Properties

Label 275.3.c.h.76.8
Level $275$
Weight $3$
Character 275.76
Analytic conductor $7.493$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,3,Mod(76,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.76"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 275.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.49320726991\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 21x^{6} + 130x^{4} + 215x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 76.8
Root \(3.27682i\) of defining polynomial
Character \(\chi\) \(=\) 275.76
Dual form 275.3.c.h.76.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.27682i q^{2} -1.25169 q^{3} -6.73752 q^{4} -4.10155i q^{6} +3.94258i q^{7} -8.97034i q^{8} -7.43328 q^{9} +(-6.83371 - 8.61977i) q^{11} +8.43328 q^{12} -6.61973i q^{13} -12.9191 q^{14} +2.44407 q^{16} -1.49050i q^{17} -24.3575i q^{18} -18.5757i q^{19} -4.93488i q^{21} +(28.2454 - 22.3928i) q^{22} +18.1115 q^{23} +11.2281i q^{24} +21.6916 q^{26} +20.5693 q^{27} -26.5632i q^{28} +24.3055i q^{29} -16.8211 q^{31} -27.8726i q^{32} +(8.55368 + 10.7893i) q^{33} +4.88410 q^{34} +50.0818 q^{36} -65.2003 q^{37} +60.8692 q^{38} +8.28584i q^{39} -67.5290i q^{41} +16.1707 q^{42} +65.6159i q^{43} +(46.0422 + 58.0759i) q^{44} +59.3480i q^{46} -81.4098 q^{47} -3.05921 q^{48} +33.4561 q^{49} +1.86564i q^{51} +44.6005i q^{52} +16.2112 q^{53} +67.4019i q^{54} +35.3663 q^{56} +23.2510i q^{57} -79.6445 q^{58} -75.7037 q^{59} -4.85215i q^{61} -55.1197i q^{62} -29.3063i q^{63} +101.110 q^{64} +(-35.3544 + 28.0288i) q^{66} -12.1006 q^{67} +10.0423i q^{68} -22.6699 q^{69} -79.6844 q^{71} +66.6790i q^{72} +42.6954i q^{73} -213.649i q^{74} +125.154i q^{76} +(33.9841 - 26.9424i) q^{77} -27.1512 q^{78} -77.6420i q^{79} +41.1531 q^{81} +221.280 q^{82} -37.1521i q^{83} +33.2489i q^{84} -215.011 q^{86} -30.4229i q^{87} +(-77.3223 + 61.3007i) q^{88} -102.707 q^{89} +26.0988 q^{91} -122.026 q^{92} +21.0548 q^{93} -266.765i q^{94} +34.8878i q^{96} -11.4069 q^{97} +109.629i q^{98} +(50.7968 + 64.0731i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 10 q^{4} + 32 q^{9} - q^{11} - 24 q^{12} + 18 q^{14} - 14 q^{16} - 35 q^{22} + 4 q^{23} + 68 q^{26} + 142 q^{27} - 42 q^{31} - 31 q^{33} - 142 q^{34} - 84 q^{36} - 104 q^{37} + 190 q^{38}+ \cdots + 368 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.27682i 1.63841i 0.573503 + 0.819204i \(0.305584\pi\)
−0.573503 + 0.819204i \(0.694416\pi\)
\(3\) −1.25169 −0.417230 −0.208615 0.977998i \(-0.566895\pi\)
−0.208615 + 0.977998i \(0.566895\pi\)
\(4\) −6.73752 −1.68438
\(5\) 0 0
\(6\) 4.10155i 0.683592i
\(7\) 3.94258i 0.563226i 0.959528 + 0.281613i \(0.0908694\pi\)
−0.959528 + 0.281613i \(0.909131\pi\)
\(8\) 8.97034i 1.12129i
\(9\) −7.43328 −0.825919
\(10\) 0 0
\(11\) −6.83371 8.61977i −0.621246 0.783616i
\(12\) 8.43328 0.702773
\(13\) 6.61973i 0.509210i −0.967045 0.254605i \(-0.918055\pi\)
0.967045 0.254605i \(-0.0819454\pi\)
\(14\) −12.9191 −0.922793
\(15\) 0 0
\(16\) 2.44407 0.152754
\(17\) 1.49050i 0.0876766i −0.999039 0.0438383i \(-0.986041\pi\)
0.999039 0.0438383i \(-0.0139586\pi\)
\(18\) 24.3575i 1.35319i
\(19\) 18.5757i 0.977669i −0.872377 0.488835i \(-0.837422\pi\)
0.872377 0.488835i \(-0.162578\pi\)
\(20\) 0 0
\(21\) 4.93488i 0.234994i
\(22\) 28.2454 22.3928i 1.28388 1.01785i
\(23\) 18.1115 0.787456 0.393728 0.919227i \(-0.371185\pi\)
0.393728 + 0.919227i \(0.371185\pi\)
\(24\) 11.2281i 0.467836i
\(25\) 0 0
\(26\) 21.6916 0.834293
\(27\) 20.5693 0.761828
\(28\) 26.5632i 0.948686i
\(29\) 24.3055i 0.838119i 0.907959 + 0.419060i \(0.137640\pi\)
−0.907959 + 0.419060i \(0.862360\pi\)
\(30\) 0 0
\(31\) −16.8211 −0.542617 −0.271309 0.962492i \(-0.587456\pi\)
−0.271309 + 0.962492i \(0.587456\pi\)
\(32\) 27.8726i 0.871018i
\(33\) 8.55368 + 10.7893i 0.259202 + 0.326948i
\(34\) 4.88410 0.143650
\(35\) 0 0
\(36\) 50.0818 1.39116
\(37\) −65.2003 −1.76217 −0.881086 0.472957i \(-0.843187\pi\)
−0.881086 + 0.472957i \(0.843187\pi\)
\(38\) 60.8692 1.60182
\(39\) 8.28584i 0.212457i
\(40\) 0 0
\(41\) 67.5290i 1.64705i −0.567282 0.823524i \(-0.692005\pi\)
0.567282 0.823524i \(-0.307995\pi\)
\(42\) 16.1707 0.385017
\(43\) 65.6159i 1.52595i 0.646427 + 0.762976i \(0.276263\pi\)
−0.646427 + 0.762976i \(0.723737\pi\)
\(44\) 46.0422 + 58.0759i 1.04641 + 1.31991i
\(45\) 0 0
\(46\) 59.3480i 1.29017i
\(47\) −81.4098 −1.73212 −0.866062 0.499937i \(-0.833356\pi\)
−0.866062 + 0.499937i \(0.833356\pi\)
\(48\) −3.05921 −0.0637336
\(49\) 33.4561 0.682777
\(50\) 0 0
\(51\) 1.86564i 0.0365813i
\(52\) 44.6005i 0.857703i
\(53\) 16.2112 0.305872 0.152936 0.988236i \(-0.451127\pi\)
0.152936 + 0.988236i \(0.451127\pi\)
\(54\) 67.4019i 1.24818i
\(55\) 0 0
\(56\) 35.3663 0.631540
\(57\) 23.2510i 0.407912i
\(58\) −79.6445 −1.37318
\(59\) −75.7037 −1.28311 −0.641557 0.767075i \(-0.721711\pi\)
−0.641557 + 0.767075i \(0.721711\pi\)
\(60\) 0 0
\(61\) 4.85215i 0.0795434i −0.999209 0.0397717i \(-0.987337\pi\)
0.999209 0.0397717i \(-0.0126631\pi\)
\(62\) 55.1197i 0.889028i
\(63\) 29.3063i 0.465179i
\(64\) 101.110 1.57984
