Properties

Label 2738.2.a
Level $2738$
Weight $2$
Character orbit 2738.a
Rep. character $\chi_{2738}(1,\cdot)$
Character field $\Q$
Dimension $110$
Newform subspaces $24$
Sturm bound $703$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2738 = 2 \cdot 37^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2738.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 24 \)
Sturm bound: \(703\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(5\), \(7\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(2738))\).

Total New Old
Modular forms 389 110 279
Cusp forms 314 110 204
Eisenstein series 75 0 75

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(37\)FrickeDim.
\(+\)\(+\)\(+\)\(25\)
\(+\)\(-\)\(-\)\(30\)
\(-\)\(+\)\(-\)\(34\)
\(-\)\(-\)\(+\)\(21\)
Plus space\(+\)\(46\)
Minus space\(-\)\(64\)

Trace form

\( 110 q - 2 q^{3} + 110 q^{4} + 4 q^{6} + 112 q^{9} + O(q^{10}) \) \( 110 q - 2 q^{3} + 110 q^{4} + 4 q^{6} + 112 q^{9} - 2 q^{10} + 6 q^{11} - 2 q^{12} + 4 q^{14} + 16 q^{15} + 110 q^{16} + 12 q^{17} + 8 q^{18} - 4 q^{19} + 4 q^{21} + 4 q^{22} + 4 q^{23} + 4 q^{24} + 104 q^{25} - 2 q^{26} - 20 q^{27} - 20 q^{31} + 8 q^{33} - 12 q^{34} + 4 q^{35} + 112 q^{36} + 2 q^{38} - 12 q^{39} - 2 q^{40} - 28 q^{41} - 16 q^{42} + 12 q^{43} + 6 q^{44} + 16 q^{45} - 4 q^{46} - 4 q^{47} - 2 q^{48} + 102 q^{49} - 16 q^{50} + 8 q^{51} + 18 q^{53} + 16 q^{54} - 12 q^{55} + 4 q^{56} + 4 q^{57} + 6 q^{58} + 16 q^{60} - 16 q^{61} - 16 q^{62} + 36 q^{63} + 110 q^{64} + 20 q^{65} - 8 q^{66} - 10 q^{67} + 12 q^{68} - 8 q^{69} + 28 q^{70} - 8 q^{71} + 8 q^{72} + 16 q^{73} + 2 q^{75} - 4 q^{76} - 20 q^{77} - 12 q^{78} + 4 q^{79} + 78 q^{81} - 8 q^{82} - 10 q^{83} + 4 q^{84} + 16 q^{85} - 2 q^{86} - 4 q^{87} + 4 q^{88} + 16 q^{89} - 38 q^{90} + 4 q^{92} + 8 q^{93} - 36 q^{95} + 4 q^{96} - 4 q^{97} + 16 q^{98} + 2 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(2738))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 37
2738.2.a.a 2738.a 1.a $1$ $21.863$ \(\Q\) None \(-1\) \(-2\) \(3\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-2q^{3}+q^{4}+3q^{5}+2q^{6}-4q^{7}+\cdots\)
2738.2.a.b 2738.a 1.a $1$ $21.863$ \(\Q\) None \(-1\) \(2\) \(-1\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+2q^{3}+q^{4}-q^{5}-2q^{6}-q^{8}+\cdots\)
2738.2.a.c 2738.a 1.a $1$ $21.863$ \(\Q\) None \(1\) \(-2\) \(-3\) \(-4\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}+q^{4}-3q^{5}-2q^{6}-4q^{7}+\cdots\)
2738.2.a.d 2738.a 1.a $1$ $21.863$ \(\Q\) None \(1\) \(2\) \(1\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+2q^{3}+q^{4}+q^{5}+2q^{6}+q^{8}+\cdots\)
2738.2.a.e 2738.a 1.a $2$ $21.863$ \(\Q(\sqrt{3}) \) None \(-2\) \(-2\) \(0\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1+\beta )q^{3}+q^{4}+\beta q^{5}+(1+\cdots)q^{6}+\cdots\)
2738.2.a.f 2738.a 1.a $2$ $21.863$ \(\Q(\sqrt{3}) \) None \(-2\) \(-2\) \(0\) \(8\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1+\beta )q^{3}+q^{4}+\beta q^{5}+(1+\cdots)q^{6}+\cdots\)
2738.2.a.g 2738.a 1.a $2$ $21.863$ \(\Q(\sqrt{5}) \) None \(-2\) \(-1\) \(-1\) \(-2\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta q^{3}+q^{4}+(1-3\beta )q^{5}+\beta q^{6}+\cdots\)
2738.2.a.h 2738.a 1.a $2$ $21.863$ \(\Q(\sqrt{21}) \) None \(-2\) \(1\) \(3\) \(-4\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+\beta q^{3}+q^{4}+(1+\beta )q^{5}-\beta q^{6}+\cdots\)
