Properties

Label 2720.2.a.q.1.3
Level $2720$
Weight $2$
Character 2720.1
Self dual yes
Analytic conductor $21.719$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2720,2,Mod(1,2720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2720.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2720, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2720 = 2^{5} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2720.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,3,0,4,0,6,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.7193093498\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.15188.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 7x^{2} + x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.490689\) of defining polynomial
Character \(\chi\) \(=\) 2720.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.49069 q^{3} +1.00000 q^{5} +4.58521 q^{7} -0.777846 q^{9} -2.58521 q^{11} +2.75922 q^{13} +1.49069 q^{15} +1.00000 q^{17} -2.07590 q^{19} +6.83513 q^{21} +4.58521 q^{23} +1.00000 q^{25} -5.63159 q^{27} +4.07590 q^{29} +0.509311 q^{31} -3.85375 q^{33} +4.58521 q^{35} -0.981378 q^{37} +4.11315 q^{39} +9.13318 q^{41} +8.53707 q^{43} -0.777846 q^{45} -6.61297 q^{47} +14.0242 q^{49} +1.49069 q^{51} -13.2463 q^{53} -2.58521 q^{55} -3.09452 q^{57} +11.5943 q^{59} -6.61297 q^{61} -3.56659 q^{63} +2.75922 q^{65} +2.00000 q^{67} +6.83513 q^{69} +12.2168 q^{71} -2.11315 q^{73} +1.49069 q^{75} -11.8537 q^{77} -2.01090 q^{79} -6.06142 q^{81} +7.01862 q^{83} +1.00000 q^{85} +6.07590 q^{87} -6.33671 q^{89} +12.6516 q^{91} +0.759224 q^{93} -2.07590 q^{95} +8.65022 q^{97} +2.01090 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} + 4 q^{5} + 6 q^{7} + 5 q^{9} + 2 q^{11} - 3 q^{13} + 3 q^{15} + 4 q^{17} + 7 q^{19} - 2 q^{21} + 6 q^{23} + 4 q^{25} + 9 q^{27} + q^{29} + 5 q^{31} + 8 q^{33} + 6 q^{35} + 2 q^{37} + 13 q^{39}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.49069 0.860650 0.430325 0.902674i \(-0.358399\pi\)
0.430325 + 0.902674i \(0.358399\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 4.58521 1.73305 0.866524 0.499136i \(-0.166349\pi\)
0.866524 + 0.499136i \(0.166349\pi\)
\(8\) 0 0
\(9\) −0.777846 −0.259282
\(10\) 0 0
\(11\) −2.58521 −0.779471 −0.389735 0.920927i \(-0.627434\pi\)
−0.389735 + 0.920927i \(0.627434\pi\)
\(12\) 0 0
\(13\) 2.75922 0.765271 0.382636 0.923899i \(-0.375016\pi\)
0.382636 + 0.923899i \(0.375016\pi\)
\(14\) 0 0
\(15\) 1.49069 0.384894
\(16\) 0 0
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) −2.07590 −0.476244 −0.238122 0.971235i \(-0.576532\pi\)