\(65\) 0 0
\(66\) −35.3544 + 28.0288i −0.535673 + 0.424679i
\(67\) −12.1006 −0.180606 −0.0903029 0.995914i \(-0.528784\pi\)
−0.0903029 + 0.995914i \(0.528784\pi\)
\(68\) 10.0423i 0.147681i
\(69\) −22.6699 −0.328550
\(70\) 0 0
\(71\) −79.6844 −1.12232 −0.561158 0.827709i \(-0.689644\pi\)
−0.561158 + 0.827709i \(0.689644\pi\)
\(72\) 66.6790i 0.926097i
\(73\) 42.6954i 0.584869i 0.956286 + 0.292434i \(0.0944653\pi\)
−0.956286 + 0.292434i \(0.905535\pi\)
\(74\) 213.649i 2.88715i
\(75\) 0 0
\(76\) 125.154i 1.64677i
\(77\) 33.9841 26.9424i 0.441352 0.349902i
\(78\) −27.1512 −0.348092
\(79\) 77.6420i 0.982810i −0.870931 0.491405i \(-0.836484\pi\)
0.870931 0.491405i \(-0.163516\pi\)
\(80\) 0 0
\(81\) 41.1531 0.508062
\(82\) 221.280 2.69854
\(83\) 37.1521i 0.447616i −0.974633 0.223808i \(-0.928151\pi\)
0.974633 0.223808i \(-0.0718488\pi\)
\(84\) 33.2489i 0.395820i
\(85\) 0 0
\(86\) −215.011 −2.50013
\(87\) 30.4229i 0.349688i
\(88\) −77.3223 + 61.3007i −0.878662 + 0.696598i
\(89\) −102.707 −1.15401 −0.577006 0.816740i \(-0.695779\pi\)
−0.577006 + 0.816740i \(0.695779\pi\)
\(90\) 0 0
\(91\) 26.0988 0.286800
\(92\) −122.026 −1.32637
\(93\) 21.0548 0.226396
\(94\) 266.765i 2.83792i
\(95\) 0 0
\(96\) 34.8878i 0.363415i
\(97\) −11.4069 −0.117597 −0.0587985 0.998270i \(-0.518727\pi\)
−0.0587985 + 0.998270i \(0.518727\pi\)
\(98\) 109.629i 1.11867i
\(99\) 50.7968 + 64.0731i 0.513099 + 0.647203i
\(100\) 0 0
\(101\) 156.659i 1.55108i −0.631301 0.775538i \(-0.717479\pi\)
0.631301 0.775538i \(-0.282521\pi\)
\(102\) −6.11337 −0.0599350
\(103\) −105.744 −1.02664 −0.513322 0.858196i \(-0.671585\pi\)
−0.513322 + 0.858196i \(0.671585\pi\)
\(104\) −59.3812 −0.570973
\(105\) 0 0
\(106\) 53.1212i 0.501143i
\(107\) 192.014i 1.79453i 0.441497 + 0.897263i \(0.354448\pi\)
−0.441497 + 0.897263i \(0.645552\pi\)
\(108\) −138.586 −1.28321
\(109\) 162.478i 1.49062i 0.666716 + 0.745312i \(0.267699\pi\)
−0.666716 + 0.745312i \(0.732301\pi\)
\(110\) 0 0
\(111\) 81.6105 0.735230
\(112\) 9.63594i 0.0860351i
\(113\) −75.5761 −0.668815 −0.334408 0.942429i \(-0.608536\pi\)
−0.334408 + 0.942429i \(0.608536\pi\)
\(114\) −76.1893 −0.668327
\(115\) 0 0
\(116\) 163.758i 1.41171i
\(117\) 49.2063i 0.420566i
\(118\) 248.067i 2.10226i
\(119\) 5.87642 0.0493817
\(120\) 0 0
\(121\) −27.6009 + 117.810i −0.228107 + 0.973636i
\(122\) 15.8996 0.130325
\(123\) 84.5252i 0.687197i
\(124\) 113.333 0.913973
\(125\) 0 0
\(126\) 96.0312 0.762153
\(127\) 125.050i 0.984647i 0.870412 + 0.492323i \(0.163852\pi\)
−0.870412 + 0.492323i \(0.836148\pi\)
\(128\) 219.827i 1.71740i
\(129\) 82.1307i 0.636672i
\(130\) 0 0
\(131\) 10.1412i 0.0774136i 0.999251 + 0.0387068i \(0.0123238\pi\)
−0.999251 + 0.0387068i \(0.987676\pi\)
\(132\) −57.6305 72.6929i −0.436595 0.550704i
\(133\) 73.2362 0.550648
\(134\) 39.6514i 0.295906i
\(135\) 0 0
\(136\) −13.3703 −0.0983111
\(137\) −70.4327 −0.514107 −0.257054 0.966397i \(-0.582752\pi\)
−0.257054 + 0.966397i \(0.582752\pi\)
\(138\) 74.2852i 0.538299i
\(139\) 203.327i 1.46279i 0.681957 + 0.731393i \(0.261129\pi\)
−0.681957 + 0.731393i \(0.738871\pi\)
\(140\) 0 0
\(141\) 101.900 0.722693
\(142\) 261.111i 1.83881i
\(143\) −57.0605 + 45.2373i −0.399025 + 0.316345i
\(144\) −18.1674 −0.126163
\(145\) 0 0
\(146\) −139.905 −0.958253
\(147\) −41.8766 −0.284875
\(148\) 439.288 2.96816
\(149\) 98.2512i 0.659404i −0.944085 0.329702i \(-0.893052\pi\)
0.944085 0.329702i \(-0.106948\pi\)
\(150\) 0 0
\(151\) 2.04381i 0.0135351i −0.999977 0.00676757i \(-0.997846\pi\)
0.999977 0.00676757i \(-0.00215420\pi\)
\(152\) −166.630 −1.09625
\(153\) 11.0793i 0.0724138i
\(154\) 88.2854 + 111.360i 0.573282 + 0.723115i
\(155\) 0 0
\(156\) 55.8260i 0.357859i
\(157\) 160.316 1.02112 0.510561 0.859841i \(-0.329438\pi\)
0.510561 + 0.859841i \(0.329438\pi\)
\(158\) 254.418 1.61024
\(159\) −20.2914 −0.127619
\(160\) 0 0
\(161\) 71.4060i 0.443515i
\(162\) 134.851i 0.832413i
\(163\) −59.3198 −0.363925 −0.181962 0.983305i \(-0.558245\pi\)
−0.181962 + 0.983305i \(0.558245\pi\)
\(164\) 454.977i 2.77425i
\(165\) 0 0
\(166\) 121.741 0.733377
\(167\) 149.432i 0.894800i −0.894334 0.447400i \(-0.852350\pi\)
0.894334 0.447400i \(-0.147650\pi\)
\(168\) −44.2676 −0.263497
\(169\) 125.179 0.740705
\(170\) 0 0
\(171\) 138.078i 0.807476i
\(172\) 442.089i 2.57028i
\(173\) 71.7530i 0.414757i −0.978261 0.207379i \(-0.933507\pi\)
0.978261 0.207379i \(-0.0664932\pi\)
\(174\) 99.6901 0.572932
\(175\) 0 0
\(176\) −16.7021 21.0673i −0.0948980 0.119701i
\(177\) 94.7575 0.535353
\(178\) 336.552i 1.89074i
\(179\) 143.137 0.799647 0.399824 0.916592i \(-0.369071\pi\)
0.399824 + 0.916592i \(0.369071\pi\)
\(180\) 0 0
\(181\) 305.844 1.68974 0.844872 0.534968i \(-0.179676\pi\)
0.844872 + 0.534968i \(0.179676\pi\)
\(182\) 85.5210i 0.469895i
\(183\) 6.07338i 0.0331879i
\(184\) 162.466i 0.882968i
\(185\) 0 0
\(186\) 68.9928i 0.370929i
\(187\) −12.8478 + 10.1857i −0.0687047 + 0.0544687i
\(188\) 548.500 2.91755
\(189\) 81.0963i 0.429081i
\(190\) 0 0
\(191\) −1.64065 −0.00858982 −0.00429491 0.999991i \(-0.501367\pi\)
