Properties

Label 2720.2.a.t.1.5
Level $2720$
Weight $2$
Character 2720.1
Self dual yes
Analytic conductor $21.719$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2720,2,Mod(1,2720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2720.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2720 = 2^{5} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2720.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,3,0,5,0,8,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.7193093498\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.457904.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 8x^{2} + 5x - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.788997\) of defining polynomial
Character \(\chi\) \(=\) 2720.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.16648 q^{3} +1.00000 q^{5} +4.86012 q^{7} +7.02660 q^{9} -4.61840 q^{11} -3.02992 q^{13} +3.16648 q^{15} -1.00000 q^{17} +3.87393 q^{19} +15.3895 q^{21} -0.860121 q^{23} +1.00000 q^{25} +12.7502 q^{27} +2.84963 q^{29} -5.46803 q^{31} -14.6241 q^{33} +4.86012 q^{35} +9.90053 q^{37} -9.59417 q^{39} -12.4438 q^{41} -0.754968 q^{43} +7.02660 q^{45} -1.11233 q^{47} +16.6208 q^{49} -3.16648 q^{51} +11.3629 q^{53} -4.61840 q^{55} +12.2667 q^{57} -5.63601 q^{59} +4.81961 q^{61} +34.1501 q^{63} -3.02992 q^{65} -0.965273 q^{67} -2.72356 q^{69} +2.92476 q^{71} -6.29973 q^{73} +3.16648 q^{75} -22.4460 q^{77} +12.7711 q^{79} +19.2933 q^{81} +2.14888 q^{83} -1.00000 q^{85} +9.02329 q^{87} -14.9304 q^{89} -14.7258 q^{91} -17.3144 q^{93} +3.87393 q^{95} -12.2069 q^{97} -32.4517 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 3 q^{3} + 5 q^{5} + 8 q^{7} + 6 q^{9} + 2 q^{11} + q^{13} + 3 q^{15} - 5 q^{17} + 11 q^{19} + 6 q^{21} + 12 q^{23} + 5 q^{25} + 15 q^{27} + 3 q^{29} + 9 q^{31} - 16 q^{33} + 8 q^{35} + 12 q^{37}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.16648 1.82817 0.914084 0.405524i \(-0.132911\pi\)
0.914084 + 0.405524i \(0.132911\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 4.86012 1.83695 0.918476 0.395476i \(-0.129420\pi\)
0.918476 + 0.395476i \(0.129420\pi\)
\(8\) 0 0
\(9\) 7.02660 2.34220
\(10\) 0 0
\(11\) −4.61840 −1.39250 −0.696250 0.717799i \(-0.745150\pi\)
−0.696250 + 0.717799i \(0.745150\pi\)
\(12\) 0 0
\(13\) −3.02992 −0.840347 −0.420174 0.907444i \(-0.638031\pi\)
−0.420174 + 0.907444i \(0.638031\pi\)
\(14\) 0 0
\(15\) 3.16648 0.817582
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 3.87393 0.888740 0.444370 0.895843i \(-0.353428\pi\)
0.444370 + 0.895843i \(0.353428\pi\)
\(20\) 0 0
\(21\) 15.3895 3.35826
\(22\) 0 0
\(23\) −0.860121 −0.179348 −0.0896738 0.995971i \(-0.528582\pi\)
−0.0896738 + 0.995971i \(0.528582\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 12.7502 2.45377
\(28\) 0 0
\(29\) 2.84963 0.529162 0.264581 0.964363i \(-0.414766\pi\)
0.264581 + 0.964363i \(0.414766\pi\)
\(30\) 0 0
\(31\) −5.46803 −0.982087 −0.491044 0.871135i \(-0.663384\pi\)
−0.491044 + 0.871135i \(0.663384\pi\)
\(32\) 0 0
\(33\) −14.6241 −2.54573
\(34\) 0 0
\(35\) 4.86012 0.821510
\(36\) 0 0
\(37\) 9.90053 1.62764 0.813819 0.581119i \(-0.197385\pi\)
0.813819 + 0.581119i \(0.197385\pi\)
\(38\) 0 0
\(39\) −9.59417 −1.53630
\(40\) 0 0
\(41\) −12.4438 −1.94339 −0.971697 0.236230i \(-0.924088\pi\)
−0.971697 + 0.236230i \(0.924088\pi\)
\(42\) 0 0
\(43\) −0.754968 −0.115132 −0.0575658 0.998342i \(-0.518334\pi\)
−0.0575658 + 0.998342i \(0.518334\pi\)
\(44\) 0 0
\(45\) 7.02660 1.04746
\(46\) 0 0
\(47\) −1.11233 −0.162250 −0.0811252 0.996704i \(-0.525851\pi\)
−0.0811252 + 0.996704i \(0.525851\pi\)
\(48\) 0 0
\(49\) 16.6208 2.37440
\(50\) 0 0
\(51\) −3.16648 −0.443396
\(52\) 0 0
\(53\) 11.3629 1.56081 0.780406 0.625274i \(-0.215013\pi\)
0.780406 + 0.625274i \(0.215013\pi\)
\(54\) 0 0
\(55\) −4.61840 −0.622745
\(56\) 0 0
\(57\) 12.2667 1.62477
\(58\) 0 0
\(59\) −5.63601 −0.733746 −0.366873 0.930271i \(-0.619572\pi\)
−0.366873 + 0.930271i \(0.619572\pi\)
\(60\) 0 0
\(61\) 4.81961 0.617088 0.308544 0.951210i \(-0.400158\pi\)
0.308544 + 0.951210i \(0.400158\pi\)
\(62\) 0 0
\(63\) 34.1501 4.30251
\(64\) 0 0
\(65\) −3.02992 −0.375815
\(66\) 0 0
\(67\) −0.965273 −0.117927 −0.0589634 0.998260i \(-0.518780\pi\)