−0.238122 + 0.971235i \(0.576532\pi\)
\(20\) 0 0
\(21\) 6.83513 1.49155
\(22\) 0 0
\(23\) 4.58521 0.956083 0.478041 0.878337i \(-0.341347\pi\)
0.478041 + 0.878337i \(0.341347\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −5.63159 −1.08380
\(28\) 0 0
\(29\) 4.07590 0.756876 0.378438 0.925627i \(-0.376461\pi\)
0.378438 + 0.925627i \(0.376461\pi\)
\(30\) 0 0
\(31\) 0.509311 0.0914750 0.0457375 0.998953i \(-0.485436\pi\)
0.0457375 + 0.998953i \(0.485436\pi\)
\(32\) 0 0
\(33\) −3.85375 −0.670851
\(34\) 0 0
\(35\) 4.58521 0.775042
\(36\) 0 0
\(37\) −0.981378 −0.161338 −0.0806688 0.996741i \(-0.525706\pi\)
−0.0806688 + 0.996741i \(0.525706\pi\)
\(38\) 0 0
\(39\) 4.11315 0.658630
\(40\) 0 0
\(41\) 9.13318 1.42636 0.713182 0.700979i \(-0.247253\pi\)
0.713182 + 0.700979i \(0.247253\pi\)
\(42\) 0 0
\(43\) 8.53707 1.30189 0.650946 0.759124i \(-0.274373\pi\)
0.650946 + 0.759124i \(0.274373\pi\)
\(44\) 0 0
\(45\) −0.777846 −0.115954
\(46\) 0 0
\(47\) −6.61297 −0.964601 −0.482301 0.876006i \(-0.660199\pi\)
−0.482301 + 0.876006i \(0.660199\pi\)
\(48\) 0 0
\(49\) 14.0242 2.00345
\(50\) 0 0
\(51\) 1.49069 0.208738
\(52\) 0 0
\(53\) −13.2463 −1.81952 −0.909761 0.415132i \(-0.863736\pi\)
−0.909761 + 0.415132i \(0.863736\pi\)
\(54\) 0 0
\(55\) −2.58521 −0.348590
\(56\) 0 0
\(57\) −3.09452 −0.409880
\(58\) 0 0
\(59\) 11.5943 1.50946 0.754728 0.656038i \(-0.227769\pi\)
0.754728 + 0.656038i \(0.227769\pi\)
\(60\) 0 0
\(61\) −6.61297 −0.846704 −0.423352 0.905965i \(-0.639147\pi\)
−0.423352 + 0.905965i \(0.639147\pi\)
\(62\) 0 0
\(63\) −3.56659 −0.449348
\(64\) 0 0
\(65\) 2.75922 0.342240
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 0 0
\(69\) 6.83513 0.822852
\(70\) 0 0
\(71\) 12.2168 1.44987 0.724934 0.688818i \(-0.241870\pi\)
0.724934 + 0.688818i \(0.241870\pi\)
\(72\) 0 0
\(73\) −2.11315 −0.247325 −0.123662 0.992324i \(-0.539464\pi\)
−0.123662 + 0.992324i \(0.539464\pi\)
\(74\) 0 0
\(75\) 1.49069 0.172130
\(76\) 0 0
\(77\) −11.8537 −1.35086
\(78\) 0 0
\(79\) −2.01090 −0.226244 −0.113122 0.993581i \(-0.536085\pi\)
−0.113122 + 0.993581i \(0.536085\pi\)
\(80\) 0 0
\(81\) −6.06142 −0.673491
\(82\) 0 0
\(83\) 7.01862 0.770394 0.385197 0.922834i \(-0.374134\pi\)
0.385197 + 0.922834i \(0.374134\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 0 0
\(87\) 6.07590 0.651405
\(88\) 0 0
\(89\) −6.33671 −0.671690 −0.335845 0.941917i \(-0.609022\pi\)
−0.335845 + 0.941917i \(0.609022\pi\)
\(90\) 0 0
\(91\) 12.6516 1.32625
\(92\) 0 0
