Properties

Label 275.2.e.c.43.4
Level $275$
Weight $2$
Character 275.43
Analytic conductor $2.196$
Analytic rank $0$
Dimension $8$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(32,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.1499238400.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 59x^{4} - 66x^{3} + 54x^{2} - 26x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 43.4
Root \(0.500000 - 2.41267i\) of defining polynomial
Character \(\chi\) \(=\) 275.43
Dual form 275.2.e.c.32.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.91267 + 1.91267i) q^{2} +5.31662i q^{4} +(0.605599 + 0.605599i) q^{7} +(-6.34361 + 6.34361i) q^{8} -3.00000i q^{9} -3.31662 q^{11} +(4.43094 - 4.43094i) q^{13} +2.31662i q^{14} -13.6332 q^{16} +(3.21974 + 3.21974i) q^{17} +(5.73801 - 5.73801i) q^{18} +(-6.34361 - 6.34361i) q^{22} +16.9499 q^{26} +(-3.21974 + 3.21974i) q^{28} -6.63325 q^{31} +(-13.3887 - 13.3887i) q^{32} +12.3166i q^{34} +15.9499 q^{36} +(7.04509 - 7.04509i) q^{43} -17.6332i q^{44} -6.26650i q^{49} +(23.5577 + 23.5577i) q^{52} -7.68338 q^{56} +4.00000i q^{59} +(-12.6872 - 12.6872i) q^{62} +(1.81680 - 1.81680i) q^{63} -23.9499i q^{64} +(-17.1182 + 17.1182i) q^{68} -8.00000 q^{71} +(19.0308 + 19.0308i) q^{72} +(-12.0816 + 12.0816i) q^{73} +(-2.00855 - 2.00855i) q^{77} -9.00000 q^{81} +(-9.46748 + 9.46748i) q^{83} +26.9499 q^{86} +(21.0394 - 21.0394i) q^{88} -13.2665i q^{89} +5.36675 q^{91} +(11.9858 - 11.9858i) q^{98} +9.94987i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 56 q^{16} + 56 q^{26} + 48 q^{36} - 88 q^{56} - 64 q^{71} - 72 q^{81} + 136 q^{86} + 96 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.91267 + 1.91267i 1.35246 + 1.35246i 0.882898 + 0.469565i \(0.155589\pi\)
0.469565 + 0.882898i \(0.344411\pi\)
\(3\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(4\) 5.31662i 2.65831i
\(5\) 0 0
\(6\) 0 0
\(7\) 0.605599 + 0.605599i 0.228895 + 0.228895i 0.812231 0.583336i \(-0.198253\pi\)
−0.583336 + 0.812231i \(0.698253\pi\)
\(8\) −6.34361 + 6.34361i −2.24281 + 2.24281i
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) −3.31662 −1.00000
\(12\) 0 0
\(13\) 4.43094 4.43094i 1.22892 1.22892i 0.264550 0.964372i \(-0.414776\pi\)
0.964372 0.264550i \(-0.0852236\pi\)
\(14\) 2.31662i 0.619144i
\(15\) 0 0
\(16\) −13.6332 −3.40831
\(17\) 3.21974 + 3.21974i 0.780903 + 0.780903i 0.979983 0.199081i \(-0.0637955\pi\)
−0.199081 + 0.979983i \(0.563796\pi\)
\(18\) 5.73801 5.73801i 1.35246 1.35246i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −6.34361 6.34361i −1.35246 1.35246i
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 16.9499 3.32414
\(27\) 0 0
\(28\) −3.21974 + 3.21974i −0.608474 + 0.608474i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −6.63325 −1.19137 −0.595683 0.803219i \(-0.703119\pi\)
−0.595683 + 0.803219i \(0.703119\pi\)
\(32\) −13.3887 13.3887i −2.36681 2.36681i
\(33\) 0 0
\(34\) 12.3166i 2.11228i
\(35\) 0 0
\(36\) 15.9499 2.65831
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 7.04509 7.04509i 1.07437 1.07437i 0.0773627 0.997003i \(-0.475350\pi\)
0.997003 0.0773627i \(-0.0246499\pi\)
\(44\) 17.6332i 2.65831i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) 0 0
\(49\) 6.26650i 0.895214i
\(50\) 0 0
\(51\) 0 0
\(52\) 23.5577 + 23.5577i 3.26686 + 3.26686i
\(53\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −7.68338 −1.02673