−0.0589634 + 0.998260i \(0.518780\pi\)
\(68\) 0 0
\(69\) −2.72356 −0.327878
\(70\) 0 0
\(71\) 2.92476 0.347106 0.173553 0.984825i \(-0.444475\pi\)
0.173553 + 0.984825i \(0.444475\pi\)
\(72\) 0 0
\(73\) −6.29973 −0.737328 −0.368664 0.929563i \(-0.620185\pi\)
−0.368664 + 0.929563i \(0.620185\pi\)
\(74\) 0 0
\(75\) 3.16648 0.365634
\(76\) 0 0
\(77\) −22.4460 −2.55796
\(78\) 0 0
\(79\) 12.7711 1.43686 0.718429 0.695600i \(-0.244861\pi\)
0.718429 + 0.695600i \(0.244861\pi\)
\(80\) 0 0
\(81\) 19.2933 2.14370
\(82\) 0 0
\(83\) 2.14888 0.235870 0.117935 0.993021i \(-0.462373\pi\)
0.117935 + 0.993021i \(0.462373\pi\)
\(84\) 0 0
\(85\) −1.00000 −0.108465
\(86\) 0 0
\(87\) 9.02329 0.967398
\(88\) 0 0
\(89\) −14.9304 −1.58262 −0.791312 0.611412i \(-0.790602\pi\)
−0.791312 + 0.611412i \(0.790602\pi\)
\(90\) 0 0
\(91\) −14.7258 −1.54368
\(92\) 0 0
\(93\) −17.3144 −1.79542
\(94\) 0 0
\(95\) 3.87393 0.397457
\(96\) 0 0
\(97\) −12.2069 −1.23942 −0.619711 0.784830i \(-0.712750\pi\)
−0.619711 + 0.784830i \(0.712750\pi\)
\(98\) 0 0
\(99\) −32.4517 −3.26152
\(100\) 0 0
\(101\) 10.4856 1.04336 0.521680 0.853141i \(-0.325306\pi\)
0.521680 + 0.853141i \(0.325306\pi\)
\(102\) 0 0
\(103\) −12.5350 −1.23511 −0.617557 0.786526i \(-0.711878\pi\)
−0.617557 + 0.786526i \(0.711878\pi\)
\(104\) 0 0
\(105\) 15.3895 1.50186
\(106\) 0 0
\(107\) −0.203025 −0.0196272 −0.00981358 0.999952i \(-0.503124\pi\)
−0.00981358 + 0.999952i \(0.503124\pi\)
\(108\) 0 0
\(109\) −12.5122 −1.19845 −0.599227 0.800579i \(-0.704525\pi\)
−0.599227 + 0.800579i \(0.704525\pi\)
\(110\) 0 0
\(111\) 31.3498 2.97560
\(112\) 0 0
\(113\) −14.3662 −1.35146 −0.675729 0.737150i \(-0.736171\pi\)
−0.675729 + 0.737150i \(0.736171\pi\)
\(114\) 0 0
\(115\) −0.860121 −0.0802067
\(116\) 0 0
\(117\) −21.2900 −1.96826
\(118\) 0 0
\(119\) −4.86012 −0.445527
\(120\) 0 0
\(121\) 10.3296 0.939059
\(122\) 0 0
\(123\) −39.4030 −3.55285
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −19.5650 −1.73611 −0.868055 0.496469i \(-0.834630\pi\)
−0.868055 + 0.496469i \(0.834630\pi\)
\(128\) 0 0
\(129\) −2.39059 −0.210480
\(130\) 0 0
\(131\) 10.5908 0.925321 0.462661 0.886535i \(-0.346895\pi\)
0.462661 + 0.886535i \(0.346895\pi\)
\(132\) 0 0
\(133\) 18.8278 1.63257
\(134\) 0 0
\(135\) 12.7502 1.09736
\(136\) 0 0
\(137\) −19.8429 −1.69529 −0.847647 0.530561i \(-0.821981\pi\)
−0.847647 + 0.530561i \(0.821981\pi\)
\(138\) 0 0
\(139\) 17.2215 1.46071 0.730354 0.683069i \(-0.239355\pi\)
0.730354 + 0.683069i \(0.239355\pi\)
\(140\) 0 0
\(141\) −3.52218 −0.296621
\(142\) 0 0
\(143\) 13.9934 1.17018
\(144\) 0 0
\(145\) 2.84963 0.236649
\(146\) 0 0
\(147\) 52.6294 4.34080
\(148\) 0 0
\(149\) −12.4280 −1.01814 −0.509071 0.860725i \(-0.670011\pi\)
−0.509071 + 0.860725i \(0.670011\pi\)
\(150\) 0 0
\(151\) 1.48895 0.121169 0.0605845 0.998163i \(-0.480704\pi\)
0.0605845 + 0.998163i \(0.480704\pi\)
\(152\) 0 0
\(153\) −7.02660 −0.568067
\(154\) 0 0
\(155\) −5.46803 −0.439203
\(156\) 0 0
\(157\) 7.93055 0.632926 0.316463 0.948605i \(-0.397505\pi\)
0.316463 + 0.948605i \(0.397505\pi\)
\(158\) 0 0
\(159\) 35.9803 2.85343
\(160\) 0 0
\(161\) −4.18029 −0.329453
\(162\) 0 0
\(163\) −14.4809 −1.13423 −0.567115 0.823638i \(-0.691941\pi\)
−0.567115 + 0.823638i \(0.691941\pi\)
\(164\) 0 0
\(165\) −14.6241 −1.13848
\(166\) 0 0
\(167\) −3.23492 −0.250326 −0.125163 0.992136i \(-0.539945\pi\)
−0.125163 + 0.992136i \(0.539945\pi\)
\(168\) 0 0
\(169\) −3.81961 −0.293816
\(170\) 0 0
\(171\) 27.2206 2.08161
\(172\) 0 0
\(173\) −4.14604 −0.315218 −0.157609 0.987502i \(-0.550379\pi\)
−0.157609 + 0.987502i \(0.550379\pi\)
\(174\) 0 0
\(175\) 4.86012 0.367391
\(176\) 0 0
\(177\) −17.8463 −1.34141
\(178\) 0 0
\(179\) 3.42912 0.256304 0.128152 0.991755i \(-0.459095\pi\)
0.128152 + 0.991755i \(0.459095\pi\)
\(180\) 0 0
\(181\) −0.684712 −0.0508943 −0.0254471 0.999676i \(-0.508101\pi\)
−0.0254471 + 0.999676i \(0.508101\pi\)
\(182\) 0 0
\(183\) 15.2612 1.12814
\(184\) 0 0
\(185\) 9.90053 0.727901
\(186\) 0 0
\(187\) 4.61840 0.337731
\(188\) 0 0
\(189\) 61.9673 4.50746
\(190\) 0 0
\(191\) −0.483435 −0.0349801 −0.0174901 0.999847i \(-0.505568\pi\)
−0.0174901 + 0.999847i \(0.505568\pi\)
