.995958 0.0898151i \(-0.0286276\pi\)
−0.858539 + 0.512748i \(0.828628\pi\)
\(720\) 0 0
\(721\) 720.742 + 992.016i 0.999642 + 1.37589i
\(722\) 92.9214 30.1920i 0.128700 0.0418172i
\(723\) −603.500 196.089i −0.834717 0.271216i
\(724\) 30.0517 + 21.8338i 0.0415078 + 0.0301572i
\(725\) 0 0
\(726\) 201.378 + 603.419i 0.277380 + 0.831155i
\(727\) 475.109 0.653520 0.326760 0.945107i \(-0.394043\pi\)
0.326760 + 0.945107i \(0.394043\pi\)
\(728\) −222.763 + 306.607i −0.305993 + 0.421164i
\(729\) −311.798 + 959.616i −0.427707 + 1.31635i
\(730\) 0 0
\(731\) −177.117 + 128.683i −0.242294 + 0.176037i
\(732\) 778.951 + 1072.13i 1.06414 + 1.46466i
\(733\) −89.3531 + 29.0326i −0.121901 + 0.0396079i −0.369332 0.929297i \(-0.620413\pi\)
0.247431 + 0.968905i \(0.420413\pi\)
\(734\) −16.0488 5.21457i −0.0218648 0.00710431i
\(735\) 0 0
\(736\) 1029.60i 1.39892i
\(737\) −1021.30 157.601i −1.38575 0.213841i
\(738\) 877.782 1.18941
\(739\) 403.140 554.874i 0.545521 0.750845i −0.443875 0.896089i \(-0.646397\pi\)
0.989396 + 0.145244i \(0.0463966\pi\)
\(740\) 0 0
\(741\) 144.245 + 443.942i 0.194663 + 0.599112i
\(742\) 278.500 202.342i 0.375337 0.272699i
\(743\) −577.765 795.226i −0.777611 1.07029i −0.995541 0.0943258i \(-0.969930\pi\)
0.217930 0.975964i \(-0.430070\pi\)
\(744\) 1285.69 417.746i 1.72808 0.561486i
\(745\) 0 0
\(746\) 164.472 + 119.496i 0.220472 + 0.160182i
\(747\) 288.431i 0.386120i
\(748\) −103.152 + 103.975i −0.137904 + 0.139005i
\(749\) −244.706 −0.326710
\(750\) 0 0
\(751\) 254.520 783.330i 0.338907 1.04305i −0.625858 0.779937i \(-0.715251\pi\)
0.964765 0.263113i \(-0.0847491\pi\)
\(752\) −4.93208 15.1794i −0.00655861 0.0201853i
\(753\) −1521.49 + 1105.43i −2.02057 + 1.46803i
\(754\) 124.184 + 170.925i 0.164701 + 0.226691i
\(755\) 0 0
\(756\) −173.262 56.2964i −0.229183 0.0744661i
\(757\) 464.114 + 337.199i 0.613097 + 0.445441i 0.850503 0.525969i \(-0.176297\pi\)
−0.237407 + 0.971410i \(0.576297\pi\)
\(758\) 101.555i 0.133978i
\(759\) 698.156 1383.77i 0.919837 1.82315i
\(760\) 0 0
\(761\) −885.011 + 1218.11i −1.16296 + 1.60067i −0.463290 + 0.886207i \(0.653331\pi\)
−0.699668 + 0.714468i \(0.746669\pi\)
\(762\) 218.845 673.535i 0.287198 0.883904i
\(763\) −53.4437 164.483i −0.0700441 0.215574i
\(764\) −32.7599 + 23.8014i −0.0428794 + 0.0311537i
\(765\) 0 0
\(766\) −213.582 + 69.3969i −0.278827 + 0.0905965i
\(767\) 342.115 + 111.160i 0.446043 + 0.144928i
\(768\) 869.604 + 631.804i 1.13230 + 0.822662i
\(769\) 741.194i 0.963841i −0.876215 0.481921i \(-0.839939\pi\)
0.876215 0.481921i \(-0.160061\pi\)
\(770\) 0 0
\(771\) −166.869 −0.216432
\(772\) −146.928 + 202.229i −0.190321 + 0.261955i
\(773\) 349.452 1075.50i 0.452072 1.39134i −0.422466 0.906379i \(-0.638835\pi\)
0.874538 0.484956i \(-0.161165\pi\)
\(774\) 172.015 + 529.409i 0.222242 + 0.683991i
\(775\) 0 0