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000i 0.520756i 0.965507 + 0.260378i \(0.0838471\pi\)
−0.965507 + 0.260378i \(0.916153\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −12.6872 12.6872i −1.61128 1.61128i
\(63\) 1.81680 1.81680i 0.228895 0.228895i
\(64\) 23.9499i 2.99373i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(68\) −17.1182 + 17.1182i −2.07588 + 2.07588i
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 19.0308 + 19.0308i 2.24281 + 2.24281i
\(73\) −12.0816 + 12.0816i −1.41405 + 1.41405i −0.696193 + 0.717855i \(0.745124\pi\)
−0.717855 + 0.696193i \(0.754876\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.00855 2.00855i −0.228895 0.228895i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) −9.46748 + 9.46748i −1.03919 + 1.03919i −0.0399913 + 0.999200i \(0.512733\pi\)
−0.999200 + 0.0399913i \(0.987267\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 26.9499 2.90608
\(87\) 0 0
\(88\) 21.0394 21.0394i 2.24281 2.24281i
\(89\) 13.2665i 1.40625i −0.711068 0.703123i \(-0.751788\pi\)
0.711068 0.703123i \(-0.248212\pi\)
\(90\) 0 0
\(91\) 5.36675 0.562588
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(98\) 11.9858 11.9858i 1.21074 1.21074i
\(99\) 9.94987i 1.00000i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(104\) 56.2164i 5.51247i
\(105\) 0 0
\(106\) 0 0
\(107\) 5.83389 + 5.83389i 0.563983 + 0.563983i 0.930436 0.366453i \(-0.119428\pi\)
−0.366453 + 0.930436i \(0.619428\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −8.25629 8.25629i −0.780146 0.780146i
\(113\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −13.2928 13.2928i −1.22892 1.22892i
\(118\) −7.65069 + 7.65069i −0.704303 + 0.704303i
\(119\) 3.89975i 0.357489i
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 35.2665i 3.16703i
\(125\) 0 0
\(126\) 6.94987 0.619144
\(127\) −15.9070 15.9070i −1.41152 1.41152i −0.749416 0.662100i \(-0.769666\pi\)
−0.662100 0.749416i \(-0.730334\pi\)
\(128\) 19.0308 19.0308i 1.68210 1.68210i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −40.8496 −3.50283
\(137\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −15.3014 15.3014i −1.28406 1.28406i
\(143\) −14.6958 + 14.6958i −1.22892 + 1.22892i
\(144\) 40.8997i 3.40831i
\(145\) 0 0
\(146\) −46.2164 −3.82489
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 9.65923 9.65923i 0.780903 0.780903i
\(154\) 7.68338i 0.619144i
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −17.2140 17.2140i −1.35246 1.35246i
\(163\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −36.2164 −2.81094
\(167\) 17.1182 + 17.1182i 1.32464 + 1.32464i 0.909970 + 0.414673i \(0.136104\pi\)
0.414673 + 0.909970i \(0.363896\pi\)
\(168\) 0 0
\(169\) 26.2665i 2.02050i
\(170\) 0 0
\(171\) 0 0
\(172\) 37.4561 + 37.4561i 2.85600 + 2.85600i
\(173\) −6.85334 + 6.85334i −0.521050 + 0.521050i −0.917888 0.396839i \(-0.870107\pi\)
0.396839 + 0.917888i \(0.370107\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 45.2164 3.40831
\(177\) 0 0
\(178\) 25.3745 25.3745i 1.90190 1.90190i
\(179\) 19.8997i 1.48738i 0.668526 + 0.743689i \(0.266925\pi\)
−0.668526 + 0.743689i \(0.733075\pi\)
\(180\) 0 0
\(181\) 26.5330 1.97218 0.986091 0.166206i \(-0.0531515\pi\)
0.986091 + 0.166206i \(0.0531515\pi\)