\(192\) 0 0
\(193\) 18.3143 1.31829 0.659147 0.752015i \(-0.270918\pi\)
0.659147 + 0.752015i \(0.270918\pi\)
\(194\) 0 0
\(195\) −9.59417 −0.687053
\(196\) 0 0
\(197\) −21.3410 −1.52048 −0.760242 0.649640i \(-0.774920\pi\)
−0.760242 + 0.649640i \(0.774920\pi\)
\(198\) 0 0
\(199\) 18.1017 1.28320 0.641599 0.767040i \(-0.278271\pi\)
0.641599 + 0.767040i \(0.278271\pi\)
\(200\) 0 0
\(201\) −3.05652 −0.215590
\(202\) 0 0
\(203\) 13.8495 0.972046
\(204\) 0 0
\(205\) −12.4438 −0.869112
\(206\) 0 0
\(207\) −6.04372 −0.420068
\(208\) 0 0
\(209\) −17.8914 −1.23757
\(210\) 0 0
\(211\) 6.74106 0.464074 0.232037 0.972707i \(-0.425461\pi\)
0.232037 + 0.972707i \(0.425461\pi\)
\(212\) 0 0
\(213\) 9.26121 0.634568
\(214\) 0 0
\(215\) −0.754968 −0.0514884
\(216\) 0 0
\(217\) −26.5753 −1.80405
\(218\) 0 0
\(219\) −19.9480 −1.34796
\(220\) 0 0
\(221\) 3.02992 0.203814
\(222\) 0 0
\(223\) 23.4565 1.57076 0.785382 0.619011i \(-0.212466\pi\)
0.785382 + 0.619011i \(0.212466\pi\)
\(224\) 0 0
\(225\) 7.02660 0.468440
\(226\) 0 0
\(227\) 6.93519 0.460305 0.230152 0.973155i \(-0.426078\pi\)
0.230152 + 0.973155i \(0.426078\pi\)
\(228\) 0 0
\(229\) −14.4856 −0.957238 −0.478619 0.878023i \(-0.658862\pi\)
−0.478619 + 0.878023i \(0.658862\pi\)
\(230\) 0 0
\(231\) −71.0748 −4.67638
\(232\) 0 0
\(233\) −18.8242 −1.23321 −0.616607 0.787271i \(-0.711493\pi\)
−0.616607 + 0.787271i \(0.711493\pi\)
\(234\) 0 0
\(235\) −1.11233 −0.0725605
\(236\) 0 0
\(237\) 40.4394 2.62682
\(238\) 0 0
\(239\) 3.45011 0.223169 0.111584 0.993755i \(-0.464407\pi\)
0.111584 + 0.993755i \(0.464407\pi\)
\(240\) 0 0
\(241\) 1.66924 0.107525 0.0537625 0.998554i \(-0.482879\pi\)
0.0537625 + 0.998554i \(0.482879\pi\)
\(242\) 0 0
\(243\) 22.8415 1.46528
\(244\) 0 0
\(245\) 16.6208 1.06186
\(246\) 0 0
\(247\) −11.7377 −0.746851
\(248\) 0 0
\(249\) 6.80437 0.431210
\(250\) 0 0
\(251\) −14.6593 −0.925287 −0.462643 0.886545i \(-0.653099\pi\)
−0.462643 + 0.886545i \(0.653099\pi\)
\(252\) 0 0
\(253\) 3.97238 0.249742
\(254\) 0 0
\(255\) −3.16648 −0.198293
\(256\) 0 0
\(257\) −3.37591 −0.210584 −0.105292 0.994441i \(-0.533578\pi\)
−0.105292 + 0.994441i \(0.533578\pi\)
\(258\) 0 0
\(259\) 48.1178 2.98989
\(260\) 0 0
\(261\) 20.0232 1.23940
\(262\) 0 0
\(263\) 3.45855 0.213263 0.106632 0.994299i \(-0.465993\pi\)
0.106632 + 0.994299i \(0.465993\pi\)
\(264\) 0 0
\(265\) 11.3629 0.698016
\(266\) 0 0
\(267\) −47.2770 −2.89330
\(268\) 0 0
\(269\) −20.0080 −1.21991 −0.609953 0.792437i \(-0.708812\pi\)
−0.609953 + 0.792437i \(0.708812\pi\)
\(270\) 0 0
\(271\) 5.08653 0.308985 0.154492 0.987994i \(-0.450626\pi\)
0.154492 + 0.987994i \(0.450626\pi\)
\(272\) 0 0
\(273\) −46.6288 −2.82210
\(274\) 0 0
\(275\) −4.61840 −0.278500
\(276\) 0 0
\(277\) 18.2217 1.09483 0.547417 0.836860i \(-0.315611\pi\)
0.547417 + 0.836860i \(0.315611\pi\)
\(278\) 0 0
\(279\) −38.4217 −2.30024
\(280\) 0 0
\(281\) 16.9957 1.01388 0.506938 0.861982i \(-0.330777\pi\)
0.506938 + 0.861982i \(0.330777\pi\)
\(282\) 0 0
\(283\) 24.9077 1.48061 0.740305 0.672271i \(-0.234681\pi\)
0.740305 + 0.672271i \(0.234681\pi\)
\(284\) 0 0
\(285\) 12.2667 0.726618
\(286\) 0 0
\(287\) −60.4783 −3.56992
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) −38.6529 −2.26587
\(292\) 0 0
\(293\) 12.2697 0.716805 0.358402 0.933567i \(-0.383322\pi\)
0.358402 + 0.933567i \(0.383322\pi\)
\(294\) 0 0
\(295\) −5.63601 −0.328141
\(296\) 0 0
\(297\) −58.8854 −3.41688
\(298\) 0 0
\(299\) 2.60609 0.150714
\(300\) 0 0
\(301\) −3.66924 −0.211491
\(302\) 0 0
\(303\) 33.2026 1.90744
\(304\) 0 0
\(305\) 4.81961 0.275970
\(306\) 0 0
\(307\) −27.9127 −1.59306 −0.796531 0.604598i \(-0.793334\pi\)
−0.796531 + 0.604598i \(0.793334\pi\)
\(308\) 0 0
\(309\) −39.6920 −2.25800
\(310\) 0 0
\(311\) 1.23366 0.0699545 0.0349772 0.999388i \(-0.488864\pi\)
0.0349772 + 0.999388i \(0.488864\pi\)
\(312\) 0 0
\(313\) −8.20128 −0.463564 −0.231782 0.972768i \(-0.574456\pi\)
−0.231782 + 0.972768i \(0.574456\pi\)
\(314\) 0 0
\(315\) 34.1501 1.92414
\(316\) 0 0
\(317\) 29.8675 1.67753 0.838764 0.544496i \(-0.183279\pi\)
0.838764 + 0.544496i \(0.183279\pi\)
\(318\) 0 0
\(319\) −13.1607 −0.736859
\(320\) 0 0