−0.00429491 + 0.999991i \(0.501367\pi\)
\(192\) −126.558 −0.659155
\(193\) 287.478i 1.48952i −0.667330 0.744762i \(-0.732563\pi\)
0.667330 0.744762i \(-0.267437\pi\)
\(194\) 37.3784i 0.192672i
\(195\) 0 0
\(196\) −225.411 −1.15006
\(197\) 109.774i 0.557227i −0.960403 0.278614i \(-0.910125\pi\)
0.960403 0.278614i \(-0.0898749\pi\)
\(198\) −209.956 + 166.452i −1.06038 + 0.840666i
\(199\) 38.8559 0.195256 0.0976279 0.995223i \(-0.468874\pi\)
0.0976279 + 0.995223i \(0.468874\pi\)
\(200\) 0 0
\(201\) 15.1462 0.0753541
\(202\) 513.341 2.54129
\(203\) −95.8262 −0.472050
\(204\) 12.5698i 0.0616167i
\(205\) 0 0
\(206\) 346.504i 1.68206i
\(207\) −134.628 −0.650375
\(208\) 16.1791i 0.0777840i
\(209\) −160.118 + 126.941i −0.766117 + 0.607373i
\(210\) 0 0
\(211\) 89.4659i 0.424009i 0.977269 + 0.212005i \(0.0679992\pi\)
−0.977269 + 0.212005i \(0.932001\pi\)
\(212\) −109.223 −0.515205
\(213\) 99.7400 0.468263
\(214\) −629.195 −2.94016
\(215\) 0 0
\(216\) 184.514i 0.854231i
\(217\) 66.3186i 0.305616i
\(218\) −532.410 −2.44225
\(219\) 53.4414i 0.244025i
\(220\) 0 0
\(221\) −9.86672 −0.0446458
\(222\) 267.423i 1.20461i
\(223\) 189.941 0.851752 0.425876 0.904782i \(-0.359966\pi\)
0.425876 + 0.904782i \(0.359966\pi\)
\(224\) 109.890 0.490580
\(225\) 0 0
\(226\) 247.649i 1.09579i
\(227\) 344.741i 1.51868i 0.650691 + 0.759342i \(0.274479\pi\)
−0.650691 + 0.759342i \(0.725521\pi\)
\(228\) 156.654i 0.687079i
\(229\) −114.108 −0.498288 −0.249144 0.968466i \(-0.580149\pi\)
−0.249144 + 0.968466i \(0.580149\pi\)
\(230\) 0 0
\(231\) −42.5376 + 33.7235i −0.184145 + 0.145989i
\(232\) 218.028 0.939777
\(233\) 16.9887i 0.0729129i −0.999335 0.0364565i \(-0.988393\pi\)
0.999335 0.0364565i \(-0.0116070\pi\)
\(234\) −161.240 −0.689059
\(235\) 0 0
\(236\) 510.055 2.16125
\(237\) 97.1836i 0.410057i
\(238\) 19.2559i 0.0809074i
\(239\) 212.744i 0.890144i −0.895495 0.445072i \(-0.853178\pi\)
0.895495 0.445072i \(-0.146822\pi\)
\(240\) 0 0
\(241\) 362.416i 1.50380i −0.659277 0.751900i \(-0.729138\pi\)
0.659277 0.751900i \(-0.270862\pi\)
\(242\) −386.042 90.4430i −1.59521 0.373731i
\(243\) −236.635 −0.973806
\(244\) 32.6914i 0.133981i
\(245\) 0 0
\(246\) −276.974 −1.12591
\(247\) −122.966 −0.497839
\(248\) 150.891i 0.608432i
\(249\) 46.5029i 0.186759i
\(250\) 0 0
\(251\) 50.5799 0.201514 0.100757 0.994911i \(-0.467874\pi\)
0.100757 + 0.994911i \(0.467874\pi\)
\(252\) 197.452i 0.783538i
\(253\) −123.769 156.117i −0.489204 0.617063i
\(254\) −409.766 −1.61325
\(255\) 0 0
\(256\) −315.894 −1.23396
\(257\) 429.305 1.67045 0.835224 0.549910i \(-0.185338\pi\)
0.835224 + 0.549910i \(0.185338\pi\)
\(258\) 269.127 1.04313
\(259\) 257.058i 0.992500i
\(260\) 0 0
\(261\) 180.669i 0.692219i
\(262\) −33.2308 −0.126835
\(263\) 157.886i 0.600329i 0.953888 + 0.300164i \(0.0970415\pi\)
−0.953888 + 0.300164i \(0.902958\pi\)
\(264\) 96.7834 76.7294i 0.366604 0.290641i
\(265\) 0 0
\(266\) 239.982i 0.902186i
\(267\) 128.557 0.481488
\(268\) 81.5280 0.304209
\(269\) −213.381 −0.793237 −0.396618 0.917984i \(-0.629816\pi\)
−0.396618 + 0.917984i \(0.629816\pi\)
\(270\) 0 0
\(271\) 466.412i 1.72108i 0.509384 + 0.860540i \(0.329873\pi\)
−0.509384 + 0.860540i \(0.670127\pi\)
\(272\) 3.64289i 0.0133930i
\(273\) −32.6676 −0.119661
\(274\) 230.795i 0.842317i
\(275\) 0 0
\(276\) 152.739 0.553403
\(277\) 66.3436i 0.239508i −0.992804 0.119754i \(-0.961789\pi\)
0.992804 0.119754i \(-0.0382105\pi\)
\(278\) −666.265 −2.39664
\(279\) 125.036 0.448158
\(280\) 0 0
\(281\) 240.196i 0.854791i 0.904065 + 0.427396i \(0.140569\pi\)
−0.904065 + 0.427396i \(0.859431\pi\)
\(282\) 333.907i 1.18407i
\(283\) 270.527i 0.955924i 0.878380 + 0.477962i \(0.158624\pi\)
−0.878380 + 0.477962i \(0.841376\pi\)
\(284\) 536.875 1.89040
\(285\) 0 0
\(286\) −148.234 186.977i −0.518301 0.653765i
\(287\) 266.238 0.927659
\(288\) 207.185i 0.719391i
\(289\) 286.778 0.992313
\(290\) 0 0
\(291\) 14.2779 0.0490650
\(292\) 287.661i 0.985141i
\(293\) 543.407i 1.85463i −0.374282 0.927315i \(-0.622111\pi\)
0.374282 0.927315i \(-0.377889\pi\)
\(294\) 137.222i 0.466741i
\(295\) 0 0
\(296\) 584.869i 1.97591i
\(297\) −140.565 177.303i −0.473282 0.596980i
\(298\) 321.951 1.08037
\(299\) 119.893i 0.400980i
\(300\) 0 0
\(301\) −258.696 −0.859455
\(302\) 6.69718 0.0221761
\(303\) 196.088i 0.647154i
\(304\) 45.4003i 0.149343i
\(305\) 0 0
\(306\) −36.3049 −0.118643
\(307\) 314.156i 1.02331i −0.859191 0.511654i \(-0.829033\pi\)
0.859191 0.511654i \(-0.170967\pi\)
\(308\) −228.969 + 181.525i −0.743405 + 0.589367i
\(309\) 132.359 0.428346
\(310\) 0 0
\(311\) −374.834 −1.20525 −0.602627 0.798023i \(-0.705879\pi\)
−0.602627 + 0.798023i \(0.705879\pi\)
\(312\) 74.3268 0.238227
\(313\) 206.435 0.659538 0.329769 0.944062i \(-0.393029\pi\)
0.329769 + 0.944062i \(0.393029\pi\)
\(314\) 525.327i 1.67301i
\(315\) 0 0
\(316\) 523.114i 1.65542i
\(317\) −273.867 −0.863935 −0.431968 0.901889i \(-0.642181\pi\)
−0.431968 + 0.901889i \(0.642181\pi\)
\(318\) 66.4912i 0.209092i
\(319\) 209.508 166.096i 0.656763 0.520678i
\(320\) 0 0
\(321\) 240.342i 0.748729i
\(322\) −233.984 −0.726659