\(182\) 10.2648 + 10.2648i 0.760880 + 0.760880i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −10.6787 10.6787i −0.780903 0.780903i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.63325 −0.479965 −0.239983 0.970777i \(-0.577142\pi\)
−0.239983 + 0.970777i \(0.577142\pi\)
\(192\) 0 0
\(193\) −0.797347 + 0.797347i −0.0573943 + 0.0573943i −0.735221 0.677827i \(-0.762922\pi\)
0.677827 + 0.735221i \(0.262922\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 33.3166 2.37976
\(197\) 19.7323 + 19.7323i 1.40587 + 1.40587i 0.779635 + 0.626234i \(0.215405\pi\)
0.626234 + 0.779635i \(0.284595\pi\)
\(198\) −19.0308 + 19.0308i −1.35246 + 1.35246i
\(199\) 24.0000i 1.70131i 0.525720 + 0.850657i \(0.323796\pi\)
−0.525720 + 0.850657i \(0.676204\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −60.4081 + 60.4081i −4.18855 + 4.18855i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 22.3166i 1.52553i
\(215\) 0 0
\(216\) 0 0
\(217\) −4.01709 4.01709i −0.272698 0.272698i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 28.5330 1.91934
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 16.2164i 1.08350i
\(225\) 0 0
\(226\) 0 0
\(227\) −4.62269 4.62269i −0.306819 0.306819i 0.536855 0.843674i \(-0.319612\pi\)
−0.843674 + 0.536855i \(0.819612\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i −0.980152 0.198246i \(-0.936476\pi\)
0.980152 0.198246i \(-0.0635244\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.9435 20.9435i 1.37206 1.37206i 0.514662 0.857393i \(-0.327917\pi\)
0.857393 0.514662i \(-0.172083\pi\)
\(234\) 50.8496i 3.32414i
\(235\) 0 0
\(236\) −21.2665 −1.38433
\(237\) 0 0
\(238\) −7.45894 + 7.45894i −0.483491 + 0.483491i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 21.0394 + 21.0394i 1.35246 + 1.35246i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 42.0788 42.0788i 2.67200 2.67200i
\(249\) 0 0
\(250\) 0 0
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 9.65923 + 9.65923i 0.608474 + 0.608474i
\(253\) 0 0
\(254\) 60.8496i 3.81804i
\(255\) 0 0
\(256\) 24.8997 1.55623
\(257\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 18.3294 18.3294i 1.13024 1.13024i 0.140100 0.990137i \(-0.455258\pi\)
0.990137 0.140100i \(-0.0447424\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.0000i 0.853595i 0.904347 + 0.426798i \(0.140358\pi\)
−0.904347 + 0.426798i \(0.859642\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −43.8956 43.8956i −2.66156 2.66156i
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 8.44803 + 8.44803i 0.507593 + 0.507593i 0.913787 0.406194i \(-0.133144\pi\)
−0.406194 + 0.913787i \(0.633144\pi\)
\(278\) 0 0
\(279\) 19.8997i 1.19137i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 23.5577 23.5577i 1.40036 1.40036i 0.601438 0.798920i \(-0.294595\pi\)
0.798920 0.601438i \(-0.205405\pi\)
\(284\) 42.5330i 2.52387i
\(285\) 0 0
\(286\) −56.2164 −3.32414
\(287\) 0 0
\(288\) −40.1661 + 40.1661i −2.36681 + 2.36681i
\(289\) 3.73350i 0.219618i
\(290\) 0 0
\(291\) 0 0
\(292\) −64.2335 64.2335i −3.75898 3.75898i
\(293\) −17.3099 + 17.3099i −1.01126 + 1.01126i −0.0113203 + 0.999936i \(0.503603\pi\)
−0.999936 + 0.0113203i \(0.996397\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 8.53300 0.491834
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 36.9499 2.11228
\(307\) 22.3465 + 22.3465i 1.27538 + 1.27538i 0.943225 + 0.332155i \(0.107776\pi\)
0.332155 + 0.943225i \(0.392224\pi\)