\(93\) 0.759224 0.0787279
\(94\) 0 0
\(95\) −2.07590 −0.212983
\(96\) 0 0
\(97\) 8.65022 0.878296 0.439148 0.898415i \(-0.355280\pi\)
0.439148 + 0.898415i \(0.355280\pi\)
\(98\) 0 0
\(99\) 2.01090 0.202103
\(100\) 0 0
\(101\) −3.31668 −0.330022 −0.165011 0.986292i \(-0.552766\pi\)
−0.165011 + 0.986292i \(0.552766\pi\)
\(102\) 0 0
\(103\) −2.15180 −0.212023 −0.106012 0.994365i \(-0.533808\pi\)
−0.106012 + 0.994365i \(0.533808\pi\)
\(104\) 0 0
\(105\) 6.83513 0.667040
\(106\) 0 0
\(107\) −11.2741 −1.08991 −0.544953 0.838466i \(-0.683453\pi\)
−0.544953 + 0.838466i \(0.683453\pi\)
\(108\) 0 0
\(109\) 3.72788 0.357066 0.178533 0.983934i \(-0.442865\pi\)
0.178533 + 0.983934i \(0.442865\pi\)
\(110\) 0 0
\(111\) −1.46293 −0.138855
\(112\) 0 0
\(113\) −19.9352 −1.87535 −0.937673 0.347519i \(-0.887024\pi\)
−0.937673 + 0.347519i \(0.887024\pi\)
\(114\) 0 0
\(115\) 4.58521 0.427573
\(116\) 0 0
\(117\) −2.14625 −0.198421
\(118\) 0 0
\(119\) 4.58521 0.420326
\(120\) 0 0
\(121\) −4.31668 −0.392425
\(122\) 0 0
\(123\) 13.6147 1.22760
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 6.03866 0.535844 0.267922 0.963441i \(-0.413663\pi\)
0.267922 + 0.963441i \(0.413663\pi\)
\(128\) 0 0
\(129\) 12.7261 1.12047
\(130\) 0 0
\(131\) −19.2368 −1.68073 −0.840365 0.542020i \(-0.817660\pi\)
−0.840365 + 0.542020i \(0.817660\pi\)
\(132\) 0 0
\(133\) −9.51845 −0.825354
\(134\) 0 0
\(135\) −5.63159 −0.484690
\(136\) 0 0
\(137\) −7.81650 −0.667809 −0.333904 0.942607i \(-0.608366\pi\)
−0.333904 + 0.942607i \(0.608366\pi\)
\(138\) 0 0
\(139\) −3.75564 −0.318549 −0.159274 0.987234i \(-0.550915\pi\)
−0.159274 + 0.987234i \(0.550915\pi\)
\(140\) 0 0
\(141\) −9.85788 −0.830184
\(142\) 0 0
\(143\) −7.13318 −0.596507
\(144\) 0 0
\(145\) 4.07590 0.338485
\(146\) 0 0
\(147\) 20.9057 1.72427
\(148\) 0 0
\(149\) −12.1890 −0.998566 −0.499283 0.866439i \(-0.666403\pi\)
−0.499283 + 0.866439i \(0.666403\pi\)
\(150\) 0 0
\(151\) −4.72612 −0.384606 −0.192303 0.981336i \(-0.561596\pi\)
−0.192303 + 0.981336i \(0.561596\pi\)
\(152\) 0 0
\(153\) −0.777846 −0.0628851
\(154\) 0 0
\(155\) 0.509311 0.0409088
\(156\) 0 0
\(157\) −9.32940 −0.744567 −0.372284 0.928119i \(-0.621425\pi\)
−0.372284 + 0.928119i \(0.621425\pi\)
\(158\) 0 0
\(159\) −19.7462 −1.56597
\(160\) 0 0
\(161\) 21.0242 1.65694
\(162\) 0 0
\(163\) 18.1999 1.42553 0.712765 0.701403i \(-0.247443\pi\)
0.712765 + 0.701403i \(0.247443\pi\)
\(164\) 0 0
\(165\) −3.85375 −0.300014
\(166\) 0 0
\(167\) 15.7184 1.21633 0.608163 0.793812i \(-0.291907\pi\)
0.608163 + 0.793812i \(0.291907\pi\)