\(321\) −0.642874 −0.0358817
\(322\) 0 0
\(323\) −3.87393 −0.215551
\(324\) 0 0
\(325\) −3.02992 −0.168069
\(326\) 0 0
\(327\) −39.6198 −2.19098
\(328\) 0 0
\(329\) −5.40607 −0.298046
\(330\) 0 0
\(331\) 8.28771 0.455534 0.227767 0.973716i \(-0.426858\pi\)
0.227767 + 0.973716i \(0.426858\pi\)
\(332\) 0 0
\(333\) 69.5671 3.81225
\(334\) 0 0
\(335\) −0.965273 −0.0527385
\(336\) 0 0
\(337\) −25.4855 −1.38829 −0.694143 0.719837i \(-0.744216\pi\)
−0.694143 + 0.719837i \(0.744216\pi\)
\(338\) 0 0
\(339\) −45.4903 −2.47069
\(340\) 0 0
\(341\) 25.2536 1.36756
\(342\) 0 0
\(343\) 46.7581 2.52470
\(344\) 0 0
\(345\) −2.72356 −0.146631
\(346\) 0 0
\(347\) 35.5706 1.90953 0.954766 0.297358i \(-0.0961056\pi\)
0.954766 + 0.297358i \(0.0961056\pi\)
\(348\) 0 0
\(349\) −7.19497 −0.385138 −0.192569 0.981283i \(-0.561682\pi\)
−0.192569 + 0.981283i \(0.561682\pi\)
\(350\) 0 0
\(351\) −38.6319 −2.06202
\(352\) 0 0
\(353\) 35.0073 1.86325 0.931624 0.363423i \(-0.118392\pi\)
0.931624 + 0.363423i \(0.118392\pi\)
\(354\) 0 0
\(355\) 2.92476 0.155230
\(356\) 0 0
\(357\) −15.3895 −0.814498
\(358\) 0 0
\(359\) 18.7999 0.992223 0.496112 0.868259i \(-0.334761\pi\)
0.496112 + 0.868259i \(0.334761\pi\)
\(360\) 0 0
\(361\) −3.99268 −0.210141
\(362\) 0 0
\(363\) 32.7086 1.71676
\(364\) 0 0
\(365\) −6.29973 −0.329743
\(366\) 0 0
\(367\) −4.67067 −0.243807 −0.121903 0.992542i \(-0.538900\pi\)
−0.121903 + 0.992542i \(0.538900\pi\)
\(368\) 0 0
\(369\) −87.4376 −4.55182
\(370\) 0 0
\(371\) 55.2250 2.86714
\(372\) 0 0
\(373\) −23.3986 −1.21154 −0.605768 0.795641i \(-0.707134\pi\)
−0.605768 + 0.795641i \(0.707134\pi\)
\(374\) 0 0
\(375\) 3.16648 0.163516
\(376\) 0 0
\(377\) −8.63413 −0.444680
\(378\) 0 0
\(379\) 3.80660 0.195532 0.0977661 0.995209i \(-0.468830\pi\)
0.0977661 + 0.995209i \(0.468830\pi\)
\(380\) 0 0
\(381\) −61.9521 −3.17390
\(382\) 0 0
\(383\) −20.0275 −1.02336 −0.511680 0.859176i \(-0.670977\pi\)
−0.511680 + 0.859176i \(0.670977\pi\)
\(384\) 0 0
\(385\) −22.4460 −1.14395
\(386\) 0 0
\(387\) −5.30486 −0.269661
\(388\) 0 0
\(389\) −19.7015 −0.998903 −0.499452 0.866342i \(-0.666465\pi\)
−0.499452 + 0.866342i \(0.666465\pi\)
\(390\) 0 0
\(391\) 0.860121 0.0434982
\(392\) 0 0
\(393\) 33.5355 1.69164
\(394\) 0 0
\(395\) 12.7711 0.642583
\(396\) 0 0
\(397\) −25.6133 −1.28550 −0.642749 0.766077i \(-0.722206\pi\)
−0.642749 + 0.766077i \(0.722206\pi\)
\(398\) 0 0
\(399\) 59.6177 2.98462
\(400\) 0 0
\(401\) 7.63922 0.381485 0.190742 0.981640i \(-0.438911\pi\)
0.190742 + 0.981640i \(0.438911\pi\)
\(402\) 0 0
\(403\) 16.5677 0.825294
\(404\) 0 0
\(405\) 19.2933 0.958693
\(406\) 0 0
\(407\) −45.7246 −2.26649
\(408\) 0 0
\(409\) 36.2569 1.79279 0.896394 0.443258i \(-0.146177\pi\)
0.896394 + 0.443258i \(0.146177\pi\)
\(410\) 0 0
\(411\) −62.8322 −3.09928
\(412\) 0 0
\(413\) −27.3917 −1.34786
\(414\) 0 0
\(415\) 2.14888 0.105484
\(416\) 0 0
\(417\) 54.5316 2.67042
\(418\) 0 0
\(419\) 2.18474 0.106731 0.0533657 0.998575i \(-0.483005\pi\)
0.0533657 + 0.998575i \(0.483005\pi\)
\(420\) 0 0
\(421\) −13.9490 −0.679833 −0.339916 0.940456i \(-0.610399\pi\)
−0.339916 + 0.940456i \(0.610399\pi\)
\(422\) 0 0
\(423\) −7.81591 −0.380023
\(424\) 0 0
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) 23.4239 1.13356
\(428\) 0 0
\(429\) 44.3097 2.13929
\(430\) 0 0
\(431\) −25.1639 −1.21210 −0.606050 0.795426i \(-0.707247\pi\)
−0.606050 + 0.795426i \(0.707247\pi\)
\(432\) 0 0
\(433\) 14.6175 0.702470 0.351235 0.936287i \(-0.385762\pi\)
0.351235 + 0.936287i \(0.385762\pi\)
\(434\) 0 0
\(435\) 9.02329 0.432634
\(436\) 0 0
\(437\) −3.33205 −0.159393
\(438\) 0 0
\(439\) −18.0707 −0.862468 −0.431234 0.902240i \(-0.641922\pi\)
−0.431234 + 0.902240i \(0.641922\pi\)
\(440\) 0 0
\(441\) 116.788 5.56131
\(442\) 0 0
\(443\) 10.1811 0.483718 0.241859 0.970311i \(-0.422243\pi\)
0.241859 + 0.970311i \(0.422243\pi\)
\(444\) 0 0
\(445\) −14.9304 −0.707771
\(446\) 0 0
\(447\) −39.3530 −1.86133
\(448\) 0 0
\(449\) 3.42372 0.161576 0.0807878 0.996731i \(-0.474256\pi\)
0.0807878 + 0.996731i \(0.474256\pi\)
\(450\) 0 0
\(451\) 57.4705 2.70618
\(452\) 0 0
\(453\) 4.71473 0.221517
\(454\) 0 0
\(455\) −14.7258 −0.690354
\(456\) 0 0