\(308\) 10.6787 10.6787i 0.608474 0.608474i
\(309\) 0 0
\(310\) 0 0
\(311\) 32.0000 1.81455 0.907277 0.420534i \(-0.138157\pi\)
0.907277 + 0.420534i \(0.138157\pi\)
\(312\) 0 0
\(313\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 47.8496i 2.65831i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −6.63325 −0.364596 −0.182298 0.983243i \(-0.558354\pi\)
−0.182298 + 0.983243i \(0.558354\pi\)
\(332\) −50.3351 50.3351i −2.76250 2.76250i
\(333\) 0 0
\(334\) 65.4829i 3.58306i
\(335\) 0 0
\(336\) 0 0
\(337\) −8.06454 8.06454i −0.439303 0.439303i 0.452474 0.891778i \(-0.350541\pi\)
−0.891778 + 0.452474i \(0.850541\pi\)
\(338\) 50.2392 50.2392i 2.73265 2.73265i
\(339\) 0 0
\(340\) 0 0
\(341\) 22.0000 1.19137
\(342\) 0 0
\(343\) 8.03418 8.03418i 0.433805 0.433805i
\(344\) 89.3826i 4.81919i
\(345\) 0 0
\(346\) −26.2164 −1.40940
\(347\) 11.8899 + 11.8899i 0.638282 + 0.638282i 0.950132 0.311849i \(-0.100948\pi\)
−0.311849 + 0.950132i \(0.600948\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 44.4053 + 44.4053i 2.36681 + 2.36681i
\(353\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 70.5330 3.73824
\(357\) 0 0
\(358\) −38.0617 + 38.0617i −2.01162 + 2.01162i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 50.7489 + 50.7489i 2.66730 + 2.66730i
\(363\) 0 0
\(364\) 28.5330i 1.49554i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 15.7152 15.7152i 0.813703 0.813703i −0.171484 0.985187i \(-0.554856\pi\)
0.985187 + 0.171484i \(0.0548560\pi\)
\(374\) 40.8496i 2.11228i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 36.0000i 1.84920i −0.380945 0.924598i \(-0.624401\pi\)
0.380945 0.924598i \(-0.375599\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −12.6872 12.6872i −0.649135 0.649135i
\(383\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −3.05013 −0.155247
\(387\) −21.1353 21.1353i −1.07437 1.07437i
\(388\) 0 0
\(389\) 26.0000i 1.31825i −0.752032 0.659126i \(-0.770926\pi\)
0.752032 0.659126i \(-0.229074\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 39.7523 + 39.7523i 2.00779 + 2.00779i
\(393\) 0 0
\(394\) 75.4829i 3.80277i
\(395\) 0 0
\(396\) −52.8997 −2.65831
\(397\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(398\) −45.9041 + 45.9041i −2.30097 + 2.30097i
\(399\) 0 0
\(400\) 0 0
\(401\) −39.7995 −1.98749 −0.993746 0.111664i \(-0.964382\pi\)
−0.993746 + 0.111664i \(0.964382\pi\)
\(402\) 0 0
\(403\) −29.3915 + 29.3915i −1.46410 + 1.46410i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.42240 + 2.42240i −0.119198 + 0.119198i
\(414\) 0 0
\(415\) 0 0
\(416\) −118.649 −5.81725
\(417\) 0 0
\(418\) 0 0
\(419\) 19.8997i 0.972166i 0.873913 + 0.486083i \(0.161575\pi\)
−0.873913 + 0.486083i \(0.838425\pi\)
\(420\) 0 0
\(421\) 26.5330 1.29314 0.646570 0.762855i \(-0.276203\pi\)
0.646570 + 0.762855i \(0.276203\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −31.0166 + 31.0166i −1.49924 + 1.49924i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(434\) 15.3668i 0.737628i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −18.7995 −0.895214
\(442\) 54.5743 + 54.5743i 2.59583 + 2.59583i
\(443\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 14.5040 14.5040i 0.685251 0.685251i
\(449\) 13.2665i 0.626085i −0.949739 0.313042i \(-0.898652\pi\)
0.949739 0.313042i \(-0.101348\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 17.6834i 0.829922i
