Properties

Label 275.2.e.c.32.3
Level $275$
Weight $2$
Character 275.32
Analytic conductor $2.196$
Analytic rank $0$
Dimension $8$
CM discriminant -55
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [275,2,Mod(32,275)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("275.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 275 = 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 275.e (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.19588605559\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.1499238400.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 59x^{4} - 66x^{3} + 54x^{2} - 26x + 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 32.3
Root \(0.500000 + 1.08454i\) of defining polynomial
Character \(\chi\) \(=\) 275.32
Dual form 275.2.e.c.43.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.584541 - 0.584541i) q^{2} +1.31662i q^{4} +(-3.69232 + 3.69232i) q^{7} +(1.93870 + 1.93870i) q^{8} +3.00000i q^{9} +3.31662 q^{11} +(-2.52324 - 2.52324i) q^{13} +4.31662i q^{14} -0.366750 q^{16} +(4.86140 - 4.86140i) q^{17} +(1.75362 + 1.75362i) q^{18} +(1.93870 - 1.93870i) q^{22} -2.94987 q^{26} +(-4.86140 - 4.86140i) q^{28} +6.63325 q^{31} +(-4.09178 + 4.09178i) q^{32} -5.68338i q^{34} -3.94987 q^{36} +(6.03049 + 6.03049i) q^{43} +4.36675i q^{44} -20.2665i q^{49} +(3.32216 - 3.32216i) q^{52} -14.3166 q^{56} -4.00000i q^{59} +(3.87740 - 3.87740i) q^{62} +(-11.0770 - 11.0770i) q^{63} +4.05013i q^{64} +(6.40065 + 6.40065i) q^{68} -8.00000 q^{71} +(-5.81610 + 5.81610i) q^{72} +(0.185080 + 0.185080i) q^{73} +(-12.2461 + 12.2461i) q^{77} -9.00000 q^{81} +(8.73881 + 8.73881i) q^{83} +7.05013 q^{86} +(6.42995 + 6.42995i) q^{88} -13.2665i q^{89} +18.6332 q^{91} +(-11.8466 - 11.8466i) q^{98} +9.94987i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 56 q^{16} + 56 q^{26} + 48 q^{36} - 88 q^{56} - 64 q^{71} - 72 q^{81} + 136 q^{86} + 96 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/275\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.584541 0.584541i 0.413333 0.413333i −0.469565 0.882898i \(-0.655589\pi\)
0.882898 + 0.469565i \(0.155589\pi\)
\(3\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 1.31662i 0.658312i
\(5\) 0 0
\(6\) 0 0
\(7\) −3.69232 + 3.69232i −1.39557 + 1.39557i −0.583336 + 0.812231i \(0.698253\pi\)
−0.812231 + 0.583336i \(0.801747\pi\)
\(8\) 1.93870 + 1.93870i 0.685435 + 0.685435i
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) 3.31662 1.00000
\(12\) 0 0
\(13\) −2.52324 2.52324i −0.699821 0.699821i 0.264550 0.964372i \(-0.414776\pi\)
−0.964372 + 0.264550i \(0.914776\pi\)
\(14\) 4.31662i 1.15367i
\(15\) 0 0
\(16\) −0.366750 −0.0916876
\(17\) 4.86140 4.86140i 1.17906 1.17906i 0.199081 0.979983i \(-0.436204\pi\)
0.979983 0.199081i \(-0.0637955\pi\)
\(18\) 1.75362 + 1.75362i 0.413333 + 0.413333i
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.93870 1.93870i 0.413333 0.413333i
\(23\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −2.94987 −0.578518
\(27\) 0 0
\(28\) −4.86140 4.86140i −0.918719 0.918719i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 6.63325 1.19137 0.595683 0.803219i \(-0.296881\pi\)
0.595683 + 0.803219i \(0.296881\pi\)
\(32\) −4.09178 + 4.09178i −0.723332 + 0.723332i
\(33\) 0 0
\(34\) 5.68338i 0.974691i
\(35\) 0 0
\(36\) −3.94987 −0.658312
\(37\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 6.03049 + 6.03049i 0.919640 + 0.919640i 0.997003 0.0773627i \(-0.0246499\pi\)