\(457\) 8.04184 0.376181 0.188091 0.982152i \(-0.439770\pi\)
0.188091 + 0.982152i \(0.439770\pi\)
\(458\) 0 0
\(459\) −12.7502 −0.595126
\(460\) 0 0
\(461\) 18.3053 0.852565 0.426282 0.904590i \(-0.359823\pi\)
0.426282 + 0.904590i \(0.359823\pi\)
\(462\) 0 0
\(463\) 12.7582 0.592923 0.296462 0.955045i \(-0.404193\pi\)
0.296462 + 0.955045i \(0.404193\pi\)
\(464\) 0 0
\(465\) −17.3144 −0.802937
\(466\) 0 0
\(467\) 25.0927 1.16115 0.580575 0.814207i \(-0.302828\pi\)
0.580575 + 0.814207i \(0.302828\pi\)
\(468\) 0 0
\(469\) −4.69134 −0.216626
\(470\) 0 0
\(471\) 25.1119 1.15710
\(472\) 0 0
\(473\) 3.48675 0.160321
\(474\) 0 0
\(475\) 3.87393 0.177748
\(476\) 0 0
\(477\) 79.8424 3.65573
\(478\) 0 0
\(479\) 19.3079 0.882202 0.441101 0.897457i \(-0.354588\pi\)
0.441101 + 0.897457i \(0.354588\pi\)
\(480\) 0 0
\(481\) −29.9978 −1.36778
\(482\) 0 0
\(483\) −13.2368 −0.602296
\(484\) 0 0
\(485\) −12.2069 −0.554286
\(486\) 0 0
\(487\) 4.31386 0.195480 0.0977398 0.995212i \(-0.468839\pi\)
0.0977398 + 0.995212i \(0.468839\pi\)
\(488\) 0 0
\(489\) −45.8535 −2.07357
\(490\) 0 0
\(491\) −24.7388 −1.11645 −0.558223 0.829691i \(-0.688517\pi\)
−0.558223 + 0.829691i \(0.688517\pi\)
\(492\) 0 0
\(493\) −2.84963 −0.128341
\(494\) 0 0
\(495\) −32.4517 −1.45859
\(496\) 0 0
\(497\) 14.2147 0.637617
\(498\) 0 0
\(499\) −23.2359 −1.04018 −0.520090 0.854111i \(-0.674102\pi\)
−0.520090 + 0.854111i \(0.674102\pi\)
\(500\) 0 0
\(501\) −10.2433 −0.457638
\(502\) 0 0
\(503\) −19.5613 −0.872193 −0.436097 0.899900i \(-0.643639\pi\)
−0.436097 + 0.899900i \(0.643639\pi\)
\(504\) 0 0
\(505\) 10.4856 0.466605
\(506\) 0 0
\(507\) −12.0947 −0.537146
\(508\) 0 0
\(509\) 20.1018 0.890997 0.445498 0.895283i \(-0.353026\pi\)
0.445498 + 0.895283i \(0.353026\pi\)
\(510\) 0 0
\(511\) −30.6175 −1.35444
\(512\) 0 0
\(513\) 49.3932 2.18076
\(514\) 0 0
\(515\) −12.5350 −0.552360
\(516\) 0 0
\(517\) 5.13720 0.225934
\(518\) 0 0
\(519\) −13.1284 −0.576271
\(520\) 0 0
\(521\) 20.4672 0.896684 0.448342 0.893862i \(-0.352015\pi\)
0.448342 + 0.893862i \(0.352015\pi\)
\(522\) 0 0
\(523\) −5.91569 −0.258675 −0.129338 0.991601i \(-0.541285\pi\)
−0.129338 + 0.991601i \(0.541285\pi\)
\(524\) 0 0
\(525\) 15.3895 0.671652
\(526\) 0 0
\(527\) 5.46803 0.238191
\(528\) 0 0
\(529\) −22.2602 −0.967834
\(530\) 0 0
\(531\) −39.6020 −1.71858
\(532\) 0 0
\(533\) 37.7037 1.63313
\(534\) 0 0
\(535\) −0.203025 −0.00877753
\(536\) 0 0
\(537\) 10.8582 0.468567
\(538\) 0 0
\(539\) −76.7614 −3.30635
\(540\) 0 0
\(541\) 9.83088 0.422662 0.211331 0.977415i \(-0.432220\pi\)
0.211331 + 0.977415i \(0.432220\pi\)
\(542\) 0 0
\(543\) −2.16813 −0.0930433
\(544\) 0 0
\(545\) −12.5122 −0.535965
\(546\) 0 0
\(547\) −20.5718 −0.879585 −0.439792 0.898100i \(-0.644948\pi\)
−0.439792 + 0.898100i \(0.644948\pi\)
\(548\) 0 0
\(549\) 33.8655 1.44534
\(550\) 0 0
\(551\) 11.0392 0.470288
\(552\) 0 0
\(553\) 62.0690 2.63944
\(554\) 0 0
\(555\) 31.3498 1.33073
\(556\) 0 0
\(557\) 5.27543 0.223527 0.111764 0.993735i \(-0.464350\pi\)
0.111764 + 0.993735i \(0.464350\pi\)
\(558\) 0 0
\(559\) 2.28749 0.0967506
\(560\) 0 0
\(561\) 14.6241 0.617429
\(562\) 0 0
\(563\) 26.0031 1.09590 0.547951 0.836511i \(-0.315408\pi\)
0.547951 + 0.836511i \(0.315408\pi\)
\(564\) 0 0
\(565\) −14.3662 −0.604390
\(566\) 0 0
\(567\) 93.7679 3.93788
\(568\) 0 0
\(569\) −0.0908612 −0.00380910 −0.00190455 0.999998i \(-0.500606\pi\)
−0.00190455 + 0.999998i \(0.500606\pi\)
\(570\) 0 0
\(571\) −1.82286 −0.0762842 −0.0381421 0.999272i \(-0.512144\pi\)
−0.0381421 + 0.999272i \(0.512144\pi\)
\(572\) 0 0
\(573\) −1.53079 −0.0639495
\(574\) 0 0
\(575\) −0.860121 −0.0358695
\(576\) 0 0
\(577\) 15.3139 0.637524 0.318762 0.947835i \(-0.396733\pi\)
0.318762 + 0.947835i \(0.396733\pi\)
\(578\) 0 0
\(579\) 57.9919 2.41006
\(580\) 0 0
\(581\) 10.4438 0.433282
\(582\) 0 0
\(583\) −52.4783 −2.17343
\(584\) 0 0
\(585\) −21.2900 −0.880234
\(586\) 0 0
\(587\) −7.00412 −0.289091 −0.144545 0.989498i \(-0.546172\pi\)
−0.144545 + 0.989498i \(0.546172\pi\)
\(588\) 0 0
\(589\) −21.1828 −0.872820
\(590\) 0 0
\(591\) −67.5759 −2.77970
\(592\) 0 0
\(593\) −15.8077 −0.649144 −0.324572 0.945861i \(-0.605220\pi\)
−0.324572 + 0.945861i \(0.605220\pi\)