\(168\) 0 0
\(169\) −5.38668 −0.414360
\(170\) 0 0
\(171\) 1.61473 0.123482
\(172\) 0 0
\(173\) −5.42569 −0.412507 −0.206254 0.978499i \(-0.566127\pi\)
−0.206254 + 0.978499i \(0.566127\pi\)
\(174\) 0 0
\(175\) 4.58521 0.346609
\(176\) 0 0
\(177\) 17.2836 1.29911
\(178\) 0 0
\(179\) 16.2073 1.21139 0.605696 0.795696i \(-0.292895\pi\)
0.605696 + 0.795696i \(0.292895\pi\)
\(180\) 0 0
\(181\) 20.2446 1.50477 0.752383 0.658725i \(-0.228904\pi\)
0.752383 + 0.658725i \(0.228904\pi\)
\(182\) 0 0
\(183\) −9.85788 −0.728716
\(184\) 0 0
\(185\) −0.981378 −0.0721523
\(186\) 0 0
\(187\) −2.58521 −0.189049
\(188\) 0 0
\(189\) −25.8221 −1.87828
\(190\) 0 0
\(191\) −9.07414 −0.656582 −0.328291 0.944577i \(-0.606473\pi\)
−0.328291 + 0.944577i \(0.606473\pi\)
\(192\) 0 0
\(193\) 16.9152 1.21758 0.608790 0.793331i \(-0.291655\pi\)
0.608790 + 0.793331i \(0.291655\pi\)
\(194\) 0 0
\(195\) 4.11315 0.294548
\(196\) 0 0
\(197\) −12.3108 −0.877107 −0.438553 0.898705i \(-0.644509\pi\)
−0.438553 + 0.898705i \(0.644509\pi\)
\(198\) 0 0
\(199\) 24.9647 1.76970 0.884851 0.465874i \(-0.154260\pi\)
0.884851 + 0.465874i \(0.154260\pi\)
\(200\) 0 0
\(201\) 2.98138 0.210290
\(202\) 0 0
\(203\) 18.6889 1.31170
\(204\) 0 0
\(205\) 9.13318 0.637889
\(206\) 0 0
\(207\) −3.56659 −0.247895
\(208\) 0 0
\(209\) 5.36665 0.371219
\(210\) 0 0
\(211\) −0.992276 −0.0683111 −0.0341555 0.999417i \(-0.510874\pi\)
−0.0341555 + 0.999417i \(0.510874\pi\)
\(212\) 0 0
\(213\) 18.2115 1.24783
\(214\) 0 0
\(215\) 8.53707 0.582223
\(216\) 0 0
\(217\) 2.33530 0.158530
\(218\) 0 0
\(219\) −3.15004 −0.212860
\(220\) 0 0
\(221\) 2.75922 0.185606
\(222\) 0 0
\(223\) 19.1873 1.28488 0.642438 0.766338i \(-0.277923\pi\)
0.642438 + 0.766338i \(0.277923\pi\)
\(224\) 0 0
\(225\) −0.777846 −0.0518564
\(226\) 0 0
\(227\) −27.7571 −1.84230 −0.921150 0.389208i \(-0.872749\pi\)
−0.921150 + 0.389208i \(0.872749\pi\)
\(228\) 0 0
\(229\) 11.6948 0.772812 0.386406 0.922329i \(-0.373716\pi\)
0.386406 + 0.922329i \(0.373716\pi\)
\(230\) 0 0
\(231\) −17.6703 −1.16262
\(232\) 0 0
\(233\) 17.8424 1.16890 0.584448 0.811431i \(-0.301311\pi\)
0.584448 + 0.811431i \(0.301311\pi\)
\(234\) 0 0
\(235\) −6.61297 −0.431383
\(236\) 0 0
\(237\) −2.99762 −0.194717
\(238\) 0 0
\(239\) −14.7852 −0.956372 −0.478186 0.878259i \(-0.658706\pi\)
−0.478186 + 0.878259i \(0.658706\pi\)
\(240\) 0 0
\(241\) −12.2446 −0.788742 −0.394371 0.918951i \(-0.629037\pi\)
−0.394371 + 0.918951i \(0.629037\pi\)
\(242\) 0 0
\(243\) 7.85910 0.504161
\(244\) 0 0