−0.0773627 + 0.997003i \(0.524650\pi\)
\(44\) 4.36675i 0.658312i
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0 0
\(49\) 20.2665i 2.89521i
\(50\) 0 0
\(51\) 0 0
\(52\) 3.32216 3.32216i 0.460701 0.460701i
\(53\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −14.3166 −1.91314
\(57\) 0 0
\(58\) 0 0
\(59\) 4.00000i 0.520756i −0.965507 0.260378i \(-0.916153\pi\)
0.965507 0.260378i \(-0.0838471\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 3.87740 3.87740i 0.492431 0.492431i
\(63\) −11.0770 11.0770i −1.39557 1.39557i
\(64\) 4.05013i 0.506266i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 6.40065 + 6.40065i 0.776192 + 0.776192i
\(69\) 0 0
\(70\) 0 0
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) −5.81610 + 5.81610i −0.685435 + 0.685435i
\(73\) 0.185080 + 0.185080i 0.0216620 + 0.0216620i 0.717855 0.696193i \(-0.245124\pi\)
−0.696193 + 0.717855i \(0.745124\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −12.2461 + 12.2461i −1.39557 + 1.39557i
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 8.73881 + 8.73881i 0.959209 + 0.959209i 0.999200 0.0399913i \(-0.0127330\pi\)
−0.0399913 + 0.999200i \(0.512733\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 7.05013 0.760235
\(87\) 0 0
\(88\) 6.42995 + 6.42995i 0.685435 + 0.685435i
\(89\) 13.2665i 1.40625i −0.711068 0.703123i \(-0.751788\pi\)
0.711068 0.703123i \(-0.248212\pi\)
\(90\) 0 0
\(91\) 18.6332 1.95330
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) −11.8466 11.8466i −1.19669 1.19669i
\(99\) 9.94987i 1.00000i
\(100\) 0 0
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(104\) 9.78363i 0.959364i
\(105\) 0 0
\(106\) 0 0
\(107\) 13.4151 13.4151i 1.29689 1.29689i 0.366453 0.930436i \(-0.380572\pi\)
0.930436 0.366453i \(-0.119428\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.35416 1.35416i 0.127956 0.127956i
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 7.56973 7.56973i 0.699821 0.699821i
\(118\) −2.33816 2.33816i −0.215245 0.215245i
\(119\) 35.8997i 3.29092i
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 8.73350i 0.784292i
\(125\) 0 0
\(126\) −12.9499 −1.15367
\(127\) −0.984001 + 0.984001i −0.0873160 + 0.0873160i −0.749416 0.662100i \(-0.769666\pi\)
0.662100 + 0.749416i \(0.269666\pi\)
\(128\) −5.81610 5.81610i −0.514076 0.514076i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 18.8496 1.61634
\(137\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −4.67632 + 4.67632i −0.392428 + 0.392428i
\(143\) −8.36865 8.36865i −0.699821 0.699821i
\(144\) 1.10025i 0.0916876i
\(145\) 0 0
\(146\) 0.216374 0.0179072
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 14.5842 + 14.5842i 1.17906 + 1.17906i
\(154\) 14.3166i 1.15367i
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −5.26086 + 5.26086i −0.413333 + 0.413333i
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 10.2164 0.792944
\(167\) −6.40065 + 6.40065i −0.495297 + 0.495297i −0.909970 0.414673i \(-0.863896\pi\)
0.414673 + 0.909970i \(0.363896\pi\)
\(168\) 0 0
\(169\) 0.266499i 0.0204999i
\(170\) 0 0
\(171\) 0 0
\(172\) −7.93989 + 7.93989i −0.605411 + 0.605411i
\(173\) 17.2925 + 17.2925i 1.31473 + 1.31473i 0.917888 + 0.396839i \(0.129893\pi\)
0.396839 + 0.917888i \(0.370107\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.21637 −0.0916876
\(177\) 0 0
\(178\) −7.75481 7.75481i −0.581247 0.581247i
\(179\) 19.8997i 1.48738i 0.668526 + 0.743689i \(0.266925\pi\)