\(323\) −27.6871 −0.0857187
\(324\) −277.269 −0.855770
\(325\) 0 0
\(326\) 194.380i 0.596257i
\(327\) 203.372i 0.621932i
\(328\) −605.758 −1.84682
\(329\) 320.965i 0.975576i
\(330\) 0 0
\(331\) −441.950 −1.33520 −0.667598 0.744522i \(-0.732677\pi\)
−0.667598 + 0.744522i \(0.732677\pi\)
\(332\) 250.313i 0.753955i
\(333\) 484.652 1.45541
\(334\) 489.660 1.46605
\(335\) 0 0
\(336\) 12.0612i 0.0358964i
\(337\) 130.963i 0.388613i −0.980941 0.194307i \(-0.937754\pi\)
0.980941 0.194307i \(-0.0622457\pi\)
\(338\) 410.189i 1.21358i
\(339\) 94.5978 0.279049
\(340\) 0 0
\(341\) 114.951 + 144.994i 0.337099 + 0.425203i
\(342\) −452.457 −1.32297
\(343\) 325.090i 0.947783i
\(344\) 588.597 1.71104
\(345\) 0 0
\(346\) 235.121 0.679541
\(347\) 188.943i 0.544503i −0.962226 0.272251i \(-0.912232\pi\)
0.962226 0.272251i \(-0.0877683\pi\)
\(348\) 204.975i 0.589008i
\(349\) 500.080i 1.43289i 0.697642 + 0.716446i \(0.254233\pi\)
−0.697642 + 0.716446i \(0.745767\pi\)
\(350\) 0 0
\(351\) 136.163i 0.387930i
\(352\) −240.255 + 190.473i −0.682544 + 0.541117i
\(353\) 414.398 1.17393 0.586966 0.809611i \(-0.300322\pi\)
0.586966 + 0.809611i \(0.300322\pi\)
\(354\) 310.503i 0.877127i
\(355\) 0 0
\(356\) 691.991 1.94379
\(357\) −7.35545 −0.0206035
\(358\) 469.033i 1.31015i
\(359\) 212.272i 0.591288i −0.955298 0.295644i \(-0.904466\pi\)
0.955298 0.295644i \(-0.0955342\pi\)
\(360\) 0 0
\(361\) 15.9429 0.0441633
\(362\) 1002.19i 2.76849i
\(363\) 34.5477 147.461i 0.0951728 0.406230i
\(364\) −175.841 −0.483080
\(365\) 0 0
\(366\) −19.9013 −0.0543753
\(367\) −460.146 −1.25380 −0.626902 0.779098i \(-0.715677\pi\)
−0.626902 + 0.779098i \(0.715677\pi\)
\(368\) 44.2657 0.120287
\(369\) 501.961i 1.36033i
\(370\) 0 0
\(371\) 63.9141i 0.172275i
\(372\) −141.857 −0.381337
\(373\) 483.099i 1.29517i 0.761992 + 0.647586i \(0.224221\pi\)
−0.761992 + 0.647586i \(0.775779\pi\)
\(374\) −33.3765 42.0998i −0.0892420 0.112566i
\(375\) 0 0
\(376\) 730.273i 1.94222i
\(377\) 160.896 0.426779
\(378\) −265.738 −0.703009
\(379\) 262.073 0.691486 0.345743 0.938329i \(-0.387627\pi\)
0.345743 + 0.938329i \(0.387627\pi\)
\(380\) 0 0
\(381\) 156.524i 0.410824i
\(382\) 5.37612i 0.0140736i
\(383\) −326.405 −0.852233 −0.426116 0.904668i \(-0.640119\pi\)
−0.426116 + 0.904668i \(0.640119\pi\)
\(384\) 275.155i 0.716550i
\(385\) 0 0
\(386\) 942.013 2.44045
\(387\) 487.741i 1.26031i
\(388\) 76.8543 0.198078
\(389\) −647.719 −1.66509 −0.832544 0.553960i \(-0.813116\pi\)
−0.832544 + 0.553960i \(0.813116\pi\)
\(390\) 0 0
\(391\) 26.9952i 0.0690414i
\(392\) 300.112i 0.765592i
\(393\) 12.6936i 0.0322992i
\(394\) 359.708 0.912965
\(395\) 0 0
\(396\) −342.244 431.694i −0.864254 1.09014i
\(397\) −122.651 −0.308946 −0.154473 0.987997i \(-0.549368\pi\)
−0.154473 + 0.987997i \(0.549368\pi\)
\(398\) 127.324i 0.319909i
\(399\) −91.6690 −0.229747
\(400\) 0 0
\(401\) −243.279 −0.606680 −0.303340 0.952882i \(-0.598102\pi\)
−0.303340 + 0.952882i \(0.598102\pi\)
\(402\) 49.6312i 0.123461i
\(403\) 111.351i 0.276306i
\(404\) 1055.49i 2.61260i
\(405\) 0 0
\(406\) 314.005i 0.773411i
\(407\) 445.560 + 562.012i 1.09474 + 1.38086i
\(408\) 16.7355 0.0410183
\(409\) 424.434i 1.03774i −0.854854 0.518868i \(-0.826353\pi\)
0.854854 0.518868i \(-0.173647\pi\)
\(410\) 0 0
\(411\) 88.1598 0.214501
\(412\) 712.454 1.72926
\(413\) 298.468i 0.722683i
\(414\) 441.150i 1.06558i
\(415\) 0 0
\(416\) −184.509 −0.443531
\(417\) 254.502i 0.610317i
\(418\) −415.962 524.678i −0.995125 1.25521i
\(419\) −68.6588 −0.163864 −0.0819318 0.996638i \(-0.526109\pi\)
−0.0819318 + 0.996638i \(0.526109\pi\)
\(420\) 0 0
\(421\) −78.1961 −0.185739 −0.0928694 0.995678i \(-0.529604\pi\)
−0.0928694 + 0.995678i \(0.529604\pi\)
\(422\) −293.163 −0.694700
\(423\) 605.141 1.43059
\(424\) 145.420i 0.342972i
\(425\) 0 0
\(426\) 326.830i 0.767206i
\(427\) 19.1300 0.0448009
\(428\) 1293.70i 3.02266i
\(429\) 71.4220 56.6230i 0.166485 0.131988i
\(430\) 0 0
\(431\) 592.143i 1.37388i −0.726714 0.686940i \(-0.758953\pi\)
0.726714 0.686940i \(-0.241047\pi\)
\(432\) 50.2729 0.116372
\(433\) 92.7053 0.214100 0.107050 0.994254i \(-0.465860\pi\)
0.107050 + 0.994254i \(0.465860\pi\)
\(434\) 217.314 0.500723
\(435\) 0 0
\(436\) 1094.70i 2.51078i
\(437\) 336.434i 0.769871i
\(438\) 175.118 0.399812
\(439\) 745.450i 1.69806i −0.528342 0.849031i \(-0.677186\pi\)
0.528342 0.849031i \(-0.322814\pi\)
\(440\) 0 0
\(441\) −248.688 −0.563919
\(442\) 32.3314i 0.0731480i
\(443\) −583.895 −1.31805 −0.659023 0.752123i \(-0.729030\pi\)
−0.659023 + 0.752123i \(0.729030\pi\)
\(444\) −549.852 −1.23841
\(445\) 0 0
\(446\) 622.401i 1.39552i
\(447\) 122.980i 0.275123i
\(448\) 398.633i 0.889805i
\(449\) −344.083 −0.766332 −0.383166 0.923679i \(-0.625166\pi\)
−0.383166 + 0.923679i \(0.625166\pi\)
\(450\) 0 0
\(451\) −582.084 + 461.473i −1.29065 + 1.02322i
\(452\) 509.195 1.12654
\(453\) 2.55821i 0.00564726i
\(454\) −1129.65 −2.48822
\(455\) 0 0
\(456\) 208.569 0.457389
\(457\) 409.596i 0.896272i −0.893965 0.448136i \(-0.852088\pi\)
0.893965 0.448136i \(-0.147912\pi\)
\(458\) 373.910i 0.816398i