\(245\) 14.0242 0.895972
\(246\) 0 0
\(247\) −5.72788 −0.364456
\(248\) 0 0
\(249\) 10.4626 0.663039
\(250\) 0 0
\(251\) −5.44113 −0.343441 −0.171721 0.985146i \(-0.554933\pi\)
−0.171721 + 0.985146i \(0.554933\pi\)
\(252\) 0 0
\(253\) −11.8537 −0.745239
\(254\) 0 0
\(255\) 1.49069 0.0933506
\(256\) 0 0
\(257\) −26.7535 −1.66884 −0.834418 0.551133i \(-0.814196\pi\)
−0.834418 + 0.551133i \(0.814196\pi\)
\(258\) 0 0
\(259\) −4.49983 −0.279606
\(260\) 0 0
\(261\) −3.17042 −0.196244
\(262\) 0 0
\(263\) 7.92410 0.488621 0.244310 0.969697i \(-0.421438\pi\)
0.244310 + 0.969697i \(0.421438\pi\)
\(264\) 0 0
\(265\) −13.2463 −0.813715
\(266\) 0 0
\(267\) −9.44607 −0.578090
\(268\) 0 0
\(269\) −24.6502 −1.50295 −0.751475 0.659761i \(-0.770657\pi\)
−0.751475 + 0.659761i \(0.770657\pi\)
\(270\) 0 0
\(271\) 0.670598 0.0407359 0.0203680 0.999793i \(-0.493516\pi\)
0.0203680 + 0.999793i \(0.493516\pi\)
\(272\) 0 0
\(273\) 18.8596 1.14144
\(274\) 0 0
\(275\) −2.58521 −0.155894
\(276\) 0 0
\(277\) −22.0856 −1.32699 −0.663497 0.748179i \(-0.730929\pi\)
−0.663497 + 0.748179i \(0.730929\pi\)
\(278\) 0 0
\(279\) −0.396166 −0.0237178
\(280\) 0 0
\(281\) −2.46117 −0.146821 −0.0734105 0.997302i \(-0.523388\pi\)
−0.0734105 + 0.997302i \(0.523388\pi\)
\(282\) 0 0
\(283\) 12.4721 0.741387 0.370694 0.928755i \(-0.379120\pi\)
0.370694 + 0.928755i \(0.379120\pi\)
\(284\) 0 0
\(285\) −3.09452 −0.183304
\(286\) 0 0
\(287\) 41.8776 2.47195
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 12.8948 0.755905
\(292\) 0 0
\(293\) −26.3205 −1.53766 −0.768829 0.639454i \(-0.779160\pi\)
−0.768829 + 0.639454i \(0.779160\pi\)
\(294\) 0 0
\(295\) 11.5943 0.675049
\(296\) 0 0
\(297\) 14.5589 0.844791
\(298\) 0 0
\(299\) 12.6516 0.731663
\(300\) 0 0
\(301\) 39.1443 2.25624
\(302\) 0 0
\(303\) −4.94413 −0.284033
\(304\) 0 0
\(305\) −6.61297 −0.378658
\(306\) 0 0
\(307\) −3.73647 −0.213251 −0.106626 0.994299i \(-0.534005\pi\)
−0.106626 + 0.994299i \(0.534005\pi\)
\(308\) 0 0
\(309\) −3.20767 −0.182478
\(310\) 0 0
\(311\) 9.71839 0.551080 0.275540 0.961290i \(-0.411143\pi\)
0.275540 + 0.961290i \(0.411143\pi\)
\(312\) 0 0
\(313\) 27.9521 1.57994 0.789972 0.613143i \(-0.210095\pi\)
0.789972 + 0.613143i \(0.210095\pi\)
\(314\) 0 0
\(315\) −3.56659 −0.200955
\(316\) 0 0
\(317\) −16.7852 −0.942748 −0.471374 0.881933i \(-0.656242\pi\)
−0.471374 + 0.881933i \(0.656242\pi\)
\(318\) 0 0
\(319\) −10.5371 −0.589963
\(320\) 0 0
\(321\) −16.8062 −0.938028
\(322\) 0 0
\(323\) −2.07590 −0.115506
\(324\) 0 0
\(325\) 2.75922 0.153054
\(326\) 0 0