\(776\) 152.677 + 210.142i 0.196749 + 0.270801i
\(777\) −2309.64 + 750.448i −2.97251 + 0.965827i
\(778\) −559.093 181.660i −0.718628 0.233496i
\(779\) −915.458 665.119i −1.17517 0.853811i
\(780\) 0 0
\(781\) −420.847 + 216.543i −0.538857 + 0.277263i
\(782\) −188.369 −0.240881
\(783\) −150.902 + 207.698i −0.192722 + 0.265260i
\(784\) −4.72447 + 14.5404i −0.00602610 + 0.0185464i
\(785\) 0 0
\(786\) −203.541 + 147.881i −0.258958 + 0.188144i
\(787\) −557.821 767.774i −0.708794 0.975571i −0.999822 0.0188564i \(-0.993997\pi\)
0.291029 0.956714i \(-0.406003\pi\)
\(788\) −564.182 + 183.314i −0.715967 + 0.232632i
\(789\) −665.410 216.205i −0.843359 0.274024i
\(790\) 0 0
\(791\) 1461.31i 1.84742i
\(792\) 430.705 + 837.067i 0.543819 + 1.05690i
\(793\) 708.713 0.893712
\(794\) −50.8078 + 69.9310i −0.0639897 + 0.0880743i
\(795\) 0 0
\(796\) −22.0770 67.9461i −0.0277349 0.0853594i
\(797\) 786.819 571.658i 0.987226 0.717262i 0.0279144 0.999610i \(-0.491113\pi\)
0.959312 + 0.282348i \(0.0911134\pi\)
\(798\) −400.770 551.613i −0.502218 0.691244i
\(799\) −58.2092 + 18.9133i −0.0728525 + 0.0236712i
\(800\) 0 0
\(801\) 936.326 + 680.281i 1.16895 + 0.849289i
\(802\) 58.2198i 0.0725933i
\(803\) −171.078 + 27.7933i −0.213049 + 0.0346119i
\(804\) −1099.92 −1.36806
\(805\) 0 0
\(806\) 88.3766 271.995i 0.109648 0.337463i
\(807\) −398.016 1224.97i −0.493204 1.51793i
\(808\) 619.725 450.256i 0.766986 0.557248i
\(809\) −41.5053 57.1271i −0.0513044 0.0706144i 0.782594 0.622532i \(-0.213896\pi\)
−0.833898 + 0.551918i \(0.813896\pi\)
\(810\) 0 0
\(811\) −302.664 98.3416i −0.373199 0.121260i 0.116411 0.993201i \(-0.462861\pi\)
−0.489610 + 0.871941i \(0.662861\pi\)
\(812\) 472.978 + 343.639i 0.582485 + 0.423200i
\(813\) 659.060i 0.810652i
\(814\) 805.828 + 406.565i 0.989961 + 0.499466i
\(815\) 0 0
\(816\) −17.7302 + 24.4036i −0.0217282 + 0.0299063i
\(817\) 221.749 682.473i 0.271418 0.835340i
\(818\) 257.595 + 792.796i 0.314909 + 0.969189i
\(819\) −433.508 + 314.962i −0.529314 + 0.384569i
\(820\) 0 0
\(821\) 262.403 85.2598i 0.319613 0.103849i −0.144817 0.989459i \(-0.546259\pi\)
0.464430 + 0.885610i \(0.346259\pi\)
\(822\) 764.205 + 248.305i 0.929689 + 0.302074i
\(823\) 140.225 + 101.880i 0.170383 + 0.123791i 0.669709 0.742624i \(-0.266419\pi\)
−0.499326 + 0.866414i \(0.666419\pi\)
\(824\) 1226.20i 1.48811i
\(825\) 0 0
\(826\) −525.440 −0.636125
\(827\) −197.323 + 271.592i −0.238602 + 0.328407i −0.911479 0.411347i \(-0.865058\pi\)
0.672877 + 0.739754i \(0.265058\pi\)
\(828\) 280.383 862.930i 0.338627 1.04219i
\(829\) 301.853 + 929.007i 0.364116 + 1.12064i 0.950532 + 0.310625i \(0.100538\pi\)
−0.586416 + 0.810010i \(0.699462\pi\)
\(830\) 0 0
\(831\) −600.942 827.126i −0.723156 0.995338i
\(832\) 197.176 64.0663i 0.236990 0.0770028i
\(833\) 55.7589 + 18.1172i 0.0669375 + 0.0217493i
\(834\) −522.041 379.285i −0.625949 0.454778i