\(459\) 30.6587i 0.0667945i
\(460\) 0 0
\(461\) 599.882i 1.30126i −0.759394 0.650632i \(-0.774504\pi\)
0.759394 0.650632i \(-0.225496\pi\)
\(462\) −110.506 139.388i −0.239190 0.301705i
\(463\) −497.936 −1.07546 −0.537728 0.843119i \(-0.680717\pi\)
−0.537728 + 0.843119i \(0.680717\pi\)
\(464\) 59.4042i 0.128026i
\(465\) 0 0
\(466\) 55.6689 0.119461
\(467\) 440.806 0.943909 0.471955 0.881623i \(-0.343549\pi\)
0.471955 + 0.881623i \(0.343549\pi\)
\(468\) 331.528i 0.708393i
\(469\) 47.7076i 0.101722i
\(470\) 0 0
\(471\) −200.666 −0.426043
\(472\) 679.088i 1.43875i
\(473\) 565.594 448.400i 1.19576 0.947992i
\(474\) −318.453 −0.671841
\(475\) 0 0
\(476\) −39.5925 −0.0831775
\(477\) −120.503 −0.252626
\(478\) 697.124 1.45842
\(479\) 521.375i 1.08847i 0.838934 + 0.544233i \(0.183179\pi\)
−0.838934 + 0.544233i \(0.816821\pi\)
\(480\) 0 0
\(481\) 431.609i 0.897315i
\(482\) 1187.57 2.46384
\(483\) 89.3780i 0.185048i
\(484\) 185.961 793.747i 0.384218 1.63997i
\(485\) 0 0
\(486\) 775.409i 1.59549i
\(487\) −158.630 −0.325728 −0.162864 0.986648i \(-0.552073\pi\)
−0.162864 + 0.986648i \(0.552073\pi\)
\(488\) −43.5254 −0.0891914
\(489\) 74.2499 0.151840
\(490\) 0 0
\(491\) 558.903i 1.13829i 0.822236 + 0.569147i \(0.192727\pi\)
−0.822236 + 0.569147i \(0.807273\pi\)
\(492\) 569.490i 1.15750i
\(493\) 36.2273 0.0734834
\(494\) 402.937i 0.815663i
\(495\) 0 0
\(496\) −41.1120 −0.0828871
\(497\) 314.162i 0.632117i
\(498\) −152.381 −0.305987
\(499\) −297.691 −0.596575 −0.298288 0.954476i \(-0.596415\pi\)
−0.298288 + 0.954476i \(0.596415\pi\)
\(500\) 0 0
\(501\) 187.042i 0.373337i
\(502\) 165.741i 0.330161i
\(503\) 169.632i 0.337241i −0.985681 0.168620i \(-0.946069\pi\)
0.985681 0.168620i \(-0.0539312\pi\)
\(504\) −262.887 −0.521602
\(505\) 0 0
\(506\) 511.566 405.567i 1.01100 0.801515i
\(507\) −156.685 −0.309044
\(508\) 842.527i 1.65852i
\(509\) 473.225 0.929715 0.464858 0.885385i \(-0.346106\pi\)
0.464858 + 0.885385i \(0.346106\pi\)
\(510\) 0 0
\(511\) −168.330 −0.329413
\(512\) 155.819i 0.304334i
\(513\) 382.090i 0.744815i
\(514\) 1406.75i 2.73687i
\(515\) 0 0
\(516\) 553.357i 1.07240i
\(517\) 556.331 + 701.734i 1.07607 + 1.35732i
\(518\) 842.330 1.62612
\(519\) 89.8124i 0.173049i
\(520\) 0 0
\(521\) 974.599 1.87063 0.935316 0.353813i \(-0.115115\pi\)
0.935316 + 0.353813i \(0.115115\pi\)
\(522\) 592.020 1.13414
\(523\) 628.934i 1.20255i 0.799042 + 0.601275i \(0.205340\pi\)
−0.799042 + 0.601275i \(0.794660\pi\)
\(524\) 68.3264i 0.130394i
\(525\) 0 0
\(526\) −517.365 −0.983583
\(527\) 25.0719i 0.0475748i
\(528\) 20.9058 + 26.3697i 0.0395943 + 0.0499427i
\(529\) −200.974 −0.379913
\(530\) 0 0
\(531\) 562.727 1.05975
\(532\) −493.430 −0.927500
\(533\) −447.023 −0.838693
\(534\) 421.259i 0.788874i
\(535\) 0 0
\(536\) 108.546i 0.202512i
\(537\) −179.163 −0.333637
\(538\) 699.209i 1.29964i
\(539\) −228.629 288.384i −0.424173 0.535035i
\(540\) 0 0
\(541\) 5.72311i 0.0105788i −0.999986 0.00528938i \(-0.998316\pi\)
0.999986 0.00528938i \(-0.00168367\pi\)
\(542\) −1528.35 −2.81983
\(543\) −382.821 −0.705011
\(544\) −41.5441 −0.0763679
\(545\) 0 0
\(546\) 107.046i 0.196054i
\(547\) 167.284i 0.305820i −0.988240 0.152910i \(-0.951136\pi\)
0.988240 0.152910i \(-0.0488645\pi\)
\(548\) 474.541 0.865952
\(549\) 36.0674i 0.0656965i
\(550\) 0 0
\(551\) 451.491 0.819403
\(552\) 203.357i 0.368400i
\(553\) 306.110 0.553544
\(554\) 217.396 0.392411
\(555\) 0 0
\(556\) 1369.92i 2.46389i
\(557\) 458.071i 0.822390i 0.911548 + 0.411195i \(0.134888\pi\)
−0.911548 + 0.411195i \(0.865112\pi\)
\(558\) 409.720i 0.734265i
\(559\) 434.360 0.777030
\(560\) 0 0
\(561\) 16.0814 12.7493i 0.0286656 0.0227260i
\(562\) −787.079 −1.40050
\(563\) 570.622i 1.01354i 0.862082 + 0.506769i \(0.169160\pi\)
−0.862082 + 0.506769i \(0.830840\pi\)
\(564\) −686.551 −1.21729
\(565\) 0 0
\(566\) −886.465 −1.56619
\(567\) 162.249i 0.286154i
\(568\) 714.796i 1.25844i
\(569\) 399.293i 0.701745i 0.936423 + 0.350873i \(0.114115\pi\)
−0.936423 + 0.350873i \(0.885885\pi\)
\(570\) 0 0
\(571\) 1048.75i 1.83668i −0.395790 0.918341i \(-0.629529\pi\)
0.395790 0.918341i \(-0.370471\pi\)
\(572\) 384.446 304.787i 0.672109 0.532844i
\(573\) 2.05359 0.00358393
\(574\) 872.414i 1.51988i
\(575\) 0 0
\(576\) −751.575 −1.30482
\(577\) −65.8975 −0.114207 −0.0571036 0.998368i \(-0.518187\pi\)
−0.0571036 + 0.998368i \(0.518187\pi\)
\(578\) 939.720i 1.62581i
\(579\) 359.833i 0.621474i
\(580\) 0 0
\(581\) 146.475 0.252109
\(582\) 46.7861i 0.0803884i
\(583\) −110.783 139.737i −0.190022 0.239686i
\(584\) 382.992 0.655809
\(585\) 0 0
\(586\) 1780.64 3.03864
\(587\) −971.299 −1.65468 −0.827342 0.561699i \(-0.810148\pi\)
−0.827342 + 0.561699i \(0.810148\pi\)
\(588\) 282.144 0.479837
\(589\) 312.464i 0.530500i
\(590\) 0 0
\(591\) 137.403i 0.232492i
\(592\) −159.354 −0.269179
\(593\) 381.457i 0.643266i −0.946864 0.321633i \(-0.895768\pi\)
0.946864 0.321633i \(-0.104232\pi\)
\(594\) 580.989 460.605i 0.978096 0.775430i
\(595\) 0 0
\(596\) 661.969i 1.11069i
\(597\) −48.6355 −0.0814665
\(598\) 392.868 0.656969