−0.668526 + 0.743689i \(0.733075\pi\)
\(180\) 0 0
\(181\) −26.5330 −1.97218 −0.986091 0.166206i \(-0.946848\pi\)
−0.986091 + 0.166206i \(0.946848\pi\)
\(182\) 10.8919 10.8919i 0.807361 0.807361i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 16.1235 16.1235i 1.17906 1.17906i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.63325 0.479965 0.239983 0.970777i \(-0.422858\pi\)
0.239983 + 0.970777i \(0.422858\pi\)
\(192\) 0 0
\(193\) −19.6307 19.6307i −1.41305 1.41305i −0.735221 0.677827i \(-0.762922\pi\)
−0.677827 0.735221i \(-0.737078\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 26.6834 1.90596
\(197\) 2.15308 2.15308i 0.153401 0.153401i −0.626234 0.779635i \(-0.715405\pi\)
0.779635 + 0.626234i \(0.215405\pi\)
\(198\) 5.81610 + 5.81610i 0.413333 + 0.413333i
\(199\) 24.0000i 1.70131i −0.525720 0.850657i \(-0.676204\pi\)
0.525720 0.850657i \(-0.323796\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.925400 + 0.925400i 0.0641650 + 0.0641650i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 15.6834i 1.07209i
\(215\) 0 0
\(216\) 0 0
\(217\) −24.4921 + 24.4921i −1.66263 + 1.66263i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −24.5330 −1.65027
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 30.2164i 2.01892i
\(225\) 0 0
\(226\) 0 0
\(227\) −20.7998 + 20.7998i −1.38053 + 1.38053i −0.536855 + 0.843674i \(0.680388\pi\)
−0.843674 + 0.536855i \(0.819612\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.23156 5.23156i −0.342731 0.342731i 0.514662 0.857393i \(-0.327917\pi\)
−0.857393 + 0.514662i \(0.827917\pi\)
\(234\) 8.84962i 0.578518i
\(235\) 0 0
\(236\) 5.26650 0.342820
\(237\) 0 0
\(238\) 20.9849 + 20.9849i 1.36025 + 1.36025i
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 6.42995 6.42995i 0.413333 0.413333i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 12.8599 + 12.8599i 0.816604 + 0.816604i
\(249\) 0 0
\(250\) 0 0
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 14.5842 14.5842i 0.918719 0.918719i
\(253\) 0 0
\(254\) 1.15038i 0.0721811i
\(255\) 0 0
\(256\) −14.8997 −0.931234
\(257\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −13.7853 13.7853i −0.850037 0.850037i 0.140100 0.990137i \(-0.455258\pi\)
−0.990137 + 0.140100i \(0.955258\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.0000i 0.853595i −0.904347 0.426798i \(-0.859642\pi\)
0.904347 0.426798i \(-0.140358\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) −1.78292 + 1.78292i −0.108106 + 0.108106i
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 21.9689 21.9689i 1.31998 1.31998i 0.406194 0.913787i \(-0.366856\pi\)
0.913787 0.406194i \(-0.133144\pi\)
\(278\) 0 0
\(279\) 19.8997i 1.19137i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 3.32216 + 3.32216i 0.197482 + 0.197482i 0.798920 0.601438i \(-0.205405\pi\)
−0.601438 + 0.798920i \(0.705405\pi\)
\(284\) 10.5330i 0.625018i
\(285\) 0 0
\(286\) −9.78363 −0.578518
\(287\) 0 0
\(288\) −12.2754 12.2754i −0.723332 0.723332i
\(289\) 30.2665i 1.78038i
\(290\) 0 0
\(291\) 0 0
\(292\) −0.243681 + 0.243681i −0.0142603 + 0.0142603i
\(293\) −16.9224 16.9224i −0.988616 0.988616i 0.0113203 0.999936i \(-0.496397\pi\)
−0.999936 + 0.0113203i \(0.996397\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −44.5330 −2.56684
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 17.0501 0.974691
\(307\) 10.7068 10.7068i 0.611070 0.611070i −0.332155 0.943225i \(-0.607776\pi\)
