Properties

Label 2738.2.a.q.1.5
Level $2738$
Weight $2$
Character 2738.1
Self dual yes
Analytic conductor $21.863$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2738,2,Mod(1,2738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2738.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2738, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2738 = 2 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2738.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-6,0,6,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.8630400734\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.37902897.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 15x^{4} - x^{3} + 60x^{2} - 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 74)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-2.18117\) of defining polynomial
Character \(\chi\) \(=\) 2738.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.18117 q^{3} +1.00000 q^{4} +1.87939 q^{5} -2.18117 q^{6} -4.09926 q^{7} -1.00000 q^{8} +1.75751 q^{9} -1.87939 q^{10} +3.34175 q^{11} +2.18117 q^{12} -1.93869 q^{13} +4.09926 q^{14} +4.09926 q^{15} +1.00000 q^{16} -4.44656 q^{17} -1.75751 q^{18} +0.0992633 q^{19} +1.87939 q^{20} -8.94120 q^{21} -3.34175 q^{22} -9.52292 q^{23} -2.18117 q^{24} -1.46791 q^{25} +1.93869 q^{26} -2.71008 q^{27} -4.09926 q^{28} -0.774576 q^{29} -4.09926 q^{30} -10.3914 q^{31} -1.00000 q^{32} +7.28893 q^{33} +4.44656 q^{34} -7.70409 q^{35} +1.75751 q^{36} -0.0992633 q^{38} -4.22861 q^{39} -1.87939 q^{40} +5.69443 q^{41} +8.94120 q^{42} +1.11986 q^{43} +3.34175 q^{44} +3.30304 q^{45} +9.52292 q^{46} -7.11448 q^{47} +2.18117 q^{48} +9.80396 q^{49} +1.46791 q^{50} -9.69871 q^{51} -1.93869 q^{52} +0.818828 q^{53} +2.71008 q^{54} +6.28044 q^{55} +4.09926 q^{56} +0.216510 q^{57} +0.774576 q^{58} -8.09926 q^{59} +4.09926 q^{60} +10.7009 q^{61} +10.3914 q^{62} -7.20451 q^{63} +1.00000 q^{64} -3.64354 q^{65} -7.28893 q^{66} +13.1663 q^{67} -4.44656 q^{68} -20.7711 q^{69} +7.70409 q^{70} -2.97316 q^{71} -1.75751 q^{72} -2.55740 q^{73} -3.20177 q^{75} +0.0992633 q^{76} -13.6987 q^{77} +4.22861 q^{78} +5.43563 q^{79} +1.87939 q^{80} -11.1837 q^{81} -5.69443 q^{82} +0.658250 q^{83} -8.94120 q^{84} -8.35680 q^{85} -1.11986 q^{86} -1.68948 q^{87} -3.34175 q^{88} -3.52523 q^{89} -3.30304 q^{90} +7.94718 q^{91} -9.52292 q^{92} -22.6655 q^{93} +7.11448 q^{94} +0.186554 q^{95} -2.18117 q^{96} -3.62024 q^{97} -9.80396 q^{98} +5.87317 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 6 q^{4} - 3 q^{7} - 6 q^{8} + 12 q^{9} - 3 q^{11} + 3 q^{14} + 3 q^{15} + 6 q^{16} - 3 q^{17} - 12 q^{18} - 21 q^{19} + 6 q^{21} + 3 q^{22} - 21 q^{23} - 18 q^{25} - 3 q^{27} - 3 q^{28}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.18117 1.25930 0.629650 0.776879i \(-0.283198\pi\)
0.629650 + 0.776879i \(0.283198\pi\)
\(4\) 1.00000 0.500000
\(5\) 1.87939 0.840487 0.420243 0.907411i \(-0.361945\pi\)
0.420243 + 0.907411i \(0.361945\pi\)
\(6\) −2.18117 −0.890460
\(7\) −4.09926 −1.54938 −0.774688 0.632344i \(-0.782093\pi\)
−0.774688 + 0.632344i \(0.782093\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.75751 0.585838
\(10\) −1.87939 −0.594314
\(11\) 3.34175 1.00758 0.503788 0.863827i \(-0.331939\pi\)
0.503788 + 0.863827i \(0.331939\pi\)
\(12\) 2.18117 0.629650
\(13\) −1.93869 −0.537695 −0.268847 0.963183i \(-0.586643\pi\)
−0.268847 + 0.963183i \(0.586643\pi\)
\(14\) 4.09926 1.09557
\(15\) 4.09926 1.05843
\(16\) 1.00000 0.250000
\(17\) −4.44656 −1.07845 −0.539225 0.842162i \(-0.681283\pi\)
−0.539225 + 0.842162i \(0.681283\pi\)
\(18\) −1.75751 −0.414250
\(19\) 0.0992633 0.0227726 0.0113863 0.999935i \(-0.496376\pi\)
0.0113863 + 0.999935i \(0.496376\pi\)
\(20\) 1.87939 0.420243
\(21\) −8.94120 −1.95113
\(22\) −3.34175 −0.712464
\(23\) −9.52292 −1.98567 −0.992833 0.119507i \(-0.961868\pi\)
−0.992833 + 0.119507i \(0.961868\pi\)
\(24\) −2.18117 −0.445230
\(25\) −1.46791 −0.293582
\(26\) 1.93869 0.380208
\(27\) −2.71008 −0.521555
\(28\) −4.09926 −0.774688
\(29\) −0.774576 −0.143835 −0.0719175 0.997411i \(-0.522912\pi\)
−0.0719175 + 0.997411i \(0.522912\pi\)
\(30\) −4.09926 −0.748420
\(31\) −10.3914 −1.86636 −0.933179 0.359413i \(-0.882977\pi\)
−0.933179 + 0.359413i \(0.882977\pi\)
\(32\) −1.00000 −0.176777
\(33\) 7.28893 1.26884
\(34\) 4.44656 0.762579
\(35\) −7.70409 −1.30223
\(36\) 1.75751 0.292919
\(37\) 0 0
\(38\) −0.0992633 −0.0161026
\(39\) −4.22861 −0.677119
\(40\) −1.87939 −0.297157
\(41\) 5.69443 0.889320 0.444660 0.895699i \(-0.353324\pi\)
0.444660 + 0.895699i \(0.353324\pi\)
\(42\) 8.94120 1.37966
\(43\) 1.11986 0.170777 0.0853884 0.996348i \(-0.472787\pi\)
0.0853884 + 0.996348i \(0.472787\pi\)
\(44\) 3.34175 0.503788
\(45\) 3.30304 0.492389
\(46\) 9.52292 1.40408
\(47\) −7.11448 −1.03775 −0.518877 0.854849i \(-0.673650\pi\)
−0.518877 + 0.854849i \(0.673650\pi\)
\(48\) 2.18117 0.314825
\(49\) 9.80396 1.40057
\(50\) 1.46791 0.207594
\(51\) −9.69871 −1.35809
\(52\) −1.93869 −0.268847
\(53\) 0.818828 0.112475 0.0562373 0.998417i \(-0.482090\pi\)
0.0562373 + 0.998417i \(0.482090\pi\)
\(54\) 2.71008 0.368795
\(55\) 6.28044 0.846854
\(56\) 4.09926 0.547787
\(57\) 0.216510 0.0286775
\(58\) 0.774576 0.101707