\(455\) 0 0
\(456\) 0 0
\(457\) −7.23683 7.23683i −0.338525 0.338525i 0.517287 0.855812i \(-0.326942\pi\)
−0.855812 + 0.517287i \(0.826942\pi\)
\(458\) 11.4760 11.4760i 0.536240 0.536240i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 80.1161 3.71131
\(467\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(468\) 70.6730 70.6730i 3.26686 3.26686i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −25.3745 25.3745i −1.16795 1.16795i
\(473\) −23.3659 + 23.3659i −1.07437 + 1.07437i
\(474\) 0 0
\(475\) 0 0
\(476\) −20.7335 −0.950318
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 58.4829i 2.65831i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 90.4327 4.06055
\(497\) −4.84479 4.84479i −0.217319 0.217319i
\(498\) 0 0
\(499\) 4.00000i 0.179065i 0.995984 + 0.0895323i \(0.0285372\pi\)
−0.995984 + 0.0895323i \(0.971463\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −53.5548 53.5548i −2.39027 2.39027i
\(503\) −31.2083 + 31.2083i −1.39151 + 1.39151i −0.569565 + 0.821946i \(0.692888\pi\)
−0.821946 + 0.569565i \(0.807112\pi\)
\(504\) 23.0501i 1.02673i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 84.5714 84.5714i 3.75225 3.75225i
\(509\) 34.0000i 1.50702i 0.657434 + 0.753512i \(0.271642\pi\)
−0.657434 + 0.753512i \(0.728358\pi\)
\(510\) 0 0
\(511\) −14.6332 −0.647337
\(512\) 9.56336 + 9.56336i 0.422645 + 0.422645i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −39.7995 −1.74365 −0.871824 0.489820i \(-0.837063\pi\)
−0.871824 + 0.489820i \(0.837063\pi\)
\(522\) 0 0
\(523\) −19.9241 + 19.9241i −0.871218 + 0.871218i −0.992605 0.121387i \(-0.961266\pi\)
0.121387 + 0.992605i \(0.461266\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 70.1161 3.05721
\(527\) −21.3574 21.3574i −0.930341 0.930341i
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −26.7774 + 26.7774i −1.15446 + 1.15446i
\(539\) 20.7836i 0.895214i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 86.2164i 3.69650i
\(545\) 0 0
\(546\) 0 0
\(547\) −27.1913 27.1913i −1.16261 1.16261i −0.983901 0.178713i \(-0.942807\pi\)
−0.178713 0.983901i \(-0.557193\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 32.3166i 1.37300i
\(555\) 0 0
\(556\) 0 0
\(557\) 9.27574 + 9.27574i 0.393026 + 0.393026i 0.875764 0.482739i \(-0.160358\pi\)
−0.482739 + 0.875764i \(0.660358\pi\)
\(558\) −38.0617 + 38.0617i −1.61128 + 1.61128i
\(559\) 62.4327i 2.64062i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 13.1011 13.1011i 0.552145 0.552145i −0.374915 0.927059i \(-0.622328\pi\)
0.927059 + 0.374915i \(0.122328\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 90.1161 3.78786
\(567\) −5.45039 5.45039i −0.228895 0.228895i
\(568\) 50.7489 50.7489i 2.12938 2.12938i
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) −78.1319 78.1319i −3.26686 3.26686i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −71.8496 −2.99373
\(577\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) −7.14096 + 7.14096i −0.297025 + 0.297025i
\(579\) 0 0
\(580\) 0 0
\(581\) −11.4670 −0.475731
\(582\) 0 0
\(583\) 0 0
\(584\) 153.282i 6.34287i
\(585\) 0 0
\(586\) −66.2164 −2.73537
\(587\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.62505 + 1.62505i −0.0667328 + 0.0667328i −0.739686 0.672953i \(-0.765026\pi\)
0.672953 + 0.739686i \(0.265026\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 19.8997i 0.813082i 0.913633 + 0.406541i \(0.133265\pi\)