0.943225 + 0.332155i \(0.107776\pi\)
\(308\) −16.1235 16.1235i −0.918719 0.918719i
\(309\) 0 0
\(310\) 0 0
\(311\) 32.0000 1.81455 0.907277 0.420534i \(-0.138157\pi\)
0.907277 + 0.420534i \(0.138157\pi\)
\(312\) 0 0
\(313\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 11.8496i 0.658312i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.63325 0.364596 0.182298 0.983243i \(-0.441646\pi\)
0.182298 + 0.983243i \(0.441646\pi\)
\(332\) −11.5057 + 11.5057i −0.631459 + 0.631459i
\(333\) 0 0
\(334\) 7.48287i 0.409445i
\(335\) 0 0
\(336\) 0 0
\(337\) 24.6772 24.6772i 1.34425 1.34425i 0.452474 0.891778i \(-0.350541\pi\)
0.891778 0.452474i \(-0.149459\pi\)
\(338\) −0.155780 0.155780i −0.00847329 0.00847329i
\(339\) 0 0
\(340\) 0 0
\(341\) 22.0000 1.19137
\(342\) 0 0
\(343\) 48.9842 + 48.9842i 2.64490 + 2.64490i
\(344\) 23.3826i 1.26071i
\(345\) 0 0
\(346\) 20.2164 1.08684
\(347\) −23.5081 + 23.5081i −1.26198 + 1.26198i −0.311849 + 0.950132i \(0.600948\pi\)
−0.950132 + 0.311849i \(0.899052\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −13.5709 + 13.5709i −0.723332 + 0.723332i
\(353\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 17.4670 0.925749
\(357\) 0 0
\(358\) 11.6322 + 11.6322i 0.614781 + 0.614781i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) −15.5096 + 15.5096i −0.815167 + 0.815167i
\(363\) 0 0
\(364\) 24.5330i 1.28588i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −22.3390 22.3390i −1.15667 1.15667i −0.985187 0.171484i \(-0.945144\pi\)
−0.171484 0.985187i \(-0.554856\pi\)
\(374\) 18.8496i 0.974691i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 36.0000i 1.84920i 0.380945 + 0.924598i \(0.375599\pi\)
−0.380945 + 0.924598i \(0.624401\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 3.87740 3.87740i 0.198385 0.198385i
\(383\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −22.9499 −1.16812
\(387\) −18.0915 + 18.0915i −0.919640 + 0.919640i
\(388\) 0 0
\(389\) 26.0000i 1.31825i 0.752032 + 0.659126i \(0.229074\pi\)
−0.752032 + 0.659126i \(0.770926\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 39.2907 39.2907i 1.98448 1.98448i
\(393\) 0 0
\(394\) 2.51713i 0.126811i
\(395\) 0 0
\(396\) −13.1003 −0.658312
\(397\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(398\) −14.0290 14.0290i −0.703209 0.703209i
\(399\) 0 0
\(400\) 0 0
\(401\) 39.7995 1.98749 0.993746 0.111664i \(-0.0356180\pi\)
0.993746 + 0.111664i \(0.0356180\pi\)
\(402\) 0 0
\(403\) −16.7373 16.7373i −0.833744 0.833744i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 14.7693 + 14.7693i 0.726749 + 0.726749i
\(414\) 0 0
\(415\) 0 0
\(416\) 20.6491 1.01241
\(417\) 0 0
\(418\) 0 0
\(419\) 19.8997i 0.972166i 0.873913 + 0.486083i \(0.161575\pi\)
−0.873913 + 0.486083i \(0.838425\pi\)
\(420\) 0 0
\(421\) −26.5330 −1.29314 −0.646570 0.762855i \(-0.723797\pi\)
−0.646570 + 0.762855i \(0.723797\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 17.6627 + 17.6627i 0.853759 + 0.853759i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(434\) 28.6332i 1.37444i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 60.7995 2.89521
\(442\) −14.3405 + 14.3405i −0.682110 + 0.682110i
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −14.9544 14.9544i −0.706528 0.706528i
\(449\) 13.2665i 0.626085i −0.949739 0.313042i \(-0.898652\pi\)
0.949739 0.313042i \(-0.101348\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 24.3166i 1.14124i