\(59\) −8.09926 −1.05443 −0.527217 0.849731i \(-0.676765\pi\)
−0.527217 + 0.849731i \(0.676765\pi\)
\(60\) 4.09926 0.529213
\(61\) 10.7009 1.37011 0.685056 0.728491i \(-0.259778\pi\)
0.685056 + 0.728491i \(0.259778\pi\)
\(62\) 10.3914 1.31971
\(63\) −7.20451 −0.907683
\(64\) 1.00000 0.125000
\(65\) −3.64354 −0.451925
\(66\) −7.28893 −0.897206
\(67\) 13.1663 1.60852 0.804260 0.594278i \(-0.202562\pi\)
0.804260 + 0.594278i \(0.202562\pi\)
\(68\) −4.44656 −0.539225
\(69\) −20.7711 −2.50055
\(70\) 7.70409 0.920815
\(71\) −2.97316 −0.352849 −0.176425 0.984314i \(-0.556453\pi\)
−0.176425 + 0.984314i \(0.556453\pi\)
\(72\) −1.75751 −0.207125
\(73\) −2.55740 −0.299321 −0.149660 0.988737i \(-0.547818\pi\)
−0.149660 + 0.988737i \(0.547818\pi\)
\(74\) 0 0
\(75\) −3.20177 −0.369708
\(76\) 0.0992633 0.0113863
\(77\) −13.6987 −1.56111
\(78\) 4.22861 0.478796
\(79\) 5.43563 0.611556 0.305778 0.952103i \(-0.401083\pi\)
0.305778 + 0.952103i \(0.401083\pi\)
\(80\) 1.87939 0.210122
\(81\) −11.1837 −1.24263
\(82\) −5.69443 −0.628844
\(83\) 0.658250 0.0722523 0.0361262 0.999347i \(-0.488498\pi\)
0.0361262 + 0.999347i \(0.488498\pi\)
\(84\) −8.94120 −0.975565
\(85\) −8.35680 −0.906422
\(86\) −1.11986 −0.120757
\(87\) −1.68948 −0.181132
\(88\) −3.34175 −0.356232
\(89\) −3.52523 −0.373673 −0.186837 0.982391i \(-0.559824\pi\)
−0.186837 + 0.982391i \(0.559824\pi\)
\(90\) −3.30304 −0.348171
\(91\) 7.94718 0.833091
\(92\) −9.52292 −0.992833
\(93\) −22.6655 −2.35030
\(94\) 7.11448 0.733802
\(95\) 0.186554 0.0191400
\(96\) −2.18117 −0.222615
\(97\) −3.62024 −0.367580 −0.183790 0.982966i \(-0.558837\pi\)
−0.183790 + 0.982966i \(0.558837\pi\)
\(98\) −9.80396 −0.990349
\(99\) 5.87317 0.590276
\(100\) −1.46791 −0.146791
\(101\) 3.94811 0.392852 0.196426 0.980519i \(-0.437066\pi\)
0.196426 + 0.980519i \(0.437066\pi\)
\(102\) 9.69871 0.960316
\(103\) 1.97880 0.194977 0.0974887 0.995237i \(-0.468919\pi\)
0.0974887 + 0.995237i \(0.468919\pi\)
\(104\) 1.93869 0.190104
\(105\) −16.8040 −1.63990
\(106\) −0.818828 −0.0795316
\(107\) 8.24882 0.797443 0.398722 0.917072i \(-0.369454\pi\)
0.398722 + 0.917072i \(0.369454\pi\)
\(108\) −2.71008 −0.260777
\(109\) 8.78453 0.841406 0.420703 0.907198i \(-0.361783\pi\)
0.420703 + 0.907198i \(0.361783\pi\)
\(110\) −6.28044 −0.598816
\(111\) 0 0
\(112\) −4.09926 −0.387344
\(113\) −9.97690 −0.938548 −0.469274 0.883053i \(-0.655484\pi\)
−0.469274 + 0.883053i \(0.655484\pi\)
\(114\) −0.216510 −0.0202781
\(115\) −17.8972 −1.66893
\(116\) −0.774576 −0.0719175
\(117\) −3.40727 −0.315002
\(118\) 8.09926 0.745598
\(119\) 18.2276 1.67092
\(120\) −4.09926 −0.374210
\(121\) 0.167293 0.0152085
\(122\) −10.7009 −0.968815
\(123\) 12.4205 1.11992
\(124\) −10.3914 −0.933179
\(125\) −12.1557 −1.08724
\(126\) 7.20451 0.641829
\(127\) −16.7774 −1.48875 −0.744376 0.667761i \(-0.767253\pi\)
−0.744376 + 0.667761i \(0.767253\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 2.44260 0.215059
\(130\) 3.64354 0.319559
\(131\) −1.40367 −0.122639 −0.0613194 0.998118i \(-0.519531\pi\)
−0.0613194 + 0.998118i \(0.519531\pi\)
\(132\) 7.28893 0.634420
\(133\) −0.406906 −0.0352833
\(134\) −13.1663 −1.13740
\(135\) −5.09328 −0.438360
\(136\) 4.44656 0.381289
\(137\) 12.4193 1.06105 0.530525 0.847669i \(-0.321995\pi\)
0.530525 + 0.847669i \(0.321995\pi\)
\(138\) 20.7711 1.76816
\(139\) 18.3996 1.56063 0.780315 0.625386i \(-0.215059\pi\)
0.780315 + 0.625386i \(0.215059\pi\)
\(140\) −7.70409 −0.651115
\(141\) −15.5179 −1.30684
\(142\) 2.97316 0.249502
\(143\) −6.47860 −0.541768
\(144\) 1.75751 0.146459
\(145\) −1.45573 −0.120891
\(146\) 2.55740 0.211652
\(147\) 21.3841 1.76373
\(148\) 0 0
\(149\) 12.4068 1.01640 0.508201 0.861238i \(-0.330311\pi\)
0.508201 + 0.861238i \(0.330311\pi\)
\(150\) 3.20177 0.261423
\(151\) −12.5489 −1.02121 −0.510607 0.859814i \(-0.670579\pi\)
−0.510607 + 0.859814i \(0.670579\pi\)
\(152\) −0.0992633 −0.00805132
\(153\) −7.81489 −0.631796
\(154\) 13.6987 1.10387
\(155\) −19.5295 −1.56865
\(156\) −4.22861 −0.338560
\(157\) 3.51326 0.280388 0.140194 0.990124i \(-0.455227\pi\)
0.140194 + 0.990124i \(0.455227\pi\)
\(158\) −5.43563 −0.432436
\(159\) 1.78600 0.141639
\(160\) −1.87939 −0.148578
\(161\) 39.0370 3.07654
\(162\) 11.1837 0.878673
\(163\) 2.39144 0.187312 0.0936559 0.995605i \(-0.470145\pi\)
0.0936559 + 0.995605i \(0.470145\pi\)
\(164\) 5.69443 0.444660
\(165\) 13.6987 1.06644
\(166\) −0.658250 −0.0510901
\(167\) 15.5840 1.20592 0.602962 0.797770i \(-0.293987\pi\)
0.602962 + 0.797770i \(0.293987\pi\)
\(168\) 8.94120 0.689829
\(169\) −9.24150 −0.710884
\(170\) 8.35680 0.640937
\(171\) 0.174457 0.0133410
\(172\) 1.11986 0.0853884
\(173\) −17.8772 −1.35918 −0.679589 0.733593i \(-0.737842\pi\)
−0.679589 + 0.733593i \(0.737842\pi\)
\(174\) 1.68948 0.128079
\(175\) 6.01735 0.454869
\(176\) 3.34175 0.251894
\(177\) −17.6659 −1.32785
\(178\) 3.52523 0.264227
\(179\) 20.4063 1.52524 0.762619 0.646848i \(-0.223913\pi\)
0.762619 + 0.646848i \(0.223913\pi\)
\(180\) 3.30304 0.246194
\(181\) −18.2764 −1.35848 −0.679238 0.733918i \(-0.737690\pi\)
−0.679238 + 0.733918i \(0.737690\pi\)
\(182\) −7.94718 −0.589084
\(183\) 23.3405 1.72538
\(184\) 9.52292 0.702039