−0.913633 + 0.406541i \(0.866735\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 16.3208 + 16.3208i 0.665187 + 0.665187i
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 33.6307 + 33.6307i 1.36503 + 1.36503i 0.867376 + 0.497654i \(0.165805\pi\)
0.497654 + 0.867376i \(0.334195\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 51.3545 + 51.3545i 2.07588 + 2.07588i
\(613\) 14.8875 14.8875i 0.601301 0.601301i −0.339357 0.940658i \(-0.610209\pi\)
0.940658 + 0.339357i \(0.110209\pi\)
\(614\) 85.4829i 3.44981i
\(615\) 0 0
\(616\) 25.4829 1.02673
\(617\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(618\) 0 0
\(619\) 46.4327i 1.86629i −0.359501 0.933145i \(-0.617053\pi\)
0.359501 0.933145i \(-0.382947\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 61.2055 + 61.2055i 2.45412 + 2.45412i
\(623\) 8.03418 8.03418i 0.321883 0.321883i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −48.0000 −1.91085 −0.955425 0.295234i \(-0.904602\pi\)
−0.955425 + 0.295234i \(0.904602\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −27.7665 27.7665i −1.10015 1.10015i
\(638\) 0 0
\(639\) 24.0000i 0.949425i
\(640\) 0 0
\(641\) −39.7995 −1.57199 −0.785993 0.618236i \(-0.787848\pi\)
−0.785993 + 0.618236i \(0.787848\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(648\) 57.0925 57.0925i 2.24281 2.24281i
\(649\) 13.2665i 0.520756i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 36.2449 + 36.2449i 1.41405 + 1.41405i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 42.0000 1.63361 0.816805 0.576913i \(-0.195743\pi\)
0.816805 + 0.576913i \(0.195743\pi\)
\(662\) −12.6872 12.6872i −0.493103 0.493103i
\(663\) 0 0
\(664\) 120.116i 4.66141i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −91.0109 + 91.0109i −3.52132 + 3.52132i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −33.8225 + 33.8225i −1.30376 + 1.30376i −0.377925 + 0.925836i \(0.623362\pi\)
−0.925836 + 0.377925i \(0.876638\pi\)
\(674\) 30.8496i 1.18828i
\(675\) 0 0
\(676\) 139.649 5.37112
\(677\) −24.5771 24.5771i −0.944575 0.944575i 0.0539677 0.998543i \(-0.482813\pi\)
−0.998543 + 0.0539677i \(0.982813\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 42.0788 + 42.0788i 1.61128 + 1.61128i
\(683\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 30.7335 1.17341
\(687\) 0 0
\(688\) −96.0474 + 96.0474i −3.66177 + 3.66177i
\(689\) 0 0
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) −36.4366 36.4366i −1.38511 1.38511i
\(693\) −6.02564 + 6.02564i −0.228895 + 0.228895i
\(694\) 45.4829i 1.72651i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 79.4327i 2.99373i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 53.0660i 1.99294i 0.0839773 + 0.996468i \(0.473238\pi\)
−0.0839773 + 0.996468i \(0.526762\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 84.1575 + 84.1575i 3.15394 + 3.15394i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −105.799 −3.95391
\(717\) 0 0
\(718\) 0 0
\(719\) 46.4327i 1.73165i −0.500348 0.865825i \(-0.666794\pi\)
0.500348 0.865825i \(-0.333206\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −36.3408 36.3408i −1.35246 1.35246i
\(723\) 0 0
\(724\) 141.066i 5.24268i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) −34.0446 + 34.0446i −1.26178 + 1.26178i