\(327\) 5.55711 0.307309
\(328\) 0 0
\(329\) −30.3219 −1.67170
\(330\) 0 0
\(331\) −25.9352 −1.42553 −0.712764 0.701404i \(-0.752557\pi\)
−0.712764 + 0.701404i \(0.752557\pi\)
\(332\) 0 0
\(333\) 0.763361 0.0418319
\(334\) 0 0
\(335\) 2.00000 0.109272
\(336\) 0 0
\(337\) 24.1314 1.31452 0.657261 0.753663i \(-0.271715\pi\)
0.657261 + 0.753663i \(0.271715\pi\)
\(338\) 0 0
\(339\) −29.7172 −1.61402
\(340\) 0 0
\(341\) −1.31668 −0.0713021
\(342\) 0 0
\(343\) 32.2073 1.73903
\(344\) 0 0
\(345\) 6.83513 0.367991
\(346\) 0 0
\(347\) −11.6797 −0.627001 −0.313501 0.949588i \(-0.601502\pi\)
−0.313501 + 0.949588i \(0.601502\pi\)
\(348\) 0 0
\(349\) −25.3813 −1.35863 −0.679314 0.733848i \(-0.737723\pi\)
−0.679314 + 0.733848i \(0.737723\pi\)
\(350\) 0 0
\(351\) −15.5388 −0.829401
\(352\) 0 0
\(353\) 15.9628 0.849612 0.424806 0.905284i \(-0.360342\pi\)
0.424806 + 0.905284i \(0.360342\pi\)
\(354\) 0 0
\(355\) 12.2168 0.648401
\(356\) 0 0
\(357\) 6.83513 0.361753
\(358\) 0 0
\(359\) 7.57749 0.399925 0.199962 0.979804i \(-0.435918\pi\)
0.199962 + 0.979804i \(0.435918\pi\)
\(360\) 0 0
\(361\) −14.6906 −0.773191
\(362\) 0 0
\(363\) −6.43482 −0.337741
\(364\) 0 0
\(365\) −2.11315 −0.110607
\(366\) 0 0
\(367\) −8.48893 −0.443118 −0.221559 0.975147i \(-0.571115\pi\)
−0.221559 + 0.975147i \(0.571115\pi\)
\(368\) 0 0
\(369\) −7.10421 −0.369830
\(370\) 0 0
\(371\) −60.7372 −3.15332
\(372\) 0 0
\(373\) −4.58704 −0.237508 −0.118754 0.992924i \(-0.537890\pi\)
−0.118754 + 0.992924i \(0.537890\pi\)
\(374\) 0 0
\(375\) 1.49069 0.0769788
\(376\) 0 0
\(377\) 11.2463 0.579215
\(378\) 0 0
\(379\) 37.3296 1.91749 0.958747 0.284262i \(-0.0917487\pi\)
0.958747 + 0.284262i \(0.0917487\pi\)
\(380\) 0 0
\(381\) 9.00176 0.461174
\(382\) 0 0
\(383\) 0.746499 0.0381443 0.0190722 0.999818i \(-0.493929\pi\)
0.0190722 + 0.999818i \(0.493929\pi\)
\(384\) 0 0
\(385\) −11.8537 −0.604123
\(386\) 0 0
\(387\) −6.64053 −0.337557
\(388\) 0 0
\(389\) −14.7979 −0.750282 −0.375141 0.926968i \(-0.622406\pi\)
−0.375141 + 0.926968i \(0.622406\pi\)
\(390\) 0 0
\(391\) 4.58521 0.231884
\(392\) 0 0
\(393\) −28.6761 −1.44652
\(394\) 0 0
\(395\) −2.01090 −0.101179
\(396\) 0 0
\(397\) −30.4554 −1.52851 −0.764257 0.644912i \(-0.776894\pi\)
−0.764257 + 0.644912i \(0.776894\pi\)
\(398\) 0 0
\(399\) −14.1890 −0.710341
\(400\) 0 0
\(401\) 37.5668 1.87600 0.937998 0.346640i \(-0.112678\pi\)
0.937998 + 0.346640i \(0.112678\pi\)
\(402\) 0 0
\(403\) 1.40530 0.0700031
\(404\) 0 0
\(405\) −6.06142 −0.301194
\(406\) 0 0
\(407\) 2.53707 0.125758