\(185\) 0 0
\(186\) 22.6655 1.66192
\(187\) −14.8593 −1.08662
\(188\) −7.11448 −0.518877
\(189\) 11.1093 0.808084
\(190\) −0.186554 −0.0135340
\(191\) −5.76567 −0.417189 −0.208595 0.978002i \(-0.566889\pi\)
−0.208595 + 0.978002i \(0.566889\pi\)
\(192\) 2.18117 0.157413
\(193\) 0.359424 0.0258719 0.0129360 0.999916i \(-0.495882\pi\)
0.0129360 + 0.999916i \(0.495882\pi\)
\(194\) 3.62024 0.259918
\(195\) −7.94718 −0.569110
\(196\) 9.80396 0.700283
\(197\) 6.96601 0.496307 0.248154 0.968721i \(-0.420176\pi\)
0.248154 + 0.968721i \(0.420176\pi\)
\(198\) −5.87317 −0.417388
\(199\) −11.1779 −0.792383 −0.396191 0.918168i \(-0.629668\pi\)
−0.396191 + 0.918168i \(0.629668\pi\)
\(200\) 1.46791 0.103797
\(201\) 28.7180 2.02561
\(202\) −3.94811 −0.277788
\(203\) 3.17519 0.222855
\(204\) −9.69871 −0.679046
\(205\) 10.7020 0.747462
\(206\) −1.97880 −0.137870
\(207\) −16.7367 −1.16328
\(208\) −1.93869 −0.134424
\(209\) 0.331713 0.0229451
\(210\) 16.8040 1.15958
\(211\) −12.2103 −0.840589 −0.420295 0.907388i \(-0.638073\pi\)
−0.420295 + 0.907388i \(0.638073\pi\)
\(212\) 0.818828 0.0562373
\(213\) −6.48497 −0.444343
\(214\) −8.24882 −0.563877
\(215\) 2.10464 0.143536
\(216\) 2.71008 0.184397
\(217\) 42.5972 2.89169
\(218\) −8.78453 −0.594964
\(219\) −5.57812 −0.376935
\(220\) 6.28044 0.423427
\(221\) 8.62048 0.579876
\(222\) 0 0
\(223\) −10.7545 −0.720177 −0.360088 0.932918i \(-0.617253\pi\)
−0.360088 + 0.932918i \(0.617253\pi\)
\(224\) 4.09926 0.273894
\(225\) −2.57987 −0.171992
\(226\) 9.97690 0.663653
\(227\) 2.96526 0.196811 0.0984057 0.995146i \(-0.468626\pi\)
0.0984057 + 0.995146i \(0.468626\pi\)
\(228\) 0.216510 0.0143388
\(229\) −3.03262 −0.200401 −0.100201 0.994967i \(-0.531949\pi\)
−0.100201 + 0.994967i \(0.531949\pi\)
\(230\) 17.8972 1.18011
\(231\) −29.8793 −1.96591
\(232\) 0.774576 0.0508534
\(233\) −0.288806 −0.0189203 −0.00946016 0.999955i \(-0.503011\pi\)
−0.00946016 + 0.999955i \(0.503011\pi\)
\(234\) 3.40727 0.222740
\(235\) −13.3708 −0.872218
\(236\) −8.09926 −0.527217
\(237\) 11.8561 0.770133
\(238\) −18.2276 −1.18152
\(239\) 5.03510 0.325693 0.162847 0.986651i \(-0.447932\pi\)
0.162847 + 0.986651i \(0.447932\pi\)
\(240\) 4.09926 0.264606
\(241\) 17.3760 1.11928 0.559642 0.828734i \(-0.310939\pi\)
0.559642 + 0.828734i \(0.310939\pi\)
\(242\) −0.167293 −0.0107540
\(243\) −16.2633 −1.04329
\(244\) 10.7009 0.685056
\(245\) 18.4254 1.17716
\(246\) −12.4205 −0.791904
\(247\) −0.192440 −0.0122447
\(248\) 10.3914 0.659857
\(249\) 1.43576 0.0909874
\(250\) 12.1557 0.768794
\(251\) 1.75569 0.110818 0.0554090 0.998464i \(-0.482354\pi\)
0.0554090 + 0.998464i \(0.482354\pi\)
\(252\) −7.20451 −0.453841
\(253\) −31.8232 −2.00071
\(254\) 16.7774 1.05271
\(255\) −18.2276 −1.14146
\(256\) 1.00000 0.0625000
\(257\) 12.7541 0.795577 0.397789 0.917477i \(-0.369778\pi\)
0.397789 + 0.917477i \(0.369778\pi\)
\(258\) −2.44260 −0.152070
\(259\) 0 0
\(260\) −3.64354 −0.225963
\(261\) −1.36133 −0.0842640
\(262\) 1.40367 0.0867188
\(263\) −26.3651 −1.62574 −0.812871 0.582444i \(-0.802096\pi\)
−0.812871 + 0.582444i \(0.802096\pi\)
\(264\) −7.28893 −0.448603
\(265\) 1.53889 0.0945334
\(266\) 0.406906 0.0249490
\(267\) −7.68913 −0.470567
\(268\) 13.1663 0.804260
\(269\) 13.6058 0.829559 0.414779 0.909922i \(-0.363859\pi\)
0.414779 + 0.909922i \(0.363859\pi\)
\(270\) 5.09328 0.309967
\(271\) −4.31590 −0.262172 −0.131086 0.991371i \(-0.541846\pi\)
−0.131086 + 0.991371i \(0.541846\pi\)
\(272\) −4.44656 −0.269612
\(273\) 17.3342 1.04911
\(274\) −12.4193 −0.750275
\(275\) −4.90539 −0.295806
\(276\) −20.7711 −1.25028
\(277\) 3.49344 0.209900 0.104950 0.994477i \(-0.466532\pi\)
0.104950 + 0.994477i \(0.466532\pi\)
\(278\) −18.3996 −1.10353
\(279\) −18.2631 −1.09338
\(280\) 7.70409 0.460408
\(281\) 7.33775 0.437734 0.218867 0.975755i \(-0.429764\pi\)
0.218867 + 0.975755i \(0.429764\pi\)
\(282\) 15.5179 0.924078
\(283\) −14.0029 −0.832384 −0.416192 0.909277i \(-0.636636\pi\)
−0.416192 + 0.909277i \(0.636636\pi\)
\(284\) −2.97316 −0.176425
\(285\) 0.406906 0.0241031
\(286\) 6.47860 0.383088
\(287\) −23.3430 −1.37789
\(288\) −1.75751 −0.103562
\(289\) 2.77189 0.163053
\(290\) 1.45573 0.0854832
\(291\) −7.89638 −0.462894
\(292\) −2.55740 −0.149660
\(293\) −25.2747 −1.47657 −0.738283 0.674491i \(-0.764363\pi\)
−0.738283 + 0.674491i \(0.764363\pi\)
\(294\) −21.3841 −1.24715
\(295\) −15.2216 −0.886238
\(296\) 0 0
\(297\) −9.05640 −0.525506
\(298\) −12.4068 −0.718705
\(299\) 18.4620 1.06768
\(300\) −3.20177 −0.184854
\(301\) −4.59059 −0.264597
\(302\) 12.5489 0.722108
\(303\) 8.61152 0.494719
\(304\) 0.0992633 0.00569314
\(305\) 20.1111 1.15156
\(306\) 7.81489 0.446747
\(307\) −24.5991 −1.40394 −0.701972 0.712205i \(-0.747697\pi\)
−0.701972 + 0.712205i \(0.747697\pi\)
\(308\) −13.6987 −0.780557
\(309\) 4.31611 0.245535
\(310\) 19.5295 1.10920
\(311\) −5.20715 −0.295270 −0.147635 0.989042i \(-0.547166\pi\)
−0.147635 + 0.989042i \(0.547166\pi\)
\(312\) 4.22861 0.239398
\(313\) −7.23640 −0.409025 −0.204513 0.978864i \(-0.565561\pi\)
−0.204513 + 0.978864i \(0.565561\pi\)
\(314\) −3.51326 −0.198264
\(315\) −13.5400 −0.762895
\(316\) 5.43563 0.305778
\(317\) −13.3490 −0.749755 −0.374878 0.927074i \(-0.622315\pi\)