\(599\) 372.420 0.621737 0.310869 0.950453i \(-0.399380\pi\)
0.310869 + 0.950453i \(0.399380\pi\)
\(600\) 0 0
\(601\) 941.497i 1.56655i 0.621674 + 0.783276i \(0.286453\pi\)
−0.621674 + 0.783276i \(0.713547\pi\)
\(602\) 847.699i 1.40814i
\(603\) 89.9471 0.149166
\(604\) 13.7702i 0.0227983i
\(605\) 0 0
\(606\) −642.543 −1.06030
\(607\) 803.140i 1.32313i 0.749888 + 0.661565i \(0.230107\pi\)
−0.749888 + 0.661565i \(0.769893\pi\)
\(608\) −517.753 −0.851568
\(609\) 119.945 0.196953
\(610\) 0 0
\(611\) 538.911i 0.882014i
\(612\) 74.6471i 0.121972i
\(613\) 438.888i 0.715968i 0.933728 + 0.357984i \(0.116536\pi\)
−0.933728 + 0.357984i \(0.883464\pi\)
\(614\) 1029.43 1.67660
\(615\) 0 0
\(616\) −241.683 304.849i −0.392342 0.494885i
\(617\) 1053.80 1.70795 0.853973 0.520317i \(-0.174186\pi\)
0.853973 + 0.520317i \(0.174186\pi\)
\(618\) 433.716i 0.701805i
\(619\) 113.476 0.183322 0.0916608 0.995790i \(-0.470782\pi\)
0.0916608 + 0.995790i \(0.470782\pi\)
\(620\) 0 0
\(621\) 372.541 0.599906
\(622\) 1228.26i 1.97470i
\(623\) 404.931i 0.649969i
\(624\) 20.2512i 0.0324538i
\(625\) 0 0
\(626\) 676.451i 1.08059i
\(627\) 200.418 158.891i 0.319647 0.253414i
\(628\) −1080.13 −1.71996
\(629\) 97.1812i 0.154501i
\(630\) 0 0
\(631\) 405.042 0.641905 0.320952 0.947095i \(-0.395997\pi\)
0.320952 + 0.947095i \(0.395997\pi\)
\(632\) −696.475 −1.10202
\(633\) 111.984i 0.176909i
\(634\) 897.413i 1.41548i
\(635\) 0 0
\(636\) 136.714 0.214959
\(637\) 221.470i 0.347677i
\(638\) 544.267 + 686.517i 0.853083 + 1.07605i
\(639\) 592.316 0.926942
\(640\) 0 0
\(641\) −836.111 −1.30439 −0.652193 0.758053i \(-0.726151\pi\)
−0.652193 + 0.758053i \(0.726151\pi\)
\(642\) 787.557 1.22672
\(643\) −466.764 −0.725917 −0.362958 0.931805i \(-0.618233\pi\)
−0.362958 + 0.931805i \(0.618233\pi\)
\(644\) 481.099i 0.747048i
\(645\) 0 0
\(646\) 90.7256i 0.140442i
\(647\) −400.219 −0.618577 −0.309289 0.950968i \(-0.600091\pi\)
−0.309289 + 0.950968i \(0.600091\pi\)
\(648\) 369.157i 0.569686i
\(649\) 517.337 + 652.549i 0.797130 + 1.00547i
\(650\) 0 0
\(651\) 83.0103i 0.127512i
\(652\) 399.668 0.612988
\(653\) 105.848 0.162096 0.0810478 0.996710i \(-0.474173\pi\)
0.0810478 + 0.996710i \(0.474173\pi\)
\(654\) 666.412 1.01898
\(655\) 0 0
\(656\) 165.045i 0.251594i
\(657\) 317.367i 0.483055i
\(658\) 1051.74 1.59839
\(659\) 491.956i 0.746519i −0.927727 0.373260i \(-0.878240\pi\)
0.927727 0.373260i \(-0.121760\pi\)
\(660\) 0 0
\(661\) 407.084 0.615861 0.307931 0.951409i \(-0.400364\pi\)
0.307931 + 0.951409i \(0.400364\pi\)
\(662\) 1448.19i 2.18759i
\(663\) 12.3501 0.0186275
\(664\) −333.267 −0.501908
\(665\) 0 0
\(666\) 1588.12i 2.38456i
\(667\) 440.208i 0.659982i
\(668\) 1006.80i 1.50718i
\(669\) −237.747 −0.355376
\(670\) 0 0
\(671\) −41.8244 + 33.1582i −0.0623315 + 0.0494160i
\(672\) −137.548 −0.204684
\(673\) 908.695i 1.35022i −0.737719 0.675108i \(-0.764097\pi\)
0.737719 0.675108i \(-0.235903\pi\)
\(674\) 429.140 0.636707
\(675\) 0 0
\(676\) −843.397 −1.24763
\(677\) 1064.55i 1.57245i 0.617941 + 0.786224i \(0.287967\pi\)
−0.617941 + 0.786224i \(0.712033\pi\)
\(678\) 309.979i 0.457197i
\(679\) 44.9727i 0.0662337i
\(680\) 0 0
\(681\) 431.509i 0.633640i
\(682\) −475.119 + 376.672i −0.696656 + 0.552305i
\(683\) 332.676 0.487081 0.243540 0.969891i \(-0.421691\pi\)
0.243540 + 0.969891i \(0.421691\pi\)
\(684\) 930.305i 1.36010i
\(685\) 0 0
\(686\) −1065.26 −1.55285
\(687\) 142.828 0.207900
\(688\) 160.370i 0.233096i
\(689\) 107.314i 0.155753i
\(690\) 0 0
\(691\) 880.234 1.27385 0.636927 0.770924i \(-0.280205\pi\)
0.636927 + 0.770924i \(0.280205\pi\)
\(692\) 483.437i 0.698608i
\(693\) −252.613 + 200.271i −0.364521 + 0.288991i
\(694\) 619.130 0.892118
\(695\) 0 0
\(696\) −272.903 −0.392103
\(697\) −100.652 −0.144408
\(698\) −1638.67 −2.34766
\(699\) 21.2646i 0.0304214i
\(700\) 0 0
\(701\) 743.435i 1.06054i −0.847830 0.530268i \(-0.822091\pi\)
0.847830 0.530268i \(-0.177909\pi\)
\(702\) 446.183 0.635588
\(703\) 1211.14i 1.72282i
\(704\) −690.953 871.542i −0.981468 1.23799i
\(705\) 0 0
\(706\) 1357.91i 1.92338i
\(707\) 617.639 0.873605
\(708\) −638.430 −0.901738
\(709\) −459.136 −0.647583 −0.323791 0.946128i \(-0.604958\pi\)
−0.323791 + 0.946128i \(0.604958\pi\)
\(710\) 0 0
\(711\) 577.134i 0.811722i
\(712\) 921.317i 1.29399i
\(713\) −304.656 −0.427287
\(714\) 24.1025i 0.0337569i
\(715\) 0 0
\(716\) −964.387 −1.34691
\(717\) 266.290i 0.371394i
\(718\) 695.578 0.968771
\(719\) −571.747 −0.795197 −0.397599 0.917559i \(-0.630156\pi\)
−0.397599 + 0.917559i \(0.630156\pi\)
\(720\) 0 0
\(721\) 416.905i 0.578232i
\(722\) 52.2421i 0.0723574i
\(723\) 453.632i 0.627430i
\(724\) −2060.63 −2.84617
\(725\) 0 0
\(726\) 483.204 + 113.207i 0.665570 + 0.155932i
\(727\) −188.665 −0.259511 −0.129756 0.991546i \(-0.541419\pi\)
−0.129756 + 0.991546i \(0.541419\pi\)
\(728\) 234.115i 0.321587i
\(729\) −74.1842 −0.101762
\(730\) 0 0
\(731\) 97.8007 0.133790
\(732\) 40.9195i 0.0559010i
\(733\) 542.416i 0.739994i −0.929033 0.369997i \(-0.879359\pi\)
0.929033 0.369997i \(-0.120641\pi\)
\(734\) 1507.81i 2.05424i