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 45.3668 1.67795
\(732\) 0 0
\(733\) 37.4561 37.4561i 1.38347 1.38347i 0.545103 0.838369i \(-0.316491\pi\)
0.838369 0.545103i \(-0.183509\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 34.8419 34.8419i 1.27823 1.27823i 0.336567 0.941659i \(-0.390734\pi\)
0.941659 0.336567i \(-0.109266\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 60.1161 2.20101
\(747\) 28.4025 + 28.4025i 1.03919 + 1.03919i
\(748\) 56.7745 56.7745i 2.07588 2.07588i
\(749\) 7.06600i 0.258186i
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(758\) 68.8562 68.8562i 2.50097 2.50097i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 35.2665i 1.27590i
\(765\) 0 0
\(766\) 0 0
\(767\) 17.7238 + 17.7238i 0.639968 + 0.639968i
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.23919 4.23919i −0.152572 0.152572i
\(773\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) 80.8496i 2.90608i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 49.7295 49.7295i 1.78289 1.78289i
\(779\) 0 0
\(780\) 0 0
\(781\) 26.5330 0.949425
\(782\) 0 0
\(783\) 0 0
\(784\) 85.4327i 3.05117i
\(785\) 0 0
\(786\) 0 0
\(787\) 38.8590 + 38.8590i 1.38517 + 1.38517i 0.835145 + 0.550030i \(0.185384\pi\)
0.550030 + 0.835145i \(0.314616\pi\)
\(788\) −104.909 + 104.909i −3.73724 + 3.73724i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −63.1182 63.1182i −2.24281 2.24281i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −127.599 −4.52263
\(797\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −39.7995 −1.40625
\(802\) −76.1234 76.1234i −2.68801 2.68801i
\(803\) 40.0702 40.0702i 1.41405 1.41405i
\(804\) 0 0
\(805\) 0 0
\(806\) −112.433 −3.96027
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 16.1003i 0.562588i
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −9.26650 −0.322423
\(827\) −37.6478 37.6478i −1.30914 1.30914i −0.922034 0.387110i \(-0.873473\pi\)
−0.387110 0.922034i \(-0.626527\pi\)
\(828\) 0 0
\(829\) 53.0660i 1.84306i 0.388309 + 0.921529i \(0.373059\pi\)
−0.388309 + 0.921529i \(0.626941\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −106.121 106.121i −3.67907 3.67907i
\(833\) 20.1765 20.1765i 0.699075 0.699075i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −38.0617 + 38.0617i −1.31482 + 1.31482i
\(839\) 56.0000i 1.93333i −0.256036 0.966667i \(-0.582416\pi\)
0.256036 0.966667i \(-0.417584\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 50.7489 + 50.7489i 1.74892 + 1.74892i
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 6.66159 + 6.66159i 0.228895 + 0.228895i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −18.1376 + 18.1376i −0.621020 + 0.621020i −0.945792 0.324772i \(-0.894712\pi\)
0.324772 + 0.945792i \(0.394712\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −74.0159 −2.52981
\(857\) 13.6763 + 13.6763i 0.467174 + 0.467174i 0.900998 0.433824i \(-0.142836\pi\)
−0.433824 + 0.900998i \(0.642836\pi\)
\(858\) 0 0
\(859\) 46.4327i 1.58426i −0.610349 0.792132i \(-0.708971\pi\)
0.610349 0.792132i \(-0.291029\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 21.3574 21.3574i 0.724916 0.724916i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.83625 2.83625i −0.0957733 0.0957733i 0.657597 0.753370i \(-0.271573\pi\)
−0.753370 + 0.657597i \(0.771573\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) −35.9573 35.9573i −1.21074 1.21074i