−0.374878 + 0.927074i \(0.622315\pi\)
\(318\) −1.78600 −0.100154
\(319\) −2.58844 −0.144925
\(320\) 1.87939 0.105061
\(321\) 17.9921 1.00422
\(322\) −39.0370 −2.17545
\(323\) −0.441380 −0.0245591
\(324\) −11.1837 −0.621316
\(325\) 2.84582 0.157858
\(326\) −2.39144 −0.132449
\(327\) 19.1606 1.05958
\(328\) −5.69443 −0.314422
\(329\) 29.1641 1.60787
\(330\) −13.6987 −0.754089
\(331\) 4.57313 0.251362 0.125681 0.992071i \(-0.459888\pi\)
0.125681 + 0.992071i \(0.459888\pi\)
\(332\) 0.658250 0.0361262
\(333\) 0 0
\(334\) −15.5840 −0.852717
\(335\) 24.7446 1.35194
\(336\) −8.94120 −0.487782
\(337\) 3.25330 0.177219 0.0886094 0.996066i \(-0.471758\pi\)
0.0886094 + 0.996066i \(0.471758\pi\)
\(338\) 9.24150 0.502671
\(339\) −21.7613 −1.18191
\(340\) −8.35680 −0.453211
\(341\) −34.7256 −1.88050
\(342\) −0.174457 −0.00943353
\(343\) −11.4942 −0.620627
\(344\) −1.11986 −0.0603787
\(345\) −39.0370 −2.10168
\(346\) 17.8772 0.961084
\(347\) −24.4774 −1.31402 −0.657008 0.753884i \(-0.728178\pi\)
−0.657008 + 0.753884i \(0.728178\pi\)
\(348\) −1.68948 −0.0905658
\(349\) 5.70239 0.305242 0.152621 0.988285i \(-0.451229\pi\)
0.152621 + 0.988285i \(0.451229\pi\)
\(350\) −6.01735 −0.321641
\(351\) 5.25399 0.280437
\(352\) −3.34175 −0.178116
\(353\) −24.4340 −1.30049 −0.650245 0.759725i \(-0.725334\pi\)
−0.650245 + 0.759725i \(0.725334\pi\)
\(354\) 17.6659 0.938931
\(355\) −5.58771 −0.296565
\(356\) −3.52523 −0.186837
\(357\) 39.7576 2.10419
\(358\) −20.4063 −1.07851
\(359\) 18.7092 0.987435 0.493717 0.869622i \(-0.335638\pi\)
0.493717 + 0.869622i \(0.335638\pi\)
\(360\) −3.30304 −0.174086
\(361\) −18.9901 −0.999481
\(362\) 18.2764 0.960588
\(363\) 0.364896 0.0191521
\(364\) 7.94718 0.416546
\(365\) −4.80633 −0.251575
\(366\) −23.3405 −1.22003
\(367\) 33.7230 1.76032 0.880162 0.474673i \(-0.157434\pi\)
0.880162 + 0.474673i \(0.157434\pi\)
\(368\) −9.52292 −0.496417
\(369\) 10.0080 0.520997
\(370\) 0 0
\(371\) −3.35659 −0.174265
\(372\) −22.6655 −1.17515
\(373\) 31.4347 1.62763 0.813813 0.581127i \(-0.197388\pi\)
0.813813 + 0.581127i \(0.197388\pi\)
\(374\) 14.8593 0.768356
\(375\) −26.5137 −1.36916
\(376\) 7.11448 0.366901
\(377\) 1.50166 0.0773394
\(378\) −11.1093 −0.571402
\(379\) 6.96691 0.357866 0.178933 0.983861i \(-0.442735\pi\)
0.178933 + 0.983861i \(0.442735\pi\)
\(380\) 0.186554 0.00957002
\(381\) −36.5944 −1.87479
\(382\) 5.76567 0.294997
\(383\) 2.87727 0.147022 0.0735109 0.997294i \(-0.476580\pi\)
0.0735109 + 0.997294i \(0.476580\pi\)
\(384\) −2.18117 −0.111307
\(385\) −25.7452 −1.31209
\(386\) −0.359424 −0.0182942
\(387\) 1.96817 0.100047
\(388\) −3.62024 −0.183790
\(389\) 11.8116 0.598873 0.299436 0.954116i \(-0.403201\pi\)
0.299436 + 0.954116i \(0.403201\pi\)
\(390\) 7.94718 0.402421
\(391\) 42.3442 2.14144
\(392\) −9.80396 −0.495175
\(393\) −3.06164 −0.154439
\(394\) −6.96601 −0.350942
\(395\) 10.2156 0.514005
\(396\) 5.87317 0.295138
\(397\) −31.3125 −1.57153 −0.785765 0.618525i \(-0.787730\pi\)
−0.785765 + 0.618525i \(0.787730\pi\)
\(398\) 11.1779 0.560299
\(399\) −0.887533 −0.0444322
\(400\) −1.46791 −0.0733956
\(401\) 14.0281 0.700531 0.350266 0.936650i \(-0.386091\pi\)
0.350266 + 0.936650i \(0.386091\pi\)
\(402\) −28.7180 −1.43232
\(403\) 20.1457 1.00353
\(404\) 3.94811 0.196426
\(405\) −21.0185 −1.04442
\(406\) −3.17519 −0.157582
\(407\) 0 0
\(408\) 9.69871 0.480158
\(409\) 0.0810699 0.00400865 0.00200432 0.999998i \(-0.499362\pi\)
0.00200432 + 0.999998i \(0.499362\pi\)
\(410\) −10.7020 −0.528535
\(411\) 27.0886 1.33618
\(412\) 1.97880 0.0974887
\(413\) 33.2010 1.63372
\(414\) 16.7367 0.822562
\(415\) 1.23711 0.0607271
\(416\) 1.93869 0.0950519
\(417\) 40.1326 1.96530
\(418\) −0.331713 −0.0162246
\(419\) 4.63611 0.226489 0.113244 0.993567i \(-0.463876\pi\)
0.113244 + 0.993567i \(0.463876\pi\)
\(420\) −16.8040 −0.819949
\(421\) 19.3222 0.941706 0.470853 0.882212i \(-0.343946\pi\)
0.470853 + 0.882212i \(0.343946\pi\)
\(422\) 12.2103 0.594386
\(423\) −12.5038 −0.607955
\(424\) −0.818828 −0.0397658
\(425\) 6.52715 0.316613
\(426\) 6.48497 0.314198
\(427\) −43.8659 −2.12282
\(428\) 8.24882 0.398722
\(429\) −14.1310 −0.682249
\(430\) −2.10464 −0.101495
\(431\) −7.54172 −0.363272 −0.181636 0.983366i \(-0.558139\pi\)
−0.181636 + 0.983366i \(0.558139\pi\)
\(432\) −2.71008 −0.130389
\(433\) 29.8339 1.43373 0.716863 0.697214i \(-0.245577\pi\)
0.716863 + 0.697214i \(0.245577\pi\)
\(434\) −42.5972 −2.04473
\(435\) −3.17519 −0.152239
\(436\) 8.78453 0.420703
\(437\) −0.945277 −0.0452187
\(438\) 5.57812 0.266533
\(439\) −21.9541 −1.04781 −0.523906 0.851776i \(-0.675526\pi\)
−0.523906 + 0.851776i \(0.675526\pi\)
\(440\) −6.28044 −0.299408
\(441\) 17.2306 0.820504
\(442\) −8.62048 −0.410034
\(443\) −34.6241 −1.64504 −0.822520 0.568736i \(-0.807433\pi\)
−0.822520 + 0.568736i \(0.807433\pi\)
\(444\) 0 0
\(445\) −6.62526 −0.314068
\(446\) 10.7545 0.509242
\(447\) 27.0613 1.27996
\(448\) −4.09926 −0.193672
\(449\) 19.9414 0.941093 0.470547 0.882375i \(-0.344057\pi\)
0.470547 + 0.882375i \(0.344057\pi\)
\(450\) 2.57987 0.121616
\(451\) 19.0294 0.896057
\(452\) −9.97690 −0.469274
\(453\) −27.3713 −1.28602
\(454\) −2.96526 −0.139167
\(455\) 14.9358 0.700202