\(594\) 0 0
\(595\) −4.86012 −0.199246
\(596\) 0 0
\(597\) 57.3188 2.34590
\(598\) 0 0
\(599\) 2.06742 0.0844727 0.0422363 0.999108i \(-0.486552\pi\)
0.0422363 + 0.999108i \(0.486552\pi\)
\(600\) 0 0
\(601\) 15.5542 0.634468 0.317234 0.948347i \(-0.397246\pi\)
0.317234 + 0.948347i \(0.397246\pi\)
\(602\) 0 0
\(603\) −6.78259 −0.276208
\(604\) 0 0
\(605\) 10.3296 0.419960
\(606\) 0 0
\(607\) 26.3072 1.06778 0.533889 0.845555i \(-0.320730\pi\)
0.533889 + 0.845555i \(0.320730\pi\)
\(608\) 0 0
\(609\) 43.8543 1.77706
\(610\) 0 0
\(611\) 3.37027 0.136347
\(612\) 0 0
\(613\) −49.0184 −1.97983 −0.989917 0.141647i \(-0.954760\pi\)
−0.989917 + 0.141647i \(0.954760\pi\)
\(614\) 0 0
\(615\) −39.4030 −1.58888
\(616\) 0 0
\(617\) −36.3463 −1.46325 −0.731624 0.681709i \(-0.761237\pi\)
−0.731624 + 0.681709i \(0.761237\pi\)
\(618\) 0 0
\(619\) 10.5308 0.423267 0.211633 0.977349i \(-0.432122\pi\)
0.211633 + 0.977349i \(0.432122\pi\)
\(620\) 0 0
\(621\) −10.9667 −0.440077
\(622\) 0 0
\(623\) −72.5638 −2.90721
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −56.6527 −2.26249
\(628\) 0 0
\(629\) −9.90053 −0.394760
\(630\) 0 0
\(631\) 1.41490 0.0563261 0.0281631 0.999603i \(-0.491034\pi\)
0.0281631 + 0.999603i \(0.491034\pi\)
\(632\) 0 0
\(633\) 21.3454 0.848405
\(634\) 0 0
\(635\) −19.5650 −0.776412
\(636\) 0 0
\(637\) −50.3595 −1.99532
\(638\) 0 0
\(639\) 20.5511 0.812991
\(640\) 0 0
\(641\) −24.6339 −0.972980 −0.486490 0.873686i \(-0.661723\pi\)
−0.486490 + 0.873686i \(0.661723\pi\)
\(642\) 0 0
\(643\) −0.792865 −0.0312676 −0.0156338 0.999878i \(-0.504977\pi\)
−0.0156338 + 0.999878i \(0.504977\pi\)
\(644\) 0 0
\(645\) −2.39059 −0.0941295
\(646\) 0 0
\(647\) 9.35485 0.367777 0.183889 0.982947i \(-0.441131\pi\)
0.183889 + 0.982947i \(0.441131\pi\)
\(648\) 0 0
\(649\) 26.0294 1.02174
\(650\) 0 0
\(651\) −84.1501 −3.29810
\(652\) 0 0
\(653\) 14.1527 0.553837 0.276918 0.960893i \(-0.410687\pi\)
0.276918 + 0.960893i \(0.410687\pi\)
\(654\) 0 0
\(655\) 10.5908 0.413816
\(656\) 0 0
\(657\) −44.2657 −1.72697
\(658\) 0 0
\(659\) 34.2505 1.33421 0.667104 0.744964i \(-0.267533\pi\)
0.667104 + 0.744964i \(0.267533\pi\)
\(660\) 0 0
\(661\) 13.7314 0.534090 0.267045 0.963684i \(-0.413953\pi\)
0.267045 + 0.963684i \(0.413953\pi\)
\(662\) 0 0
\(663\) 9.59417 0.372607
\(664\) 0 0
\(665\) 18.8278 0.730109
\(666\) 0 0
\(667\) −2.45102 −0.0949040
\(668\) 0 0
\(669\) 74.2746 2.87162
\(670\) 0 0
\(671\) −22.2589 −0.859296
\(672\) 0 0
\(673\) −35.9862 −1.38716 −0.693582 0.720377i \(-0.743969\pi\)
−0.693582 + 0.720377i \(0.743969\pi\)
\(674\) 0 0
\(675\) 12.7502 0.490754
\(676\) 0 0
\(677\) −41.8055 −1.60671 −0.803357 0.595497i \(-0.796955\pi\)
−0.803357 + 0.595497i \(0.796955\pi\)
\(678\) 0 0
\(679\) −59.3270 −2.27676
\(680\) 0 0
\(681\) 21.9601 0.841514
\(682\) 0 0
\(683\) −17.2585 −0.660379 −0.330190 0.943915i \(-0.607113\pi\)
−0.330190 + 0.943915i \(0.607113\pi\)
\(684\) 0 0
\(685\) −19.8429 −0.758158
\(686\) 0 0
\(687\) −45.8685 −1.74999
\(688\) 0 0
\(689\) −34.4286 −1.31162
\(690\) 0 0
\(691\) −45.4927 −1.73063 −0.865313 0.501232i \(-0.832880\pi\)
−0.865313 + 0.501232i \(0.832880\pi\)
\(692\) 0 0
\(693\) −157.719 −5.99125
\(694\) 0 0
\(695\) 17.2215 0.653249
\(696\) 0 0
\(697\) 12.4438 0.471342
\(698\) 0 0
\(699\) −59.6065 −2.25452
\(700\) 0 0
\(701\) 5.20380 0.196545 0.0982723 0.995160i \(-0.468668\pi\)
0.0982723 + 0.995160i \(0.468668\pi\)
\(702\) 0 0
\(703\) 38.3540 1.44655
\(704\) 0 0
\(705\) −3.52218 −0.132653
\(706\) 0 0
\(707\) 50.9614 1.91660
\(708\) 0 0
\(709\) 19.8569 0.745741 0.372870 0.927883i \(-0.378374\pi\)
0.372870 + 0.927883i \(0.378374\pi\)
\(710\) 0 0
\(711\) 89.7373 3.36541
\(712\) 0 0
\(713\) 4.70316 0.176135
\(714\) 0 0
\(715\) 13.9934 0.523322
\(716\) 0 0
\(717\) 10.9247 0.407990
\(718\) 0 0
\(719\) −14.7841 −0.551354 −0.275677 0.961250i \(-0.588902\pi\)
−0.275677 + 0.961250i \(0.588902\pi\)
\(720\) 0 0
\(721\) −60.9218 −2.26885
\(722\) 0 0
\(723\) 5.28561 0.196574
\(724\) 0 0
\(725\) 2.84963 0.105832
\(726\) 0 0
\(727\) 33.4709 1.24137 0.620683 0.784062i \(-0.286855\pi\)
0.620683 + 0.784062i \(0.286855\pi\)
\(728\) 0 0
\(729\) 14.4471 0.535078
\(730\) 0 0