\(408\) 0 0
\(409\) 6.76477 0.334497 0.167248 0.985915i \(-0.446512\pi\)
0.167248 + 0.985915i \(0.446512\pi\)
\(410\) 0 0
\(411\) −11.6520 −0.574750
\(412\) 0 0
\(413\) 53.1626 2.61596
\(414\) 0 0
\(415\) 7.01862 0.344531
\(416\) 0 0
\(417\) −5.59849 −0.274159
\(418\) 0 0
\(419\) −7.72557 −0.377419 −0.188709 0.982033i \(-0.560430\pi\)
−0.188709 + 0.982033i \(0.560430\pi\)
\(420\) 0 0
\(421\) −7.84657 −0.382419 −0.191209 0.981549i \(-0.561241\pi\)
−0.191209 + 0.981549i \(0.561241\pi\)
\(422\) 0 0
\(423\) 5.14388 0.250104
\(424\) 0 0
\(425\) 1.00000 0.0485071
\(426\) 0 0
\(427\) −30.3219 −1.46738
\(428\) 0 0
\(429\) −10.6334 −0.513383
\(430\) 0 0
\(431\) 16.5591 0.797622 0.398811 0.917033i \(-0.369423\pi\)
0.398811 + 0.917033i \(0.369423\pi\)
\(432\) 0 0
\(433\) 12.7051 0.610569 0.305285 0.952261i \(-0.401248\pi\)
0.305285 + 0.952261i \(0.401248\pi\)
\(434\) 0 0
\(435\) 6.07590 0.291317
\(436\) 0 0
\(437\) −9.51845 −0.455329
\(438\) 0 0
\(439\) −20.7335 −0.989556 −0.494778 0.869019i \(-0.664751\pi\)
−0.494778 + 0.869019i \(0.664751\pi\)
\(440\) 0 0
\(441\) −10.9087 −0.519460
\(442\) 0 0
\(443\) 10.7479 0.510649 0.255324 0.966855i \(-0.417818\pi\)
0.255324 + 0.966855i \(0.417818\pi\)
\(444\) 0 0
\(445\) −6.33671 −0.300389
\(446\) 0 0
\(447\) −18.1701 −0.859415
\(448\) 0 0
\(449\) 2.34802 0.110810 0.0554050 0.998464i \(-0.482355\pi\)
0.0554050 + 0.998464i \(0.482355\pi\)
\(450\) 0 0
\(451\) −23.6112 −1.11181
\(452\) 0 0
\(453\) −7.04517 −0.331011
\(454\) 0 0
\(455\) 12.6516 0.593118
\(456\) 0 0
\(457\) −36.9017 −1.72619 −0.863095 0.505041i \(-0.831477\pi\)
−0.863095 + 0.505041i \(0.831477\pi\)
\(458\) 0 0
\(459\) −5.63159 −0.262860
\(460\) 0 0
\(461\) 11.2667 0.524743 0.262371 0.964967i \(-0.415495\pi\)
0.262371 + 0.964967i \(0.415495\pi\)
\(462\) 0 0
\(463\) −9.72436 −0.451929 −0.225965 0.974136i \(-0.572553\pi\)
−0.225965 + 0.974136i \(0.572553\pi\)
\(464\) 0 0
\(465\) 0.759224 0.0352082
\(466\) 0 0
\(467\) −13.6774 −0.632916 −0.316458 0.948607i \(-0.602494\pi\)
−0.316458 + 0.948607i \(0.602494\pi\)
\(468\) 0 0
\(469\) 9.17042 0.423451
\(470\) 0 0
\(471\) −13.9072 −0.640812
\(472\) 0 0
\(473\) −22.0701 −1.01479
\(474\) 0 0
\(475\) −2.07590 −0.0952489
\(476\) 0 0
\(477\) 10.3036 0.471770
\(478\) 0 0
\(479\) −6.45027 −0.294720 −0.147360 0.989083i \(-0.547078\pi\)
−0.147360 + 0.989083i \(0.547078\pi\)
\(480\) 0 0
\(481\) −2.70784 −0.123467
\(482\) 0 0
\(483\) 31.3405 1.42604
\(484\) 0 0
\(485\) 8.65022 0.392786
\(486\) 0 0
\(487\) −36.4746 −1.65282 −0.826410 0.563068i \(-0.809621\pi\)