\(456\) −0.216510 −0.0101390
\(457\) −32.2388 −1.50807 −0.754034 0.656835i \(-0.771895\pi\)
−0.754034 + 0.656835i \(0.771895\pi\)
\(458\) 3.03262 0.141705
\(459\) 12.0505 0.562470
\(460\) −17.8972 −0.834463
\(461\) −7.32821 −0.341309 −0.170654 0.985331i \(-0.554588\pi\)
−0.170654 + 0.985331i \(0.554588\pi\)
\(462\) 29.8793 1.39011
\(463\) −6.48631 −0.301444 −0.150722 0.988576i \(-0.548160\pi\)
−0.150722 + 0.988576i \(0.548160\pi\)
\(464\) −0.774576 −0.0359588
\(465\) −42.5972 −1.97540
\(466\) 0.288806 0.0133787
\(467\) 11.9858 0.554635 0.277317 0.960778i \(-0.410555\pi\)
0.277317 + 0.960778i \(0.410555\pi\)
\(468\) −3.40727 −0.157501
\(469\) −53.9721 −2.49220
\(470\) 13.3708 0.616751
\(471\) 7.66302 0.353093
\(472\) 8.09926 0.372799
\(473\) 3.74229 0.172070
\(474\) −11.8561 −0.544566
\(475\) −0.145710 −0.00668562
\(476\) 18.2276 0.835462
\(477\) 1.43910 0.0658919
\(478\) −5.03510 −0.230300
\(479\) −22.6922 −1.03683 −0.518417 0.855128i \(-0.673478\pi\)
−0.518417 + 0.855128i \(0.673478\pi\)
\(480\) −4.09926 −0.187105
\(481\) 0 0
\(482\) −17.3760 −0.791454
\(483\) 85.1464 3.87429
\(484\) 0.167293 0.00760425
\(485\) −6.80383 −0.308946
\(486\) 16.2633 0.737719
\(487\) −12.3108 −0.557856 −0.278928 0.960312i \(-0.589979\pi\)
−0.278928 + 0.960312i \(0.589979\pi\)
\(488\) −10.7009 −0.484408
\(489\) 5.21614 0.235882
\(490\) −18.4254 −0.832375
\(491\) 1.15080 0.0519347 0.0259674 0.999663i \(-0.491733\pi\)
0.0259674 + 0.999663i \(0.491733\pi\)
\(492\) 12.4205 0.559961
\(493\) 3.44420 0.155119
\(494\) 0.192440 0.00865830
\(495\) 11.0379 0.496119
\(496\) −10.3914 −0.466589
\(497\) 12.1878 0.546696
\(498\) −1.43576 −0.0643378
\(499\) −27.9156 −1.24967 −0.624837 0.780755i \(-0.714834\pi\)
−0.624837 + 0.780755i \(0.714834\pi\)
\(500\) −12.1557 −0.543619
\(501\) 33.9913 1.51862
\(502\) −1.75569 −0.0783602
\(503\) 16.3677 0.729800 0.364900 0.931047i \(-0.381103\pi\)
0.364900 + 0.931047i \(0.381103\pi\)
\(504\) 7.20451 0.320914
\(505\) 7.42003 0.330187
\(506\) 31.8232 1.41471
\(507\) −20.1573 −0.895217
\(508\) −16.7774 −0.744376
\(509\) 4.33404 0.192103 0.0960514 0.995376i \(-0.469379\pi\)
0.0960514 + 0.995376i \(0.469379\pi\)
\(510\) 18.2276 0.807133
\(511\) 10.4834 0.463760
\(512\) −1.00000 −0.0441942
\(513\) −0.269011 −0.0118771
\(514\) −12.7541 −0.562558
\(515\) 3.71893 0.163876
\(516\) 2.44260 0.107530
\(517\) −23.7748 −1.04561
\(518\) 0 0
\(519\) −38.9932 −1.71161
\(520\) 3.64354 0.159780
\(521\) 1.87292 0.0820542 0.0410271 0.999158i \(-0.486937\pi\)
0.0410271 + 0.999158i \(0.486937\pi\)
\(522\) 1.36133 0.0595837
\(523\) −37.0562 −1.62035 −0.810177 0.586186i \(-0.800629\pi\)
−0.810177 + 0.586186i \(0.800629\pi\)
\(524\) −1.40367 −0.0613194
\(525\) 13.1249 0.572817
\(526\) 26.3651 1.14957
\(527\) 46.2061 2.01277
\(528\) 7.28893 0.317210
\(529\) 67.6861 2.94287
\(530\) −1.53889 −0.0668452
\(531\) −14.2346 −0.617727
\(532\) −0.406906 −0.0176416
\(533\) −11.0397 −0.478183
\(534\) 7.68913 0.332741
\(535\) 15.5027 0.670240
\(536\) −13.1663 −0.568698
\(537\) 44.5096 1.92073
\(538\) −13.6058 −0.586587
\(539\) 32.7624 1.41118
\(540\) −5.09328 −0.219180
\(541\) −15.5062 −0.666665 −0.333332 0.942809i \(-0.608173\pi\)
−0.333332 + 0.942809i \(0.608173\pi\)
\(542\) 4.31590 0.185384
\(543\) −39.8641 −1.71073
\(544\) 4.44656 0.190645
\(545\) 16.5095 0.707190
\(546\) −17.3342 −0.741834
\(547\) 41.1850 1.76094 0.880472 0.474099i \(-0.157226\pi\)
0.880472 + 0.474099i \(0.157226\pi\)
\(548\) 12.4193 0.530525
\(549\) 18.8070 0.802663
\(550\) 4.90539 0.209167
\(551\) −0.0768869 −0.00327549
\(552\) 20.7711 0.884078
\(553\) −22.2821 −0.947531
\(554\) −3.49344 −0.148422
\(555\) 0 0
\(556\) 18.3996 0.780315
\(557\) 12.2046 0.517126 0.258563 0.965994i \(-0.416751\pi\)
0.258563 + 0.965994i \(0.416751\pi\)
\(558\) 18.2631 0.773138
\(559\) −2.17105 −0.0918258
\(560\) −7.70409 −0.325557
\(561\) −32.4107 −1.36838
\(562\) −7.33775 −0.309524
\(563\) 11.4193 0.481266 0.240633 0.970616i \(-0.422645\pi\)
0.240633 + 0.970616i \(0.422645\pi\)
\(564\) −15.5179 −0.653421
\(565\) −18.7504 −0.788837
\(566\) 14.0029 0.588585
\(567\) 45.8449 1.92530
\(568\) 2.97316 0.124751
\(569\) 22.3465 0.936812 0.468406 0.883513i \(-0.344828\pi\)
0.468406 + 0.883513i \(0.344828\pi\)
\(570\) −0.406906 −0.0170434
\(571\) −13.2022 −0.552494 −0.276247 0.961087i \(-0.589091\pi\)
−0.276247 + 0.961087i \(0.589091\pi\)
\(572\) −6.47860 −0.270884
\(573\) −12.5759 −0.525367
\(574\) 23.3430 0.974316
\(575\) 13.9788 0.582956
\(576\) 1.75751 0.0732297
\(577\) −29.3529 −1.22198 −0.610989 0.791639i \(-0.709228\pi\)
−0.610989 + 0.791639i \(0.709228\pi\)
\(578\) −2.77189 −0.115296
\(579\) 0.783966 0.0325805
\(580\) −1.45573 −0.0604457
\(581\) −2.69834 −0.111946
\(582\) 7.89638 0.327315
\(583\) 2.73632 0.113327
\(584\) 2.55740 0.105826
\(585\) −6.40356 −0.264755
\(586\) 25.2747 1.04409
\(587\) 21.2405 0.876690 0.438345 0.898807i \(-0.355565\pi\)
0.438345 + 0.898807i \(0.355565\pi\)
\(588\) 21.3841 0.881867
\(589\) −1.03149 −0.0425017
\(590\) 15.2216 0.626665
\(591\) 15.1941 0.625000
\(592\) 0 0
\(593\) 31.4119 1.28993 0.644965 0.764212i \(-0.276872\pi\)
0.644965 + 0.764212i \(0.276872\pi\)
\(594\) 9.05640 0.371589