\(835\) 0 0
\(836\) 73.2148 474.453i 0.0875775 0.567527i
\(837\) 347.522 0.415199
\(838\) 354.259 487.596i 0.422744 0.581857i
\(839\) −228.765 + 704.065i −0.272663 + 0.839171i 0.717165 + 0.696904i \(0.245439\pi\)
−0.989828 + 0.142268i \(0.954561\pi\)
\(840\) 0 0
\(841\) −13.8551 + 10.0663i −0.0164745 + 0.0119694i
\(842\) −107.256 147.625i −0.127382 0.175326i
\(843\) 1.18034 0.383516i 0.00140017 0.000454941i
\(844\) 841.336 + 273.367i 0.996843 + 0.323894i
\(845\) 0 0
\(846\) 155.621i 0.183949i
\(847\) 941.346 7.48038i 1.11139 0.00883162i
\(848\) 49.9187 0.0588664
\(849\) −588.525 + 810.036i −0.693198 + 0.954106i
\(850\) 0 0
\(851\) −679.562 2091.48i −0.798545 2.45767i
\(852\) −407.551 + 296.103i −0.478346 + 0.347539i
\(853\) 255.804 + 352.084i 0.299888 + 0.412760i 0.932194 0.361958i \(-0.117892\pi\)
−0.632306 + 0.774718i \(0.717892\pi\)
\(854\) −984.541 + 319.897i −1.15286 + 0.374587i
\(855\) 0 0
\(856\) 197.971 + 143.834i 0.231275 + 0.168031i
\(857\) 1045.99i 1.22053i −0.792198 0.610264i \(-0.791063\pi\)
0.792198 0.610264i \(-0.208937\pi\)
\(858\) 357.862 + 55.2231i 0.417088 + 0.0643626i
\(859\) −415.346 −0.483523 −0.241762 0.970336i \(-0.577725\pi\)
−0.241762 + 0.970336i \(0.577725\pi\)
\(860\) 0 0
\(861\) 729.828 2246.18i 0.847651 2.60880i
\(862\) 255.408 + 786.065i 0.296297 + 0.911909i
\(863\) 620.069 450.507i 0.718504 0.522024i −0.167402 0.985889i \(-0.553538\pi\)
0.885906 + 0.463865i \(0.153538\pi\)
\(864\) 171.803 + 236.467i 0.198847 + 0.273689i
\(865\) 0 0
\(866\) −557.672 181.199i −0.643963 0.209236i
\(867\) −952.030 691.690i −1.09807 0.797797i
\(868\) 791.389i 0.911738i
\(869\) −594.564 + 599.307i −0.684193 + 0.689652i
\(870\) 0 0
\(871\) −345.747 + 475.880i −0.396954 + 0.546360i
\(872\) −53.4437 + 164.483i −0.0612886 + 0.188627i
\(873\) 113.489 + 349.282i 0.129998 + 0.400094i
\(874\) 499.508 362.914i 0.571520 0.415234i
\(875\) 0 0
\(876\) −175.451 + 57.0074i −0.200286 + 0.0650770i
\(877\) 634.180 + 206.058i 0.723124 + 0.234957i 0.647377 0.762170i \(-0.275866\pi\)
0.0757471 + 0.997127i \(0.475866\pi\)
\(878\) −537.317 390.383i −0.611978 0.444628i
\(879\) 1475.89i 1.67906i
\(880\) 0 0
\(881\) 1206.85 1.36987 0.684934 0.728606i \(-0.259831\pi\)
0.684934 + 0.728606i \(0.259831\pi\)
\(882\) 87.6211 120.600i 0.0993437 0.136735i
\(883\) −160.368 + 493.563i −0.181617 + 0.558961i −0.999874 0.0158926i \(-0.994941\pi\)
0.818256 + 0.574854i \(0.194941\pi\)
\(884\) 25.7624 + 79.2885i 0.0291430 + 0.0896928i
\(885\) 0 0
\(886\) −135.271 186.184i −0.152676 0.210140i
\(887\) −1498.64 + 486.939i −1.68956 + 0.548973i −0.986728 0.162380i \(-0.948083\pi\)
−0.702836 + 0.711352i \(0.748083\pi\)
\(888\) 2309.64 + 750.448i 2.60095 + 0.845099i
\(889\) −847.863 616.008i −0.953726 0.692923i
\(890\) 0 0
\(891\) −104.072 640.601i −0.116804 0.718969i
\(892\) 137.408 0.154045