\(731\) 0.754968 0.0279235
\(732\) 0 0
\(733\) −2.18249 −0.0806121 −0.0403060 0.999187i \(-0.512833\pi\)
−0.0403060 + 0.999187i \(0.512833\pi\)
\(734\) 0 0
\(735\) 52.6294 1.94126
\(736\) 0 0
\(737\) 4.45802 0.164213
\(738\) 0 0
\(739\) −17.8717 −0.657421 −0.328711 0.944431i \(-0.606614\pi\)
−0.328711 + 0.944431i \(0.606614\pi\)
\(740\) 0 0
\(741\) −37.1671 −1.36537
\(742\) 0 0
\(743\) −10.0969 −0.370420 −0.185210 0.982699i \(-0.559297\pi\)
−0.185210 + 0.982699i \(0.559297\pi\)
\(744\) 0 0
\(745\) −12.4280 −0.455327
\(746\) 0 0
\(747\) 15.0993 0.552454
\(748\) 0 0
\(749\) −0.986725 −0.0360542
\(750\) 0 0
\(751\) 11.2657 0.411090 0.205545 0.978648i \(-0.434103\pi\)
0.205545 + 0.978648i \(0.434103\pi\)
\(752\) 0 0
\(753\) −46.4184 −1.69158
\(754\) 0 0
\(755\) 1.48895 0.0541884
\(756\) 0 0
\(757\) −28.4638 −1.03453 −0.517267 0.855824i \(-0.673050\pi\)
−0.517267 + 0.855824i \(0.673050\pi\)
\(758\) 0 0
\(759\) 12.5785 0.456570
\(760\) 0 0
\(761\) 31.0603 1.12593 0.562967 0.826479i \(-0.309660\pi\)
0.562967 + 0.826479i \(0.309660\pi\)
\(762\) 0 0
\(763\) −60.8110 −2.20151
\(764\) 0 0
\(765\) −7.02660 −0.254047
\(766\) 0 0
\(767\) 17.0766 0.616601
\(768\) 0 0
\(769\) 18.1073 0.652965 0.326483 0.945203i \(-0.394137\pi\)
0.326483 + 0.945203i \(0.394137\pi\)
\(770\) 0 0
\(771\) −10.6898 −0.384983
\(772\) 0 0
\(773\) −35.5420 −1.27836 −0.639178 0.769059i \(-0.720725\pi\)
−0.639178 + 0.769059i \(0.720725\pi\)
\(774\) 0 0
\(775\) −5.46803 −0.196417
\(776\) 0 0
\(777\) 152.364 5.46603
\(778\) 0 0
\(779\) −48.2064 −1.72717
\(780\) 0 0
\(781\) −13.5077 −0.483345
\(782\) 0 0
\(783\) 36.3332 1.29844
\(784\) 0 0
\(785\) 7.93055 0.283053
\(786\) 0 0
\(787\) 20.6325 0.735471 0.367735 0.929930i \(-0.380133\pi\)
0.367735 + 0.929930i \(0.380133\pi\)
\(788\) 0 0
\(789\) 10.9514 0.389881
\(790\) 0 0
\(791\) −69.8214 −2.48256
\(792\) 0 0
\(793\) −14.6030 −0.518568
\(794\) 0 0
\(795\) 35.9803 1.27609
\(796\) 0 0
\(797\) 49.5077 1.75365 0.876826 0.480807i \(-0.159656\pi\)
0.876826 + 0.480807i \(0.159656\pi\)
\(798\) 0 0
\(799\) 1.11233 0.0393515
\(800\) 0 0
\(801\) −104.910 −3.70682
\(802\) 0 0
\(803\) 29.0947 1.02673
\(804\) 0 0
\(805\) −4.18029 −0.147336
\(806\) 0 0
\(807\) −63.3548 −2.23019
\(808\) 0 0
\(809\) −25.6858 −0.903065 −0.451532 0.892255i \(-0.649122\pi\)
−0.451532 + 0.892255i \(0.649122\pi\)
\(810\) 0 0
\(811\) 32.4859 1.14074 0.570368 0.821390i \(-0.306801\pi\)
0.570368 + 0.821390i \(0.306801\pi\)
\(812\) 0 0
\(813\) 16.1064 0.564876
\(814\) 0 0
\(815\) −14.4809 −0.507244
\(816\) 0 0
\(817\) −2.92469 −0.102322
\(818\) 0 0
\(819\) −103.472 −3.61560
\(820\) 0 0
\(821\) −12.1049 −0.422463 −0.211232 0.977436i \(-0.567747\pi\)
−0.211232 + 0.977436i \(0.567747\pi\)
\(822\) 0 0
\(823\) 31.4212 1.09527 0.547637 0.836716i \(-0.315528\pi\)
0.547637 + 0.836716i \(0.315528\pi\)
\(824\) 0 0
\(825\) −14.6241 −0.509145
\(826\) 0 0
\(827\) −40.5617 −1.41047 −0.705234 0.708974i \(-0.749158\pi\)
−0.705234 + 0.708974i \(0.749158\pi\)
\(828\) 0 0
\(829\) −11.3415 −0.393906 −0.196953 0.980413i \(-0.563105\pi\)
−0.196953 + 0.980413i \(0.563105\pi\)
\(830\) 0 0
\(831\) 57.6986 2.00154
\(832\) 0 0
\(833\) −16.6208 −0.575876
\(834\) 0 0
\(835\) −3.23492 −0.111949
\(836\) 0 0
\(837\) −69.7182 −2.40981
\(838\) 0 0
\(839\) −42.7694 −1.47656 −0.738282 0.674492i \(-0.764363\pi\)
−0.738282 + 0.674492i \(0.764363\pi\)
\(840\) 0 0
\(841\) −20.8796 −0.719987
\(842\) 0 0
\(843\) 53.8165 1.85354
\(844\) 0 0
\(845\) −3.81961 −0.131399
\(846\) 0 0
\(847\) 50.2033 1.72501
\(848\) 0 0
\(849\) 78.8698 2.70680
\(850\) 0 0
\(851\) −8.51565 −0.291913
\(852\) 0 0
\(853\) 46.4207 1.58942 0.794708 0.606993i \(-0.207624\pi\)
0.794708 + 0.606993i \(0.207624\pi\)
\(854\) 0 0
\(855\) 27.2206 0.930923
\(856\) 0 0
\(857\) −20.3176 −0.694036 −0.347018 0.937859i \(-0.612806\pi\)
−0.347018 + 0.937859i \(0.612806\pi\)
\(858\) 0 0
\(859\) 1.70566 0.0581964 0.0290982 0.999577i \(-0.490736\pi\)
0.0290982 + 0.999577i \(0.490736\pi\)
\(860\) 0 0
\(861\) −191.504 −6.52642
\(862\) 0 0
\(863\) 44.1789 1.50387 0.751933 0.659240i \(-0.229122\pi\)
0.751933 + 0.659240i \(0.229122\pi\)
\(864\) 0 0
\(865\) −4.14604 −0.140970
\(866\) 0 0
\(867\) 3.16648 0.107539