\(595\) 34.2567 1.40439
\(596\) 12.4068 0.508201
\(597\) −24.3810 −0.997848
\(598\) −18.4620 −0.754965
\(599\) −20.3033 −0.829570 −0.414785 0.909919i \(-0.636143\pi\)
−0.414785 + 0.909919i \(0.636143\pi\)
\(600\) 3.20177 0.130712
\(601\) −44.5828 −1.81857 −0.909286 0.416171i \(-0.863372\pi\)
−0.909286 + 0.416171i \(0.863372\pi\)
\(602\) 4.59059 0.187099
\(603\) 23.1400 0.942332
\(604\) −12.5489 −0.510607
\(605\) 0.314409 0.0127825
\(606\) −8.61152 −0.349819
\(607\) 20.1087 0.816188 0.408094 0.912940i \(-0.366194\pi\)
0.408094 + 0.912940i \(0.366194\pi\)
\(608\) −0.0992633 −0.00402566
\(609\) 6.92564 0.280641
\(610\) −20.1111 −0.814276
\(611\) 13.7927 0.557994
\(612\) −7.81489 −0.315898
\(613\) 32.2195 1.30133 0.650667 0.759363i \(-0.274489\pi\)
0.650667 + 0.759363i \(0.274489\pi\)
\(614\) 24.5991 0.992738
\(615\) 23.3430 0.941279
\(616\) 13.6987 0.551937
\(617\) 38.9312 1.56731 0.783656 0.621195i \(-0.213353\pi\)
0.783656 + 0.621195i \(0.213353\pi\)
\(618\) −4.31611 −0.173619
\(619\) −26.3624 −1.05959 −0.529796 0.848125i \(-0.677732\pi\)
−0.529796 + 0.848125i \(0.677732\pi\)
\(620\) −19.5295 −0.784324
\(621\) 25.8079 1.03563
\(622\) 5.20715 0.208788
\(623\) 14.4508 0.578961
\(624\) −4.22861 −0.169280
\(625\) −15.5057 −0.620227
\(626\) 7.23640 0.289225
\(627\) 0.723524 0.0288947
\(628\) 3.51326 0.140194
\(629\) 0 0
\(630\) 13.5400 0.539448
\(631\) −41.3133 −1.64466 −0.822328 0.569013i \(-0.807325\pi\)
−0.822328 + 0.569013i \(0.807325\pi\)
\(632\) −5.43563 −0.216218
\(633\) −26.6327 −1.05855
\(634\) 13.3490 0.530157
\(635\) −31.5312 −1.25128
\(636\) 1.78600 0.0708197
\(637\) −19.0068 −0.753077
\(638\) 2.58844 0.102477
\(639\) −5.22537 −0.206712
\(640\) −1.87939 −0.0742892
\(641\) −43.7391 −1.72759 −0.863795 0.503844i \(-0.831919\pi\)
−0.863795 + 0.503844i \(0.831919\pi\)
\(642\) −17.9921 −0.710091
\(643\) 3.31553 0.130752 0.0653759 0.997861i \(-0.479175\pi\)
0.0653759 + 0.997861i \(0.479175\pi\)
\(644\) 39.0370 1.53827
\(645\) 4.59059 0.180754
\(646\) 0.441380 0.0173659
\(647\) 22.8404 0.897950 0.448975 0.893544i \(-0.351789\pi\)
0.448975 + 0.893544i \(0.351789\pi\)
\(648\) 11.1837 0.439337
\(649\) −27.0657 −1.06242
\(650\) −2.84582 −0.111622
\(651\) 92.9119 3.64151
\(652\) 2.39144 0.0936559
\(653\) −2.12737 −0.0832505 −0.0416252 0.999133i \(-0.513254\pi\)
−0.0416252 + 0.999133i \(0.513254\pi\)
\(654\) −19.1606 −0.749238
\(655\) −2.63803 −0.103076
\(656\) 5.69443 0.222330
\(657\) −4.49466 −0.175353
\(658\) −29.1641 −1.13694
\(659\) −8.56624 −0.333693 −0.166847 0.985983i \(-0.553358\pi\)
−0.166847 + 0.985983i \(0.553358\pi\)
\(660\) 13.6987 0.533222
\(661\) −0.801614 −0.0311792 −0.0155896 0.999878i \(-0.504963\pi\)
−0.0155896 + 0.999878i \(0.504963\pi\)
\(662\) −4.57313 −0.177740
\(663\) 18.8028 0.730239
\(664\) −0.658250 −0.0255451
\(665\) −0.764734 −0.0296551
\(666\) 0 0
\(667\) 7.37622 0.285609
\(668\) 15.5840 0.602962
\(669\) −23.4575 −0.906919
\(670\) −24.7446 −0.955966
\(671\) 35.7598 1.38049
\(672\) 8.94120 0.344914
\(673\) 43.0383 1.65901 0.829503 0.558502i \(-0.188624\pi\)
0.829503 + 0.558502i \(0.188624\pi\)
\(674\) −3.25330 −0.125313
\(675\) 3.97815 0.153119
\(676\) −9.24150 −0.355442
\(677\) 19.9943 0.768444 0.384222 0.923241i \(-0.374470\pi\)
0.384222 + 0.923241i \(0.374470\pi\)
\(678\) 21.7613 0.835739
\(679\) 14.8403 0.569520
\(680\) 8.35680 0.320469
\(681\) 6.46775 0.247845
\(682\) 34.7256 1.32971
\(683\) −36.8290 −1.40922 −0.704611 0.709594i \(-0.748878\pi\)
−0.704611 + 0.709594i \(0.748878\pi\)
\(684\) 0.174457 0.00667051
\(685\) 23.3406 0.891798
\(686\) 11.4942 0.438849
\(687\) −6.61468 −0.252366
\(688\) 1.11986 0.0426942
\(689\) −1.58745 −0.0604770
\(690\) 39.0370 1.48611
\(691\) 0.878837 0.0334325 0.0167163 0.999860i \(-0.494679\pi\)
0.0167163 + 0.999860i \(0.494679\pi\)
\(692\) −17.8772 −0.679589
\(693\) −24.0757 −0.914559
\(694\) 24.4774 0.929149
\(695\) 34.5799 1.31169
\(696\) 1.68948 0.0640397
\(697\) −25.3206 −0.959087
\(698\) −5.70239 −0.215839
\(699\) −0.629936 −0.0238264
\(700\) 6.01735 0.227435
\(701\) 20.8420 0.787193 0.393596 0.919283i \(-0.371231\pi\)
0.393596 + 0.919283i \(0.371231\pi\)
\(702\) −5.25399 −0.198299
\(703\) 0 0
\(704\) 3.34175 0.125947
\(705\) −29.1641 −1.09838
\(706\) 24.4340 0.919585
\(707\) −16.1844 −0.608676
\(708\) −17.6659 −0.663925
\(709\) 21.6348 0.812512 0.406256 0.913759i \(-0.366834\pi\)
0.406256 + 0.913759i \(0.366834\pi\)
\(710\) 5.58771 0.209703
\(711\) 9.55319 0.358273
\(712\) 3.52523 0.132114
\(713\) 98.9569 3.70596
\(714\) −39.7576 −1.48789
\(715\) −12.1758 −0.455349
\(716\) 20.4063 0.762619
\(717\) 10.9824 0.410146
\(718\) −18.7092 −0.698222
\(719\) 25.6877 0.957991 0.478996 0.877817i \(-0.341001\pi\)
0.478996 + 0.877817i \(0.341001\pi\)
\(720\) 3.30304 0.123097
\(721\) −8.11164 −0.302093
\(722\) 18.9901 0.706740
\(723\) 37.9000 1.40952
\(724\) −18.2764 −0.679238
\(725\) 1.13701 0.0422274
\(726\) −0.364896 −0.0135426
\(727\) −26.6751 −0.989326 −0.494663 0.869085i \(-0.664709\pi\)
−0.494663 + 0.869085i \(0.664709\pi\)
\(728\) −7.94718 −0.294542
\(729\) −1.92204 −0.0711865
\(730\) 4.80633 0.177890
\(731\) −4.97952 −0.184174
\(732\) 23.3405 0.862691
\(733\) −11.3802 −0.420336 −0.210168 0.977665i \(-0.567401\pi\)