\(893\) 117.918 162.300i 0.132047 0.181747i
\(894\) −184.083 + 566.549i −0.205909 + 0.633723i
\(895\) 0 0
\(896\) 577.744 419.755i 0.644803 0.468477i
\(897\) −518.566 713.745i −0.578112 0.795702i
\(898\) −193.695 + 62.9353i −0.215696 + 0.0700839i
\(899\) −1060.65 344.627i −1.17982 0.383345i
\(900\) 0 0
\(901\) 191.426i 0.212459i
\(902\) −780.520 + 401.609i −0.865322 + 0.445243i
\(903\) 1497.74 1.65863
\(904\) 858.936 1182.22i 0.950150 1.30777i
\(905\) 0 0
\(906\) 225.902 + 695.254i 0.249340 + 0.767388i
\(907\) −671.009 + 487.517i −0.739812 + 0.537505i −0.892652 0.450746i \(-0.851158\pi\)
0.152840 + 0.988251i \(0.451158\pi\)
\(908\) 505.137 + 695.262i 0.556318 + 0.765707i
\(909\) 1030.06 334.687i 1.13318 0.368192i
\(910\) 0 0
\(911\) −655.918 476.553i −0.719998 0.523109i 0.166385 0.986061i \(-0.446790\pi\)
−0.886384 + 0.462952i \(0.846790\pi\)
\(912\) 98.8716i 0.108412i
\(913\) −131.965 256.472i −0.144540 0.280911i
\(914\) −353.738 −0.387022
\(915\) 0 0
\(916\) 292.289 899.572i 0.319092 0.982066i
\(917\) 115.051 + 354.091i 0.125465 + 0.386140i
\(918\) 43.2624 31.4320i 0.0471268 0.0342396i
\(919\) 580.114 + 798.459i 0.631245 + 0.868834i 0.998111 0.0614396i \(-0.0195692\pi\)
−0.366866 + 0.930274i \(0.619569\pi\)
\(920\) 0 0
\(921\) 1277.21 + 414.992i 1.38677 + 0.450588i
\(922\) 370.449 + 269.147i 0.401788 + 0.291916i
\(923\) 269.404i 0.291878i
\(924\) 989.017 160.676i 1.07036 0.173891i
\(925\) 0 0
\(926\) −25.3396 + 34.8770i −0.0273646 + 0.0376641i
\(927\) 535.746 1648.86i 0.577935 1.77870i
\(928\) −289.855 892.082i −0.312344 0.961295i
\(929\) 1172.73 852.035i 1.26235 0.917153i 0.263482 0.964664i \(-0.415129\pi\)
0.998871 + 0.0475119i \(0.0151292\pi\)
\(930\) 0 0
\(931\) −182.764 + 59.3836i −0.196309 + 0.0637847i
\(932\) 242.067 + 78.6524i 0.259729 + 0.0843910i
\(933\) 214.116 + 155.565i 0.229492 + 0.166736i
\(934\) 127.068i 0.136047i
\(935\) 0 0
\(936\) 535.846 0.572485
\(937\) 296.805 408.517i 0.316761 0.435984i −0.620714 0.784037i \(-0.713157\pi\)
0.937475 + 0.348053i \(0.113157\pi\)
\(938\) 265.509 817.152i 0.283058 0.871164i
\(939\) 203.779 + 627.167i 0.217017 + 0.667910i
\(940\) 0 0
\(941\) 79.5072 + 109.432i 0.0844922 + 0.116294i 0.849171 0.528118i \(-0.177102\pi\)
−0.764679 + 0.644412i \(0.777102\pi\)
\(942\) −560.025 + 181.963i −0.594507 + 0.193167i
\(943\) 2034.01 + 660.890i 2.15696 + 0.700837i
\(944\) −61.6418 44.7854i −0.0652986 0.0474422i
\(945\) 0 0
\(946\) −395.174 392.047i −0.417732 0.414426i
\(947\) 177.422 0.187352 0.0936759 0.995603i \(-0.470138\pi\)
0.0936759 + 0.995603i \(0.470138\pi\)
\(948\) −528.156 + 726.944i −0.557127 + 0.766819i
\(949\) −30.4867 + 93.8284i −0.0321251 + 0.0988708i
\(950\) 0 0
\(951\) −275.172 + 199.924i −0.289350 + 0.210225i
\(952\) −180.939 249.042i −0.190062 0.261598i