\(455\) 0 0
\(456\) 0 0
\(457\) −29.3535 + 29.3535i −1.37310 + 1.37310i −0.517287 + 0.855812i \(0.673058\pi\)
−0.855812 + 0.517287i \(0.826942\pi\)
\(458\) 3.50724 + 3.50724i 0.163883 + 0.163883i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −6.11612 −0.283324
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 9.96649 + 9.96649i 0.460701 + 0.460701i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 7.75481 7.75481i 0.356944 0.356944i
\(473\) 20.0009 + 20.0009i 0.919640 + 0.919640i
\(474\) 0 0
\(475\) 0 0
\(476\) −47.2665 −2.16646
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 14.4829i 0.658312i
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −2.43275 −0.109234
\(497\) 29.5386 29.5386i 1.32499 1.32499i
\(498\) 0 0
\(499\) 4.00000i 0.179065i −0.995984 0.0895323i \(-0.971463\pi\)
0.995984 0.0895323i \(-0.0285372\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −16.3671 + 16.3671i −0.730501 + 0.730501i
\(503\) −5.66033 5.66033i −0.252381 0.252381i 0.569565 0.821946i \(-0.307112\pi\)
−0.821946 + 0.569565i \(0.807112\pi\)
\(504\) 42.9499i 1.91314i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −1.29556 1.29556i −0.0574812 0.0574812i
\(509\) 34.0000i 1.50702i −0.657434 0.753512i \(-0.728358\pi\)
0.657434 0.753512i \(-0.271642\pi\)
\(510\) 0 0
\(511\) −1.36675 −0.0604615
\(512\) 2.92270 2.92270i 0.129166 0.129166i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 39.7995 1.74365 0.871824 0.489820i \(-0.162937\pi\)
0.871824 + 0.489820i \(0.162937\pi\)
\(522\) 0 0
\(523\) −25.4761 25.4761i −1.11399 1.11399i −0.992605 0.121387i \(-0.961266\pi\)
−0.121387 0.992605i \(-0.538734\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −16.1161 −0.702696
\(527\) 32.2469 32.2469i 1.40470 1.40470i
\(528\) 0 0
\(529\) 23.0000i 1.00000i
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −8.18357 8.18357i −0.352819 0.352819i
\(539\) 67.2164i 2.89521i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 39.7836i 1.70571i
\(545\) 0 0
\(546\) 0 0
\(547\) 18.8318 18.8318i 0.805189 0.805189i −0.178713 0.983901i \(-0.557193\pi\)
0.983901 + 0.178713i \(0.0571933\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 25.6834i 1.09118i
\(555\) 0 0
\(556\) 0 0
\(557\) −32.0618 + 32.0618i −1.35850 + 1.35850i −0.482739 + 0.875764i \(0.660358\pi\)
−0.875764 + 0.482739i \(0.839642\pi\)
\(558\) 11.6322 + 11.6322i 0.492431 + 0.492431i
\(559\) 30.4327i 1.28717i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −30.8927 30.8927i −1.30197 1.30197i −0.927059 0.374915i \(-0.877672\pi\)
−0.374915 0.927059i \(-0.622328\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 3.88388 0.163252
\(567\) 33.2309 33.2309i 1.39557 1.39557i
\(568\) −15.5096 15.5096i −0.650769 0.650769i
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 11.0184 11.0184i 0.460701 0.460701i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −12.1504 −0.506266
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) −17.6920 17.6920i −0.735890 0.735890i
\(579\) 0 0
\(580\) 0 0
\(581\) −64.5330 −2.67728
\(582\) 0 0
\(583\) 0 0
\(584\) 0.717630i 0.0296957i
\(585\) 0 0
\(586\) −19.7836 −0.817254
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 34.4000 + 34.4000i 1.41264 + 1.41264i 0.739686 + 0.672953i \(0.234974\pi\)
0.672953 + 0.739686i \(0.265026\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 19.8997i 0.813082i 0.913633 + 0.406541i \(0.133265\pi\)