−0.210168 + 0.977665i \(0.567401\pi\)
\(734\) −33.7230 −1.24474
\(735\) 40.1890 1.48239
\(736\) 9.52292 0.351020
\(737\) 43.9985 1.62071
\(738\) −10.0080 −0.368401
\(739\) 3.18059 0.117000 0.0584999 0.998287i \(-0.481368\pi\)
0.0584999 + 0.998287i \(0.481368\pi\)
\(740\) 0 0
\(741\) −0.419746 −0.0154197
\(742\) 3.35659 0.123224
\(743\) −52.9609 −1.94295 −0.971473 0.237151i \(-0.923786\pi\)
−0.971473 + 0.237151i \(0.923786\pi\)
\(744\) 22.6655 0.830958
\(745\) 23.3171 0.854273
\(746\) −31.4347 −1.15091
\(747\) 1.15688 0.0423281
\(748\) −14.8593 −0.543309
\(749\) −33.8141 −1.23554
\(750\) 26.5137 0.968142
\(751\) −6.42966 −0.234621 −0.117311 0.993095i \(-0.537427\pi\)
−0.117311 + 0.993095i \(0.537427\pi\)
\(752\) −7.11448 −0.259438
\(753\) 3.82946 0.139553
\(754\) −1.50166 −0.0546872
\(755\) −23.5842 −0.858317
\(756\) 11.1093 0.404042
\(757\) 31.7443 1.15377 0.576883 0.816827i \(-0.304269\pi\)
0.576883 + 0.816827i \(0.304269\pi\)
\(758\) −6.96691 −0.253050
\(759\) −69.4119 −2.51949
\(760\) −0.186554 −0.00676702
\(761\) −23.0835 −0.836778 −0.418389 0.908268i \(-0.637405\pi\)
−0.418389 + 0.908268i \(0.637405\pi\)
\(762\) 36.5944 1.32567
\(763\) −36.0101 −1.30365
\(764\) −5.76567 −0.208595
\(765\) −14.6872 −0.531016
\(766\) −2.87727 −0.103960
\(767\) 15.7019 0.566964
\(768\) 2.18117 0.0787063
\(769\) −47.1598 −1.70062 −0.850312 0.526278i \(-0.823587\pi\)
−0.850312 + 0.526278i \(0.823587\pi\)
\(770\) 25.7452 0.927791
\(771\) 27.8188 1.00187
\(772\) 0.359424 0.0129360
\(773\) −4.00160 −0.143927 −0.0719637 0.997407i \(-0.522927\pi\)
−0.0719637 + 0.997407i \(0.522927\pi\)
\(774\) −1.96817 −0.0707442
\(775\) 15.2537 0.547929
\(776\) 3.62024 0.129959
\(777\) 0 0
\(778\) −11.8116 −0.423467
\(779\) 0.565248 0.0202521
\(780\) −7.94718 −0.284555
\(781\) −9.93556 −0.355522
\(782\) −42.3442 −1.51423
\(783\) 2.09916 0.0750179
\(784\) 9.80396 0.350141
\(785\) 6.60276 0.235663
\(786\) 3.06164 0.109205
\(787\) 11.5669 0.412315 0.206157 0.978519i \(-0.433904\pi\)
0.206157 + 0.978519i \(0.433904\pi\)
\(788\) 6.96601 0.248154
\(789\) −57.5068 −2.04730
\(790\) −10.2156 −0.363456
\(791\) 40.8979 1.45416
\(792\) −5.87317 −0.208694
\(793\) −20.7457 −0.736702
\(794\) 31.3125 1.11124
\(795\) 3.35659 0.119046
\(796\) −11.1779 −0.396191
\(797\) 36.6547 1.29838 0.649189 0.760627i \(-0.275109\pi\)
0.649189 + 0.760627i \(0.275109\pi\)
\(798\) 0.887533 0.0314183
\(799\) 31.6349 1.11916
\(800\) 1.46791 0.0518985
\(801\) −6.19564 −0.218912
\(802\) −14.0281 −0.495351
\(803\) −8.54618 −0.301588
\(804\) 28.7180 1.01281
\(805\) 73.3655 2.58579
\(806\) −20.1457 −0.709603
\(807\) 29.6765 1.04466
\(808\) −3.94811 −0.138894
\(809\) 7.79653 0.274112 0.137056 0.990563i \(-0.456236\pi\)
0.137056 + 0.990563i \(0.456236\pi\)
\(810\) 21.0185 0.738513
\(811\) −29.7682 −1.04530 −0.522652 0.852546i \(-0.675057\pi\)
−0.522652 + 0.852546i \(0.675057\pi\)
\(812\) 3.17519 0.111427
\(813\) −9.41372 −0.330154
\(814\) 0 0
\(815\) 4.49443 0.157433
\(816\) −9.69871 −0.339523
\(817\) 0.111161 0.00388902
\(818\) −0.0810699 −0.00283454
\(819\) 13.9673 0.488056
\(820\) 10.7020 0.373731
\(821\) 39.2154 1.36863 0.684313 0.729188i \(-0.260102\pi\)
0.684313 + 0.729188i \(0.260102\pi\)
\(822\) −27.0886 −0.944822
\(823\) −12.1146 −0.422288 −0.211144 0.977455i \(-0.567719\pi\)
−0.211144 + 0.977455i \(0.567719\pi\)
\(824\) −1.97880 −0.0689349
\(825\) −10.6995 −0.372509
\(826\) −33.2010 −1.15521
\(827\) 14.0447 0.488384 0.244192 0.969727i \(-0.421477\pi\)
0.244192 + 0.969727i \(0.421477\pi\)
\(828\) −16.7367 −0.581639
\(829\) −32.0629 −1.11359 −0.556796 0.830649i \(-0.687969\pi\)
−0.556796 + 0.830649i \(0.687969\pi\)
\(830\) −1.23711 −0.0429405
\(831\) 7.61980 0.264328
\(832\) −1.93869 −0.0672118
\(833\) −43.5939 −1.51044
\(834\) −40.1326 −1.38968
\(835\) 29.2883 1.01356
\(836\) 0.331713 0.0114725
\(837\) 28.1616 0.973407
\(838\) −4.63611 −0.160152
\(839\) −11.0541 −0.381631 −0.190815 0.981626i \(-0.561113\pi\)
−0.190815 + 0.981626i \(0.561113\pi\)
\(840\) 16.8040 0.579792
\(841\) −28.4000 −0.979311
\(842\) −19.3222 −0.665887
\(843\) 16.0049 0.551238
\(844\) −12.2103 −0.420295
\(845\) −17.3683 −0.597489
\(846\) 12.5038 0.429889
\(847\) −0.685780 −0.0235637
\(848\) 0.818828 0.0281187
\(849\) −30.5427 −1.04822
\(850\) −6.52715 −0.223880
\(851\) 0 0
\(852\) −6.48497 −0.222172
\(853\) −51.1448 −1.75116 −0.875582 0.483070i \(-0.839522\pi\)
−0.875582 + 0.483070i \(0.839522\pi\)
\(854\) 43.8659 1.50106
\(855\) 0.327871 0.0112130
\(856\) −8.24882 −0.281939
\(857\) 11.4315 0.390493 0.195246 0.980754i \(-0.437449\pi\)
0.195246 + 0.980754i \(0.437449\pi\)
\(858\) 14.1310 0.482423
\(859\) 10.9927 0.375066 0.187533 0.982258i \(-0.439951\pi\)
0.187533 + 0.982258i \(0.439951\pi\)
\(860\) 2.10464 0.0717678
\(861\) −50.9150 −1.73518
\(862\) 7.54172 0.256872
\(863\) −15.0332 −0.511737 −0.255869 0.966712i \(-0.582361\pi\)
−0.255869 + 0.966712i \(0.582361\pi\)
\(864\) 2.71008 0.0921987
\(865\) −33.5981 −1.14237
\(866\) −29.8339 −1.01380
\(867\) 6.04598 0.205332
\(868\) 42.5972 1.44584
\(869\) 18.1645 0.616189
\(870\) 3.17519 0.107649
\(871\) −25.5253 −0.864893
\(872\) −8.78453 −0.297482
\(873\) −6.36263 −0.215342