\(868\) 0 0
\(869\) −58.9820 −2.00083
\(870\) 0 0
\(871\) 2.92469 0.0990995
\(872\) 0 0
\(873\) −85.7730 −2.90297
\(874\) 0 0
\(875\) 4.86012 0.164302
\(876\) 0 0
\(877\) 33.1568 1.11962 0.559812 0.828620i \(-0.310873\pi\)
0.559812 + 0.828620i \(0.310873\pi\)
\(878\) 0 0
\(879\) 38.8518 1.31044
\(880\) 0 0
\(881\) −0.324134 −0.0109203 −0.00546017 0.999985i \(-0.501738\pi\)
−0.00546017 + 0.999985i \(0.501738\pi\)
\(882\) 0 0
\(883\) 49.4398 1.66378 0.831892 0.554938i \(-0.187258\pi\)
0.831892 + 0.554938i \(0.187258\pi\)
\(884\) 0 0
\(885\) −17.8463 −0.599897
\(886\) 0 0
\(887\) 12.6252 0.423913 0.211956 0.977279i \(-0.432017\pi\)
0.211956 + 0.977279i \(0.432017\pi\)
\(888\) 0 0
\(889\) −95.0880 −3.18915
\(890\) 0 0
\(891\) −89.1043 −2.98511
\(892\) 0 0
\(893\) −4.30910 −0.144198
\(894\) 0 0
\(895\) 3.42912 0.114623
\(896\) 0 0
\(897\) 8.25214 0.275531
\(898\) 0 0
\(899\) −15.5818 −0.519683
\(900\) 0 0
\(901\) −11.3629 −0.378552
\(902\) 0 0
\(903\) −11.6186 −0.386642
\(904\) 0 0
\(905\) −0.684712 −0.0227606
\(906\) 0 0
\(907\) 41.8714 1.39032 0.695158 0.718857i \(-0.255334\pi\)
0.695158 + 0.718857i \(0.255334\pi\)
\(908\) 0 0
\(909\) 73.6784 2.44376
\(910\) 0 0
\(911\) −10.7837 −0.357280 −0.178640 0.983915i \(-0.557170\pi\)
−0.178640 + 0.983915i \(0.557170\pi\)
\(912\) 0 0
\(913\) −9.92438 −0.328449
\(914\) 0 0
\(915\) 15.2612 0.504520
\(916\) 0 0
\(917\) 51.4725 1.69977
\(918\) 0 0
\(919\) 44.6771 1.47376 0.736882 0.676022i \(-0.236298\pi\)
0.736882 + 0.676022i \(0.236298\pi\)
\(920\) 0 0
\(921\) −88.3850 −2.91239
\(922\) 0 0
\(923\) −8.86179 −0.291689
\(924\) 0 0
\(925\) 9.90053 0.325527
\(926\) 0 0
\(927\) −88.0787 −2.89289
\(928\) 0 0
\(929\) 23.3248 0.765261 0.382630 0.923902i \(-0.375018\pi\)
0.382630 + 0.923902i \(0.375018\pi\)
\(930\) 0 0
\(931\) 64.3877 2.11022
\(932\) 0 0
\(933\) 3.90636 0.127889
\(934\) 0 0
\(935\) 4.61840 0.151038
\(936\) 0 0
\(937\) 32.5268 1.06260 0.531302 0.847182i \(-0.321703\pi\)
0.531302 + 0.847182i \(0.321703\pi\)
\(938\) 0 0
\(939\) −25.9692 −0.847472
\(940\) 0 0
\(941\) 3.31221 0.107975 0.0539875 0.998542i \(-0.482807\pi\)
0.0539875 + 0.998542i \(0.482807\pi\)
\(942\) 0 0
\(943\) 10.7032 0.348543
\(944\) 0 0
\(945\) 61.9673 2.01580
\(946\) 0 0
\(947\) 15.8666 0.515597 0.257798 0.966199i \(-0.417003\pi\)
0.257798 + 0.966199i \(0.417003\pi\)
\(948\) 0 0
\(949\) 19.0877 0.619612
\(950\) 0 0
\(951\) 94.5749 3.06680
\(952\) 0 0
\(953\) 29.7322 0.963122 0.481561 0.876413i \(-0.340070\pi\)
0.481561 + 0.876413i \(0.340070\pi\)
\(954\) 0 0
\(955\) −0.483435 −0.0156436
\(956\) 0 0
\(957\) −41.6732 −1.34710
\(958\) 0 0
\(959\) −96.4389 −3.11417
\(960\) 0 0
\(961\) −1.10065 −0.0355050
\(962\) 0 0
\(963\) −1.42657 −0.0459707
\(964\) 0 0
\(965\) 18.3143 0.589559
\(966\) 0 0
\(967\) 53.3740 1.71639 0.858196 0.513323i \(-0.171586\pi\)
0.858196 + 0.513323i \(0.171586\pi\)
\(968\) 0 0
\(969\) −12.2667 −0.394064
\(970\) 0 0
\(971\) 4.96805 0.159432 0.0797162 0.996818i \(-0.474599\pi\)
0.0797162 + 0.996818i \(0.474599\pi\)
\(972\) 0 0
\(973\) 83.6986 2.68325
\(974\) 0 0
\(975\) −9.59417 −0.307259
\(976\) 0 0
\(977\) −35.6260 −1.13978 −0.569888 0.821723i \(-0.693013\pi\)
−0.569888 + 0.821723i \(0.693013\pi\)
\(978\) 0 0
\(979\) 68.9548 2.20381
\(980\) 0 0
\(981\) −87.9185 −2.80702
\(982\) 0 0
\(983\) 55.6536 1.77508 0.887538 0.460735i \(-0.152414\pi\)
0.887538 + 0.460735i \(0.152414\pi\)
\(984\) 0 0
\(985\) −21.3410 −0.679981
\(986\) 0 0
\(987\) −17.1182 −0.544879
\(988\) 0 0
\(989\) 0.649364 0.0206486
\(990\) 0 0
\(991\) 8.84772 0.281057 0.140528 0.990077i \(-0.455120\pi\)
0.140528 + 0.990077i \(0.455120\pi\)
\(992\) 0 0
\(993\) 26.2429 0.832793
\(994\) 0 0
\(995\) 18.1017 0.573864
\(996\) 0 0
\(997\) 26.1990 0.829732 0.414866 0.909882i \(-0.363828\pi\)
0.414866 + 0.909882i \(0.363828\pi\)
\(998\) 0 0
\(999\) 126.233 3.99385
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2720.2.a.t.1.5 yes 5
4.3 odd 2 2720.2.a.s.1.1 5
8.3 odd 2 5440.2.a.cf.1.5 5
8.5 even 2 5440.2.a.ce.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2720.2.a.s.1.1 5 4.3 odd 2
2720.2.a.t.1.5 yes 5 1.1 even 1 trivial
5440.2.a.ce.1.1 5 8.5 even 2
5440.2.a.cf.1.5 5 8.3 odd 2