\(735\) 0 0
\(736\) 504.814i 0.685888i
\(737\) 82.6919 + 104.304i 0.112201 + 0.141526i
\(738\) −1644.83 −2.22877
\(739\) 637.670i 0.862882i 0.902141 + 0.431441i \(0.141995\pi\)
−0.902141 + 0.431441i \(0.858005\pi\)
\(740\) 0 0
\(741\) 153.915 0.207713
\(742\) −209.435 −0.282257
\(743\) 728.223i 0.980112i −0.871691 0.490056i \(-0.836976\pi\)
0.871691 0.490056i \(-0.163024\pi\)
\(744\) 188.869i 0.253856i
\(745\) 0 0
\(746\) −1583.03 −2.12202
\(747\) 276.162i 0.369695i
\(748\) 86.5622 68.6260i 0.115725 0.0917460i
\(749\) −757.031 −1.01072
\(750\) 0 0
\(751\) 33.5510 0.0446750 0.0223375 0.999750i \(-0.492889\pi\)
0.0223375 + 0.999750i \(0.492889\pi\)
\(752\) −198.971 −0.264589
\(753\) −63.3103 −0.0840774
\(754\) 527.225i 0.699237i
\(755\) 0 0
\(756\) 546.388i 0.722735i
\(757\) −1223.98 −1.61688 −0.808438 0.588581i \(-0.799687\pi\)
−0.808438 + 0.588581i \(0.799687\pi\)
\(758\) 858.765i 1.13294i
\(759\) 154.920 + 195.410i 0.204110 + 0.257457i
\(760\) 0 0
\(761\) 711.474i 0.934920i −0.884014 0.467460i \(-0.845169\pi\)
0.884014 0.467460i \(-0.154831\pi\)
\(762\) 512.900 0.673097
\(763\) −640.582 −0.839557
\(764\) 11.0539 0.0144685
\(765\) 0 0
\(766\) 1069.57i 1.39630i
\(767\) 501.138i 0.653374i
\(768\) 395.401 0.514846
\(769\) 418.803i 0.544607i −0.962211 0.272304i \(-0.912214\pi\)
0.962211 0.272304i \(-0.0877855\pi\)
\(770\) 0 0
\(771\) −537.356 −0.696960
\(772\) 1936.89i 2.50892i
\(773\) −708.180 −0.916145 −0.458073 0.888915i \(-0.651460\pi\)
−0.458073 + 0.888915i \(0.651460\pi\)
\(774\) 1598.24 2.06491
\(775\) 0 0
\(776\) 102.324i 0.131861i
\(777\) 321.756i 0.414100i
\(778\) 2122.46i 2.72809i
\(779\) −1254.40 −1.61027
\(780\) 0 0
\(781\) 544.540 + 686.861i 0.697234 + 0.879464i
\(782\) 88.4583 0.113118
\(783\) 499.947i 0.638503i
\(784\) 81.7689 0.104297
\(785\) 0 0
\(786\) 41.5946 0.0529193
\(787\) 629.493i 0.799864i 0.916545 + 0.399932i \(0.130966\pi\)
−0.916545 + 0.399932i \(0.869034\pi\)
\(788\) 739.603i 0.938582i
\(789\) 197.625i 0.250475i
\(790\) 0 0
\(791\) 297.965i 0.376694i
\(792\) 574.758 455.665i 0.725704 0.575334i
\(793\) −32.1199 −0.0405043
\(794\) 401.906i 0.506179i
\(795\) 0 0
\(796\) −261.792 −0.328885
\(797\) −1278.65 −1.60433 −0.802165 0.597103i \(-0.796318\pi\)
−0.802165 + 0.597103i \(0.796318\pi\)
\(798\) 300.382i 0.376419i
\(799\) 121.341i 0.151867i
\(800\) 0 0
\(801\) 763.450 0.953121
\(802\) 797.179i 0.993989i
\(803\) 368.025 291.768i 0.458312 0.363347i
\(804\) −102.048 −0.126925
\(805\) 0 0
\(806\) −364.878 −0.452702
\(807\) 267.086 0.330962
\(808\) −1405.28 −1.73921
\(809\) 516.115i 0.637966i −0.947760 0.318983i \(-0.896659\pi\)
0.947760 0.318983i \(-0.103341\pi\)
\(810\) 0 0
\(811\) 307.425i 0.379069i 0.981874 + 0.189534i \(0.0606978\pi\)
−0.981874 + 0.189534i \(0.939302\pi\)
\(812\) 645.631 0.795112
\(813\) 583.803i 0.718085i
\(814\) −1841.61 + 1460.02i −2.26242 + 1.79363i
\(815\) 0 0
\(816\) 4.55976i 0.00558795i
\(817\) 1218.86 1.49188
\(818\) 1390.79 1.70024
\(819\) −194.000 −0.236874
\(820\) 0 0
\(821\) 181.868i 0.221520i −0.993847 0.110760i \(-0.964672\pi\)
0.993847 0.110760i \(-0.0353285\pi\)
\(822\) 288.883i 0.351440i
\(823\) −719.382 −0.874097 −0.437049 0.899438i \(-0.643976\pi\)
−0.437049 + 0.899438i \(0.643976\pi\)
\(824\) 948.562i 1.15117i
\(825\) 0 0
\(826\) 978.024 1.18405
\(827\) 555.837i 0.672113i −0.941842 0.336056i \(-0.890907\pi\)
0.941842 0.336056i \(-0.109093\pi\)
\(828\) 907.056 1.09548
\(829\) 448.221 0.540677 0.270338 0.962765i \(-0.412864\pi\)
0.270338 + 0.962765i \(0.412864\pi\)
\(830\) 0 0
\(831\) 83.0416i 0.0999297i
\(832\) 669.318i 0.804469i
\(833\) 49.8663i 0.0598635i
\(834\) 833.957 0.999948
\(835\) 0 0
\(836\) 1078.80 855.267i 1.29043 1.02305i
\(837\) −346.000 −0.413381
\(838\) 224.982i 0.268475i
\(839\) 682.509 0.813479 0.406740 0.913544i \(-0.366666\pi\)
0.406740 + 0.913544i \(0.366666\pi\)
\(840\) 0 0
\(841\) 250.245 0.297556
\(842\) 256.234i 0.304316i
\(843\) 300.651i 0.356644i
\(844\) 602.778i 0.714192i
\(845\) 0 0
\(846\) 1982.94i 2.34390i
\(847\) −464.475 108.819i −0.548377 0.128475i
\(848\) 39.6214 0.0467233
\(849\) 338.615i 0.398840i
\(850\) 0 0
\(851\) −1180.87 −1.38763
\(852\) −672.000 −0.788733
\(853\) 1370.47i 1.60665i 0.595544 + 0.803323i \(0.296937\pi\)
−0.595544 + 0.803323i \(0.703063\pi\)
\(854\) 62.6854i 0.0734021i
\(855\) 0 0
\(856\) 1722.43 2.01219
\(857\) 1074.81i 1.25416i −0.778956 0.627078i \(-0.784251\pi\)
0.778956 0.627078i \(-0.215749\pi\)
\(858\) 185.543 + 234.037i 0.216251 + 0.272770i
\(859\) 969.712 1.12888 0.564442 0.825472i \(-0.309091\pi\)
0.564442 + 0.825472i \(0.309091\pi\)
\(860\) 0 0
\(861\) −333.247 −0.387047
\(862\) 1940.34 2.25098
\(863\) 129.003 0.149482 0.0747408 0.997203i \(-0.476187\pi\)
0.0747408 + 0.997203i \(0.476187\pi\)
\(864\) 573.321i 0.663566i
\(865\) 0 0
\(866\) 303.778i 0.350783i
\(867\) −358.957 −0.414022
\(868\) 446.823i 0.514773i
\(869\) −669.256 + 530.583i −0.770145 + 0.610567i
\(870\) 0 0
\(871\) 80.1026i 0.0919663i
\(872\) 1457.48 1.67142
\(873\) 84.7907 0.0971257
\(874\) 1102.43 1.26136
\(875\) 0 0