\(874\) 0.945277 0.0319745
\(875\) 49.8294 1.68454
\(876\) −5.57812 −0.188467
\(877\) −29.4471 −0.994360 −0.497180 0.867648i \(-0.665631\pi\)
−0.497180 + 0.867648i \(0.665631\pi\)
\(878\) 21.9541 0.740915
\(879\) −55.1286 −1.85944
\(880\) 6.28044 0.211713
\(881\) 18.3789 0.619200 0.309600 0.950867i \(-0.399805\pi\)
0.309600 + 0.950867i \(0.399805\pi\)
\(882\) −17.2306 −0.580184
\(883\) −29.1969 −0.982555 −0.491278 0.871003i \(-0.663470\pi\)
−0.491278 + 0.871003i \(0.663470\pi\)
\(884\) 8.62048 0.289938
\(885\) −33.2010 −1.11604
\(886\) 34.6241 1.16322
\(887\) −36.5446 −1.22705 −0.613524 0.789676i \(-0.710249\pi\)
−0.613524 + 0.789676i \(0.710249\pi\)
\(888\) 0 0
\(889\) 68.7749 2.30664
\(890\) 6.62526 0.222079
\(891\) −37.3731 −1.25205
\(892\) −10.7545 −0.360088
\(893\) −0.706206 −0.0236323
\(894\) −27.0613 −0.905066
\(895\) 38.3513 1.28194
\(896\) 4.09926 0.136947
\(897\) 40.2687 1.34453
\(898\) −19.9414 −0.665453
\(899\) 8.04895 0.268448
\(900\) −2.57987 −0.0859958
\(901\) −3.64097 −0.121298
\(902\) −19.0294 −0.633608
\(903\) −10.0129 −0.333208
\(904\) 9.97690 0.331827
\(905\) −34.3485 −1.14178
\(906\) 27.3713 0.909351
\(907\) −18.2228 −0.605080 −0.302540 0.953137i \(-0.597835\pi\)
−0.302540 + 0.953137i \(0.597835\pi\)
\(908\) 2.96526 0.0984057
\(909\) 6.93886 0.230148
\(910\) −14.9358 −0.495118
\(911\) 52.4746 1.73856 0.869280 0.494319i \(-0.164583\pi\)
0.869280 + 0.494319i \(0.164583\pi\)
\(912\) 0.216510 0.00716938
\(913\) 2.19971 0.0727997
\(914\) 32.2388 1.06637
\(915\) 43.8659 1.45016
\(916\) −3.03262 −0.100201
\(917\) 5.75400 0.190014
\(918\) −12.0505 −0.397727
\(919\) 44.3955 1.46447 0.732236 0.681051i \(-0.238477\pi\)
0.732236 + 0.681051i \(0.238477\pi\)
\(920\) 17.8972 0.590055
\(921\) −53.6548 −1.76799
\(922\) 7.32821 0.241342
\(923\) 5.76402 0.189725
\(924\) −29.8793 −0.982955
\(925\) 0 0
\(926\) 6.48631 0.213153
\(927\) 3.47777 0.114225
\(928\) 0.774576 0.0254267
\(929\) 29.9244 0.981787 0.490893 0.871220i \(-0.336670\pi\)
0.490893 + 0.871220i \(0.336670\pi\)
\(930\) 42.5972 1.39682
\(931\) 0.973173 0.0318945
\(932\) −0.288806 −0.00946016
\(933\) −11.3577 −0.371834
\(934\) −11.9858 −0.392186
\(935\) −27.9263 −0.913289
\(936\) 3.40727 0.111370
\(937\) 9.94451 0.324873 0.162436 0.986719i \(-0.448065\pi\)
0.162436 + 0.986719i \(0.448065\pi\)
\(938\) 53.9721 1.76225
\(939\) −15.7838 −0.515086
\(940\) −13.3708 −0.436109
\(941\) 12.3569 0.402824 0.201412 0.979507i \(-0.435447\pi\)
0.201412 + 0.979507i \(0.435447\pi\)
\(942\) −7.66302 −0.249675
\(943\) −54.2276 −1.76589
\(944\) −8.09926 −0.263609
\(945\) 20.8787 0.679184
\(946\) −3.74229 −0.121672
\(947\) 27.9971 0.909784 0.454892 0.890547i \(-0.349678\pi\)
0.454892 + 0.890547i \(0.349678\pi\)
\(948\) 11.8561 0.385067
\(949\) 4.95799 0.160943
\(950\) 0.145710 0.00472745
\(951\) −29.1165 −0.944167
\(952\) −18.2276 −0.590761
\(953\) 43.8032 1.41893 0.709463 0.704743i \(-0.248938\pi\)
0.709463 + 0.704743i \(0.248938\pi\)
\(954\) −1.43910 −0.0465926
\(955\) −10.8359 −0.350642
\(956\) 5.03510 0.162847
\(957\) −5.64583 −0.182504
\(958\) 22.6922 0.733152
\(959\) −50.9099 −1.64396
\(960\) 4.09926 0.132303
\(961\) 76.9820 2.48329
\(962\) 0 0
\(963\) 14.4974 0.467172
\(964\) 17.3760 0.559642
\(965\) 0.675497 0.0217450
\(966\) −85.1464 −2.73954
\(967\) 55.3082 1.77859 0.889295 0.457334i \(-0.151195\pi\)
0.889295 + 0.457334i \(0.151195\pi\)
\(968\) −0.167293 −0.00537702
\(969\) −0.962726 −0.0309272
\(970\) 6.80383 0.218458
\(971\) −55.1799 −1.77081 −0.885404 0.464822i \(-0.846118\pi\)
−0.885404 + 0.464822i \(0.846118\pi\)
\(972\) −16.2633 −0.521646
\(973\) −75.4247 −2.41800
\(974\) 12.3108 0.394464
\(975\) 6.20722 0.198790
\(976\) 10.7009 0.342528
\(977\) 25.5345 0.816920 0.408460 0.912776i \(-0.366066\pi\)
0.408460 + 0.912776i \(0.366066\pi\)
\(978\) −5.21614 −0.166794
\(979\) −11.7804 −0.376504
\(980\) 18.4254 0.588578
\(981\) 15.4389 0.492927
\(982\) −1.15080 −0.0367234
\(983\) −31.2734 −0.997465 −0.498733 0.866756i \(-0.666201\pi\)
−0.498733 + 0.866756i \(0.666201\pi\)
\(984\) −12.4205 −0.395952
\(985\) 13.0918 0.417140
\(986\) −3.44420 −0.109686
\(987\) 63.6120 2.02479
\(988\) −0.192440 −0.00612234
\(989\) −10.6643 −0.339106
\(990\) −11.0379 −0.350809
\(991\) 7.61348 0.241850 0.120925 0.992662i \(-0.461414\pi\)
0.120925 + 0.992662i \(0.461414\pi\)
\(992\) 10.3914 0.329928
\(993\) 9.97478 0.316540
\(994\) −12.1878 −0.386572
\(995\) −21.0076 −0.665987
\(996\) 1.43576 0.0454937
\(997\) −15.6027 −0.494143 −0.247071 0.968997i \(-0.579468\pi\)
−0.247071 + 0.968997i \(0.579468\pi\)
\(998\) 27.9156 0.883653
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2738.2.a.q.1.5 6
37.4 even 18 74.2.f.b.53.1 yes 12
37.28 even 18 74.2.f.b.7.1 12
37.36 even 2 2738.2.a.t.1.5 6
111.41 odd 18 666.2.x.g.127.1 12
111.65 odd 18 666.2.x.g.451.1 12
148.115 odd 18 592.2.bc.d.497.2 12
148.139 odd 18 592.2.bc.d.81.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
74.2.f.b.7.1 12 37.28 even 18
74.2.f.b.53.1 yes 12 37.4 even 18
592.2.bc.d.81.2 12 148.139 odd 18
592.2.bc.d.497.2 12 148.115 odd 18
666.2.x.g.127.1 12 111.41 odd 18
666.2.x.g.451.1 12 111.65 odd 18
2738.2.a.q.1.5 6 1.1 even 1 trivial
2738.2.a.t.1.5 6 37.36 even 2