−0.913633 + 0.406541i \(0.866735\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) −26.0313 + 26.0313i −1.06096 + 1.06096i
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −9.10897 + 9.10897i −0.369722 + 0.369722i −0.867376 0.497654i \(-0.834195\pi\)
0.497654 + 0.867376i \(0.334195\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) −19.2019 + 19.2019i −0.776192 + 0.776192i
\(613\) 31.6917 + 31.6917i 1.28001 + 1.28001i 0.940658 + 0.339357i \(0.110209\pi\)
0.339357 + 0.940658i \(0.389791\pi\)
\(614\) 12.5171i 0.505150i
\(615\) 0 0
\(616\) −47.4829 −1.91314
\(617\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(618\) 0 0
\(619\) 46.4327i 1.86629i −0.359501 0.933145i \(-0.617053\pi\)
0.359501 0.933145i \(-0.382947\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 18.7053 18.7053i 0.750014 0.750014i
\(623\) 48.9842 + 48.9842i 1.96251 + 1.96251i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −48.0000 −1.91085 −0.955425 0.295234i \(-0.904602\pi\)
−0.955425 + 0.295234i \(0.904602\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −51.1373 + 51.1373i −2.02613 + 2.02613i
\(638\) 0 0
\(639\) 24.0000i 0.949425i
\(640\) 0 0
\(641\) 39.7995 1.57199 0.785993 0.618236i \(-0.212152\pi\)
0.785993 + 0.618236i \(0.212152\pi\)
\(642\) 0 0
\(643\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(648\) −17.4483 17.4483i −0.685435 0.685435i
\(649\) 13.2665i 0.520756i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −0.555240 + 0.555240i −0.0216620 + 0.0216620i
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 42.0000 1.63361 0.816805 0.576913i \(-0.195743\pi\)
0.816805 + 0.576913i \(0.195743\pi\)
\(662\) 3.87740 3.87740i 0.150700 0.150700i
\(663\) 0 0
\(664\) 33.8839i 1.31495i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −8.42725 8.42725i −0.326060 0.326060i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −14.2141 14.2141i −0.547911 0.547911i 0.377925 0.925836i \(-0.376638\pi\)
−0.925836 + 0.377925i \(0.876638\pi\)
\(674\) 28.8496i 1.11125i
\(675\) 0 0
\(676\) 0.350879 0.0134954
\(677\) 27.3855 27.3855i 1.05251 1.05251i 0.0539677 0.998543i \(-0.482813\pi\)
0.998543 0.0539677i \(-0.0171868\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 12.8599 12.8599i 0.492431 0.492431i
\(683\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 57.2665 2.18645
\(687\) 0 0
\(688\) −2.21168 2.21168i −0.0843196 0.0843196i
\(689\) 0 0
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) −22.7678 + 22.7678i −0.865501 + 0.865501i
\(693\) −36.7382 36.7382i −1.39557 1.39557i
\(694\) 27.4829i 1.04324i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 13.4327i 0.506266i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 53.0660i 1.99294i 0.0839773 + 0.996468i \(0.473238\pi\)
−0.0839773 + 0.996468i \(0.526762\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 25.7198 25.7198i 0.963890 0.963890i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −26.2005 −0.979159
\(717\) 0 0
\(718\) 0 0
\(719\) 46.4327i 1.73165i −0.500348 0.865825i \(-0.666794\pi\)
0.500348 0.865825i \(-0.333206\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −11.1063 + 11.1063i −0.413333 + 0.413333i
\(723\) 0 0
\(724\) 34.9340i 1.29831i
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(728\) 36.1243 + 36.1243i 1.33886 + 1.33886i
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 58.6332 2.16863
\(732\) 0 0
\(733\) −7.93989 7.93989i −0.293266 0.293266i 0.545103 0.838369i \(-0.316491\pi\)