\(953\) 716.160 232.694i 0.751480 0.244171i 0.0918618 0.995772i \(-0.470718\pi\)
0.659618 + 0.751601i \(0.270718\pi\)
\(954\) −462.902 150.406i −0.485223 0.157658i
\(955\) 0 0
\(956\) 854.093i 0.893403i
\(957\) 215.344 1395.49i 0.225020 1.45820i
\(958\) −483.083 −0.504262
\(959\) 698.934 962.000i 0.728815 1.00313i
\(960\) 0 0
\(961\) 169.539 + 521.789i 0.176420 + 0.542964i
\(962\) 415.643 301.983i 0.432062 0.313911i
\(963\) 203.366 + 279.909i 0.211179 + 0.290664i
\(964\) 353.295 114.793i 0.366489 0.119079i
\(965\) 0 0
\(966\) 1042.56 + 757.463i 1.07925 + 0.784123i
\(967\) 1243.20i 1.28563i 0.766024 + 0.642813i \(0.222233\pi\)
−0.766024 + 0.642813i \(0.777767\pi\)
\(968\) −765.962 547.258i −0.791283 0.565349i
\(969\) −379.149 −0.391278
\(970\) 0 0
\(971\) −289.889 + 892.185i −0.298546 + 0.918831i 0.683461 + 0.729987i \(0.260474\pi\)
−0.982007 + 0.188844i \(0.939526\pi\)
\(972\) −278.589 857.408i −0.286614 0.882107i
\(973\) −772.536 + 561.281i −0.793974 + 0.576856i
\(974\) 219.496 + 302.110i 0.225355 + 0.310175i
\(975\) 0 0
\(976\) −142.767 46.3879i −0.146278 0.0475286i
\(977\) 1071.31 + 778.352i 1.09653 + 0.796676i 0.980490 0.196569i \(-0.0629799\pi\)
0.116040 + 0.993245i \(0.462980\pi\)
\(978\) 1113.11i 1.13815i
\(979\) −1143.82 176.508i −1.16836 0.180294i
\(980\) 0 0
\(981\) −143.730 + 197.827i −0.146514 + 0.201659i
\(982\) −94.9866 + 292.339i −0.0967277 + 0.297697i
\(983\) −114.160 351.348i −0.116134 0.357424i 0.876048 0.482224i \(-0.160171\pi\)
−0.992182 + 0.124800i \(0.960171\pi\)
\(984\) −1910.71 + 1388.21i −1.94178 + 1.41079i
\(985\) 0 0
\(986\) −163.209 + 53.0299i −0.165527 + 0.0537828i
\(987\) 398.222 + 129.390i 0.403467 + 0.131094i
\(988\) −221.074 160.620i −0.223759 0.162570i
\(989\) 1356.27i 1.37135i
\(990\) 0 0
\(991\) 393.721 0.397297 0.198648 0.980071i \(-0.436345\pi\)
0.198648 + 0.980071i \(0.436345\pi\)
\(992\) −746.318 + 1027.22i −0.752336 + 1.03550i
\(993\) 803.933 2474.25i 0.809600 2.49169i
\(994\) −121.603 374.254i −0.122337 0.376513i
\(995\) 0 0
\(996\) −180.451 248.369i −0.181176 0.249367i
\(997\) 840.247 273.013i 0.842775 0.273834i 0.144358 0.989525i \(-0.453888\pi\)
0.698417 + 0.715691i \(0.253888\pi\)
\(998\) 673.871 + 218.954i 0.675221 + 0.219393i
\(999\) 505.066 + 366.952i 0.505571 + 0.367319i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.x.b.51.1 4
5.2 odd 4 275.3.q.b.249.1 8
5.3 odd 4 275.3.q.b.249.2 8
5.4 even 2 275.3.x.c.51.1 yes 4
11.8 odd 10 inner 275.3.x.b.151.1 yes 4
55.8 even 20 275.3.q.b.74.1 8
55.19 odd 10 275.3.x.c.151.1 yes 4
55.52 even 20 275.3.q.b.74.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.q.b.74.1 8 55.8 even 20
275.3.q.b.74.2 8 55.52 even 20
275.3.q.b.249.1 8 5.2 odd 4
275.3.q.b.249.2 8 5.3 odd 4
275.3.x.b.51.1 4 1.1 even 1 trivial
275.3.x.b.151.1 yes 4 11.8 odd 10 inner
275.3.x.c.51.1 yes 4 5.4 even 2
275.3.x.c.151.1 yes 4 55.19 odd 10