\(876\) 360.062i 0.411030i
\(877\) 490.300i 0.559065i 0.960136 + 0.279532i \(0.0901794\pi\)
−0.960136 + 0.279532i \(0.909821\pi\)
\(878\) 2442.70 2.78212
\(879\) 680.176i 0.773807i
\(880\) 0 0
\(881\) −772.952 −0.877358 −0.438679 0.898644i \(-0.644553\pi\)
−0.438679 + 0.898644i \(0.644553\pi\)
\(882\) 814.905i 0.923929i
\(883\) 1723.84 1.95225 0.976124 0.217212i \(-0.0696963\pi\)
0.976124 + 0.217212i \(0.0696963\pi\)
\(884\) 66.4772 0.0752004
\(885\) 0 0
\(886\) 1913.31i 2.15950i
\(887\) 1064.55i 1.20017i −0.799936 0.600085i \(-0.795133\pi\)
0.799936 0.600085i \(-0.204867\pi\)
\(888\) 732.074i 0.824408i
\(889\) −493.020 −0.554578
\(890\) 0 0
\(891\) −281.228 354.730i −0.315632 0.398126i
\(892\) −1279.73 −1.43467
\(893\) 1512.24i 1.69344i
\(894\) −402.982 −0.450763
\(895\) 0 0
\(896\) −866.686 −0.967283
\(897\) 150.069i 0.167301i
\(898\) 1127.50i 1.25556i
\(899\) 408.845i 0.454778i
\(900\) 0 0
\(901\) 24.1629i 0.0268178i
\(902\) −1512.16 1907.38i −1.67645 2.11461i
\(903\) 323.807 0.358590
\(904\) 677.943i 0.749937i
\(905\) 0 0
\(906\) −8.38278 −0.00925252
\(907\) −1115.09 −1.22943 −0.614713 0.788751i \(-0.710728\pi\)
−0.614713 + 0.788751i \(0.710728\pi\)
\(908\) 2322.70i 2.55804i
\(909\) 1164.49i 1.28106i
\(910\) 0 0
\(911\) 834.815 0.916372 0.458186 0.888856i \(-0.348499\pi\)
0.458186 + 0.888856i \(0.348499\pi\)
\(912\) 56.8271i 0.0623104i
\(913\) −320.243 + 253.887i −0.350759 + 0.278080i
\(914\) 1342.17 1.46846
\(915\) 0 0
\(916\) 768.804 0.839305
\(917\) −39.9824 −0.0436013
\(918\) 100.463 0.109437
\(919\) 284.457i 0.309529i −0.987951 0.154765i \(-0.950538\pi\)
0.987951 0.154765i \(-0.0494619\pi\)
\(920\) 0 0
\(921\) 393.225i 0.426955i
\(922\) 1965.70 2.13200
\(923\) 527.489i 0.571494i
\(924\) 286.598 227.213i 0.310170 0.245901i
\(925\) 0 0
\(926\) 1631.64i 1.76203i
\(927\) 786.026 0.847925
\(928\) 677.456 0.730017
\(929\) 337.429 0.363218 0.181609 0.983371i \(-0.441870\pi\)
0.181609 + 0.983371i \(0.441870\pi\)
\(930\) 0 0
\(931\) 621.470i 0.667530i
\(932\) 114.462i 0.122813i
\(933\) 469.176 0.502868
\(934\) 1444.44i 1.54651i
\(935\) 0 0
\(936\) 441.397 0.471578
\(937\) 736.226i 0.785726i −0.919597 0.392863i \(-0.871485\pi\)
0.919597 0.392863i \(-0.128515\pi\)
\(938\) 156.329 0.166662
\(939\) −258.393 −0.275179
\(940\) 0 0
\(941\) 433.395i 0.460569i −0.973123 0.230284i \(-0.926034\pi\)
0.973123 0.230284i \(-0.0739656\pi\)
\(942\) 657.545i 0.698031i
\(943\) 1223.05i 1.29698i
\(944\) −185.025 −0.196001
\(945\) 0 0
\(946\) 1469.32 + 1853.35i 1.55320 + 1.95914i
\(947\) 439.058 0.463631 0.231815 0.972760i \(-0.425534\pi\)
0.231815 + 0.972760i \(0.425534\pi\)
\(948\) 654.776i 0.690692i
\(949\) 282.632 0.297821
\(950\) 0 0
\(951\) 342.797 0.360459
\(952\) 52.7135i 0.0553713i
\(953\) 1108.12i 1.16277i 0.813630 + 0.581383i \(0.197488\pi\)
−0.813630 + 0.581383i \(0.802512\pi\)
\(954\) 394.865i 0.413904i
\(955\) 0 0
\(956\) 1433.37i 1.49934i
\(957\) −262.238 + 207.901i −0.274021 + 0.217242i
\(958\) −1708.45 −1.78335
\(959\) 277.686i 0.289558i
\(960\) 0 0
\(961\) −678.050 −0.705567
\(962\) −1414.30 −1.47017
\(963\) 1427.29i 1.48213i
\(964\) 2441.78i 2.53297i
\(965\) 0 0
\(966\) 292.875 0.303184
\(967\) 108.838i 0.112553i −0.998415 0.0562763i \(-0.982077\pi\)
0.998415 0.0562763i \(-0.0179228\pi\)
\(968\) 1056.80 + 247.589i 1.09173 + 0.255774i
\(969\) 34.6557 0.0357644
\(970\) 0 0
\(971\) −312.516 −0.321850 −0.160925 0.986967i \(-0.551448\pi\)
−0.160925 + 0.986967i \(0.551448\pi\)
\(972\) 1594.33 1.64026
\(973\) −801.633 −0.823878
\(974\) 519.800i 0.533676i
\(975\) 0 0
\(976\) 11.8590i 0.0121506i
\(977\) −594.696 −0.608696 −0.304348 0.952561i \(-0.598439\pi\)
−0.304348 + 0.952561i \(0.598439\pi\)
\(978\) 243.303i 0.248776i
\(979\) 701.870 + 885.312i 0.716926 + 0.904302i
\(980\) 0 0
\(981\) 1207.74i 1.23113i
\(982\) −1831.42 −1.86499
\(983\) 554.324 0.563910 0.281955 0.959428i \(-0.409017\pi\)
0.281955 + 0.959428i \(0.409017\pi\)
\(984\) 758.220 0.770549
\(985\) 0 0
\(986\) 118.710i 0.120396i
\(987\) 401.748i 0.407039i
\(988\) 828.487 0.838549
\(989\) 1188.40i 1.20162i
\(990\) 0 0
\(991\) −148.655 −0.150005 −0.0750023 0.997183i \(-0.523896\pi\)
−0.0750023 + 0.997183i \(0.523896\pi\)
\(992\) 468.848i 0.472629i
\(993\) 553.183 0.557083
\(994\) 1029.45 1.03566
\(995\) 0 0
\(996\) 313.314i 0.314572i
\(997\) 1023.25i 1.02633i 0.858291 + 0.513164i \(0.171527\pi\)
−0.858291 + 0.513164i \(0.828473\pi\)
\(998\) 975.479i 0.977433i
\(999\) −1341.13 −1.34247
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.3.c.h.76.8 yes 8
5.2 odd 4 275.3.d.b.274.2 16
5.3 odd 4 275.3.d.b.274.15 16
5.4 even 2 275.3.c.g.76.1 8
11.10 odd 2 inner 275.3.c.h.76.1 yes 8
55.32 even 4 275.3.d.b.274.16 16
55.43 even 4 275.3.d.b.274.1 16
55.54 odd 2 275.3.c.g.76.8 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.3.c.g.76.1 8 5.4 even 2
275.3.c.g.76.8 yes 8 55.54 odd 2
275.3.c.h.76.1 yes 8 11.10 odd 2 inner
275.3.c.h.76.8 yes 8 1.1 even 1 trivial
275.3.d.b.274.1 16 55.43 even 4
275.3.d.b.274.2 16 5.2 odd 4
275.3.d.b.274.15 16 5.3 odd 4
275.3.d.b.274.16 16 55.32 even 4