Defining parameters
Level: | \( N \) | \(=\) | \( 2738 = 2 \cdot 37^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 2738.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 24 \) | ||
Sturm bound: | \(703\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2738))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 389 | 110 | 279 |
Cusp forms | 314 | 110 | 204 |
Eisenstein series | 75 | 0 | 75 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(37\) | Fricke | Dim. |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(25\) |
\(+\) | \(-\) | \(-\) | \(30\) |
\(-\) | \(+\) | \(-\) | \(34\) |
\(-\) | \(-\) | \(+\) | \(21\) |
Plus space | \(+\) | \(46\) | |
Minus space | \(-\) | \(64\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2738))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2738))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(2738)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1369))\)\(^{\oplus 2}\)