−0.838369 + 0.545103i \(0.816491\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −16.4936 16.4936i −0.605092 0.605092i 0.336567 0.941659i \(-0.390734\pi\)
−0.941659 + 0.336567i \(0.890734\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −26.1161 −0.956179
\(747\) −26.2164 + 26.2164i −0.959209 + 0.959209i
\(748\) 21.2285 + 21.2285i 0.776192 + 0.776192i
\(749\) 99.0660i 3.61979i
\(750\) 0 0
\(751\) 32.0000 1.16770 0.583848 0.811863i \(-0.301546\pi\)
0.583848 + 0.811863i \(0.301546\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(758\) 21.0435 + 21.0435i 0.764333 + 0.764333i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 8.73350i 0.315967i
\(765\) 0 0
\(766\) 0 0
\(767\) −10.0930 + 10.0930i −0.364436 + 0.364436i
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 25.8463 25.8463i 0.930227 0.930227i
\(773\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(774\) 21.1504i 0.760235i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 15.1981 + 15.1981i 0.544877 + 0.544877i
\(779\) 0 0
\(780\) 0 0
\(781\) −26.5330 −0.949425
\(782\) 0 0
\(783\) 0 0
\(784\) 7.43275i 0.265455i
\(785\) 0 0
\(786\) 0 0
\(787\) 7.99849 7.99849i 0.285115 0.285115i −0.550030 0.835145i \(-0.685384\pi\)
0.835145 + 0.550030i \(0.185384\pi\)
\(788\) 2.83480 + 2.83480i 0.100986 + 0.100986i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) −19.2898 + 19.2898i −0.685435 + 0.685435i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 31.5990 1.12000
\(797\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 39.7995 1.40625
\(802\) 23.2644 23.2644i 0.821495 0.821495i
\(803\) 0.613841 + 0.613841i 0.0216620 + 0.0216620i
\(804\) 0 0
\(805\) 0 0
\(806\) −19.5673 −0.689227
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 55.8997i 1.95330i
\(820\) 0 0
\(821\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(822\) 0 0
\(823\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 17.2665 0.600778
\(827\) −15.3831 + 15.3831i −0.534924 + 0.534924i −0.922034 0.387110i \(-0.873473\pi\)
0.387110 + 0.922034i \(0.373473\pi\)
\(828\) 0 0
\(829\) 53.0660i 1.84306i 0.388309 + 0.921529i \(0.373059\pi\)
−0.388309 + 0.921529i \(0.626941\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 10.2194 10.2194i 0.354296 0.354296i
\(833\) −98.5236 98.5236i −3.41364 3.41364i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 11.6322 + 11.6322i 0.401828 + 0.401828i
\(839\) 56.0000i 1.93333i 0.256036 + 0.966667i \(0.417584\pi\)
−0.256036 + 0.966667i \(0.582416\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) −15.5096 + 15.5096i −0.534497 + 0.534497i
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −40.6156 + 40.6156i −1.39557 + 1.39557i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 37.1083 + 37.1083i 1.27056 + 1.27056i 0.945792 + 0.324772i \(0.105288\pi\)
0.324772 + 0.945792i \(0.394712\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 52.0159 1.77787
\(857\) 39.0763 39.0763i 1.33482 1.33482i 0.433824 0.900998i \(-0.357164\pi\)
0.900998 0.433824i \(-0.142836\pi\)
\(858\) 0 0
\(859\) 46.4327i 1.58426i −0.610349 0.792132i \(-0.708971\pi\)
0.610349 0.792132i \(-0.291029\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) −32.2469 32.2469i −1.09453 1.09453i
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 41.7846 41.7846i 1.41097 1.41097i 0.657597 0.753370i \(-0.271573\pi\)