\(883\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(884\) 151.699i 5.10220i
\(885\) 0 0
\(886\) 0 0
\(887\) −21.9630 21.9630i −0.737444 0.737444i 0.234639 0.972083i \(-0.424609\pi\)
−0.972083 + 0.234639i \(0.924609\pi\)
\(888\) 0 0
\(889\) 19.2665i 0.646178i
\(890\) 0 0
\(891\) 29.8496 1.00000
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 23.0501 0.770051
\(897\) 0 0
\(898\) 25.3745 25.3745i 0.846757 0.846757i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(908\) 24.5771 24.5771i 0.815620 0.815620i
\(909\) 0 0
\(910\) 0 0
\(911\) 59.6992 1.97792 0.988962 0.148168i \(-0.0473378\pi\)
0.988962 + 0.148168i \(0.0473378\pi\)
\(912\) 0 0
\(913\) 31.4001 31.4001i 1.03919 1.03919i
\(914\) 27.6834i 0.915685i
\(915\) 0 0
\(916\) 31.8997 1.05400
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −35.4475 + 35.4475i −1.16677 + 1.16677i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.0000i 0.459325i 0.973270 + 0.229663i \(0.0737623\pi\)
−0.973270 + 0.229663i \(0.926238\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 111.349 + 111.349i 3.64735 + 3.64735i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 168.649 5.51247
\(937\) 25.7883 + 25.7883i 0.842467 + 0.842467i 0.989179 0.146712i \(-0.0468691\pi\)
−0.146712 + 0.989179i \(0.546869\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 54.5330i 1.77490i
\(945\) 0 0
\(946\) −89.3826 −2.90608
\(947\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(948\) 0 0
\(949\) 107.066i 3.47551i
\(950\) 0 0
\(951\) 0 0
\(952\) −24.7385 24.7385i −0.801779 0.801779i
\(953\) 42.6844 42.6844i 1.38268 1.38268i 0.542858 0.839825i \(-0.317342\pi\)
0.839825 0.542858i \(-0.182658\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 13.0000 0.419355
\(962\) 0 0
\(963\) 17.5017 17.5017i 0.563983 0.563983i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −26.3635 26.3635i −0.847795 0.847795i 0.142063 0.989858i \(-0.454626\pi\)
−0.989858 + 0.142063i \(0.954626\pi\)
\(968\) −69.7798 + 69.7798i −2.24281 + 2.24281i
\(969\) 0 0
\(970\) 0 0
\(971\) 59.6992 1.91584 0.957920 0.287035i \(-0.0926697\pi\)
0.957920 + 0.287035i \(0.0926697\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(978\) 0 0
\(979\) 44.0000i 1.40625i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −6.63325 −0.210712 −0.105356 0.994435i \(-0.533598\pi\)
−0.105356 + 0.994435i \(0.533598\pi\)
\(992\) 88.8106 + 88.8106i 2.81974 + 2.81974i
\(993\) 0 0
\(994\) 18.5330i 0.587831i
\(995\) 0 0
\(996\) 0 0
\(997\) 41.4732 + 41.4732i 1.31347 + 1.31347i 0.918841 + 0.394627i \(0.129126\pi\)
0.394627 + 0.918841i \(0.370874\pi\)
\(998\) −7.65069 + 7.65069i −0.242178 + 0.242178i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.e.c.43.4 yes 8
5.2 odd 4 inner 275.2.e.c.32.1 8
5.3 odd 4 inner 275.2.e.c.32.4 yes 8
5.4 even 2 inner 275.2.e.c.43.1 yes 8
11.10 odd 2 inner 275.2.e.c.43.1 yes 8
55.32 even 4 inner 275.2.e.c.32.4 yes 8
55.43 even 4 inner 275.2.e.c.32.1 8
55.54 odd 2 CM 275.2.e.c.43.4 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.e.c.32.1 8 5.2 odd 4 inner
275.2.e.c.32.1 8 55.43 even 4 inner
275.2.e.c.32.4 yes 8 5.3 odd 4 inner
275.2.e.c.32.4 yes 8 55.32 even 4 inner
275.2.e.c.43.1 yes 8 5.4 even 2 inner
275.2.e.c.43.1 yes 8 11.10 odd 2 inner
275.2.e.c.43.4 yes 8 1.1 even 1 trivial
275.2.e.c.43.4 yes 8 55.54 odd 2 CM