2738.2.a.i 2738.a 1.a $2$ $21.863$ \(\Q(\sqrt{3}) \) None \(2\) \(-2\) \(0\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1+\beta )q^{3}+q^{4}-\beta q^{5}+(-1+\cdots)q^{6}+\cdots\)
2738.2.a.j 2738.a 1.a $2$ $21.863$ \(\Q(\sqrt{3}) \) None \(2\) \(-2\) \(0\) \(8\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1+\beta )q^{3}+q^{4}-\beta q^{5}+(-1+\cdots)q^{6}+\cdots\)
2738.2.a.k 2738.a 1.a $2$ $21.863$ \(\Q(\sqrt{21}) \) None \(2\) \(1\) \(-3\) \(-4\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+\beta q^{3}+q^{4}+(-1-\beta )q^{5}+\beta q^{6}+\cdots\)
2738.2.a.l 2738.a 1.a $2$ $21.863$ \(\Q(\sqrt{13}) \) None \(2\) \(3\) \(1\) \(2\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(1+\beta )q^{3}+q^{4}+\beta q^{5}+(1+\beta )q^{6}+\cdots\)
2738.2.a.m 2738.a 1.a $3$ $21.863$ \(\Q(\zeta_{18})^+\) None \(-3\) \(0\) \(-6\) \(3\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}+(-2-\beta _{2})q^{5}+\cdots\)
2738.2.a.n 2738.a 1.a $3$ $21.863$ 3.3.404.1 None \(-3\) \(0\) \(-1\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{2}q^{3}+q^{4}+\beta _{1}q^{5}+\beta _{2}q^{6}+\cdots\)
2738.2.a.o 2738.a 1.a $3$ $21.863$ 3.3.404.1 None \(3\) \(0\) \(1\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{2}q^{3}+q^{4}-\beta _{1}q^{5}-\beta _{2}q^{6}+\cdots\)
2738.2.a.p 2738.a 1.a $3$ $21.863$ \(\Q(\zeta_{18})^+\) None \(3\) \(0\) \(6\) \(3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}+(2+\beta _{2})q^{5}-\beta _{1}q^{6}+\cdots\)
2738.2.a.q 2738.a 1.a $6$ $21.863$ 6.6.37902897.1 None \(-6\) \(0\) \(0\) \(-3\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}-\beta _{1}q^{3}+q^{4}-\beta _{3}q^{5}+\beta _{1}q^{6}+\cdots\)
2738.2.a.r 2738.a 1.a $6$ $21.863$ \(\Q(\zeta_{36})^+\) None \(-6\) \(0\) \(6\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(\beta _{2}+\beta _{4})q^{3}+q^{4}+(1+\beta _{3}+\cdots)q^{5}+\cdots\)
2738.2.a.s 2738.a 1.a $6$ $21.863$ \(\Q(\zeta_{36})^+\) None \(6\) \(0\) \(-6\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(\beta _{2}+\beta _{4})q^{3}+q^{4}+(-1-\beta _{3}+\cdots)q^{5}+\cdots\)
2738.2.a.t 2738.a 1.a $6$ $21.863$ 6.6.37902897.1 None \(6\) \(0\) \(0\) \(-3\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-\beta _{1}q^{3}+q^{4}+\beta _{3}q^{5}-\beta _{1}q^{6}+\cdots\)
2738.2.a.u 2738.a 1.a $9$ $21.863$ \(\Q(\zeta_{38})^+\) None \(-9\) \(-7\) \(7\) \(-14\) $+$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+(-1+\beta _{1}-\beta _{4})q^{3}+q^{4}+(1+\cdots)q^{5}+\cdots\)
2738.2.a.v 2738.a 1.a $9$ $21.863$ \(\Q(\zeta_{38})^+\) None \(9\) \(-7\) \(-7\) \(-14\) $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+(-1+\beta _{1}-\beta _{4})q^{3}+q^{4}+(-1+\cdots)q^{5}+\cdots\)
2738.2.a.w 2738.a 1.a $18$ $21.863$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(-18\) \(8\) \(-9\) \(18\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+(1-\beta _{1}+\beta _{12})q^{3}+q^{4}+(-1+\cdots)q^{5}+\cdots\)
2738.2.a.x 2738.a 1.a $18$ $21.863$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None \(18\) \(8\) \(9\) \(18\) $-$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+(1-\beta _{1}+\beta _{12})q^{3}+q^{4}+(1+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(2738))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(2738)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(37))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(74))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1369))\)\(^{\oplus 2}\)