0.753370 0.657597i \(-0.228427\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 35.5398 35.5398i 1.19669 1.19669i
\(883\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(884\) 32.3008i 1.08639i
\(885\) 0 0
\(886\) 0 0
\(887\) 35.9392 35.9392i 1.20672 1.20672i 0.234639 0.972083i \(-0.424609\pi\)
0.972083 0.234639i \(-0.0753906\pi\)
\(888\) 0 0
\(889\) 7.26650i 0.243711i
\(890\) 0 0
\(891\) −29.8496 −1.00000
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 42.9499 1.43485
\(897\) 0 0
\(898\) −7.75481 7.75481i −0.258781 0.258781i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) −27.3855 27.3855i −0.908820 0.908820i
\(909\) 0 0
\(910\) 0 0
\(911\) −59.6992 −1.97792 −0.988962 0.148168i \(-0.952662\pi\)
−0.988962 + 0.148168i \(0.952662\pi\)
\(912\) 0 0
\(913\) 28.9833 + 28.9833i 0.959209 + 0.959209i
\(914\) 34.3166i 1.13509i
\(915\) 0 0
\(916\) −7.89975 −0.261015
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 20.1859 + 20.1859i 0.664428 + 0.664428i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.0000i 0.459325i −0.973270 0.229663i \(-0.926238\pi\)
0.973270 0.229663i \(-0.0737623\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6.88801 6.88801i 0.225624 0.225624i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 29.3509 0.959364
\(937\) −34.7701 + 34.7701i −1.13589 + 1.13589i −0.146712 + 0.989179i \(0.546869\pi\)
−0.989179 + 0.146712i \(0.953131\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 1.46700i 0.0477468i
\(945\) 0 0
\(946\) 23.3826 0.760235
\(947\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(948\) 0 0
\(949\) 0.934003i 0.0303190i
\(950\) 0 0
\(951\) 0 0
\(952\) −69.5989 + 69.5989i −2.25571 + 2.25571i
\(953\) 9.16757 + 9.16757i 0.296967 + 0.296967i 0.839825 0.542858i \(-0.182658\pi\)
−0.542858 + 0.839825i \(0.682658\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 13.0000 0.419355
\(962\) 0 0
\(963\) 40.2454 + 40.2454i 1.29689 + 1.29689i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −35.1989 + 35.1989i −1.13192 + 1.13192i −0.142063 + 0.989858i \(0.545374\pi\)
−0.989858 + 0.142063i \(0.954626\pi\)
\(968\) 21.3257 + 21.3257i 0.685435 + 0.685435i
\(969\) 0 0
\(970\) 0 0
\(971\) −59.6992 −1.91584 −0.957920 0.287035i \(-0.907330\pi\)
−0.957920 + 0.287035i \(0.907330\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) 0 0
\(979\) 44.0000i 1.40625i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 6.63325 0.210712 0.105356 0.994435i \(-0.466402\pi\)
0.105356 + 0.994435i \(0.466402\pi\)
\(992\) −27.1418 + 27.1418i −0.861754 + 0.861754i
\(993\) 0 0
\(994\) 34.5330i 1.09532i
\(995\) 0 0
\(996\) 0 0
\(997\) 16.5522 16.5522i 0.524214 0.524214i −0.394627 0.918841i \(-0.629126\pi\)
0.918841 + 0.394627i \(0.129126\pi\)
\(998\) −2.33816 2.33816i −0.0740132 0.0740132i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 275.2.e.c.32.3 yes 8
5.2 odd 4 inner 275.2.e.c.43.3 yes 8
5.3 odd 4 inner 275.2.e.c.43.2 yes 8
5.4 even 2 inner 275.2.e.c.32.2 8
11.10 odd 2 inner 275.2.e.c.32.2 8
55.32 even 4 inner 275.2.e.c.43.2 yes 8
55.43 even 4 inner 275.2.e.c.43.3 yes 8
55.54 odd 2 CM 275.2.e.c.32.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
275.2.e.c.32.2 8 5.4 even 2 inner
275.2.e.c.32.2 8 11.10 odd 2 inner
275.2.e.c.32.3 yes 8 1.1 even 1 trivial
275.2.e.c.32.3 yes 8 55.54 odd 2 CM
275.2.e.c.43.2 yes 8 5.3 odd 4 inner
275.2.e.c.43.2 yes 8 55.32 even 4 inner
275.2.e.c.43.3 yes 8 5.2 odd 4 inner
275.2.e.c.43.3 yes 8 55.43 even 4 inner