−0.826410 + 0.563068i \(0.809621\pi\)
\(488\) 0 0
\(489\) 27.1305 1.22688
\(490\) 0 0
\(491\) 3.89513 0.175785 0.0878923 0.996130i \(-0.471987\pi\)
0.0878923 + 0.996130i \(0.471987\pi\)
\(492\) 0 0
\(493\) 4.07590 0.183569
\(494\) 0 0
\(495\) 2.01090 0.0903831
\(496\) 0 0
\(497\) 56.0167 2.51269
\(498\) 0 0
\(499\) −27.2150 −1.21831 −0.609156 0.793050i \(-0.708492\pi\)
−0.609156 + 0.793050i \(0.708492\pi\)
\(500\) 0 0
\(501\) 23.4312 1.04683
\(502\) 0 0
\(503\) −17.9819 −0.801775 −0.400887 0.916127i \(-0.631298\pi\)
−0.400887 + 0.916127i \(0.631298\pi\)
\(504\) 0 0
\(505\) −3.31668 −0.147590
\(506\) 0 0
\(507\) −8.02987 −0.356619
\(508\) 0 0
\(509\) −8.77406 −0.388903 −0.194452 0.980912i \(-0.562293\pi\)
−0.194452 + 0.980912i \(0.562293\pi\)
\(510\) 0 0
\(511\) −9.68922 −0.428626
\(512\) 0 0
\(513\) 11.6906 0.516154
\(514\) 0 0
\(515\) −2.15180 −0.0948198
\(516\) 0 0
\(517\) 17.0959 0.751878
\(518\) 0 0
\(519\) −8.08801 −0.355024
\(520\) 0 0
\(521\) 24.7963 1.08634 0.543172 0.839622i \(-0.317223\pi\)
0.543172 + 0.839622i \(0.317223\pi\)
\(522\) 0 0
\(523\) −10.9997 −0.480981 −0.240491 0.970651i \(-0.577308\pi\)
−0.240491 + 0.970651i \(0.577308\pi\)
\(524\) 0 0
\(525\) 6.83513 0.298309
\(526\) 0 0
\(527\) 0.509311 0.0221859
\(528\) 0 0
\(529\) −1.97583 −0.0859055
\(530\) 0 0
\(531\) −9.01862 −0.391375
\(532\) 0 0
\(533\) 25.2005 1.09155
\(534\) 0 0
\(535\) −11.2741 −0.487421
\(536\) 0 0
\(537\) 24.1601 1.04258
\(538\) 0 0
\(539\) −36.2555 −1.56163
\(540\) 0 0
\(541\) 2.79233 0.120052 0.0600259 0.998197i \(-0.480882\pi\)
0.0600259 + 0.998197i \(0.480882\pi\)
\(542\) 0 0
\(543\) 30.1784 1.29508
\(544\) 0 0
\(545\) 3.72788 0.159685
\(546\) 0 0
\(547\) −15.1309 −0.646949 −0.323475 0.946237i \(-0.604851\pi\)
−0.323475 + 0.946237i \(0.604851\pi\)
\(548\) 0 0
\(549\) 5.14388 0.219535
\(550\) 0 0
\(551\) −8.46117 −0.360458
\(552\) 0 0
\(553\) −9.22039 −0.392091
\(554\) 0 0
\(555\) −1.46293 −0.0620979
\(556\) 0 0
\(557\) 1.02559 0.0434555 0.0217277 0.999764i \(-0.493083\pi\)
0.0217277 + 0.999764i \(0.493083\pi\)
\(558\) 0 0
\(559\) 23.5557 0.996300
\(560\) 0 0
\(561\) −3.85375 −0.162705
\(562\) 0 0
\(563\) −31.7776 −1.33927 −0.669634 0.742691i \(-0.733549\pi\)
−0.669634 + 0.742691i \(0.733549\pi\)
\(564\) 0 0
\(565\) −19.9352 −0.838680
\(566\) 0 0
\(567\) −27.7929 −1.16719
\(568\) 0 0
\(569\) 18.6130 0.780296 0.390148 0.920752i \(-0.372424\pi\)
0.390148 + 0.920752i \(0.372424\pi\)
\(570\) 0 0
\(571\) 33.1996 1.38936 0.694680 0.719319i \(-0.255546\pi\)
0.694680 + 0.719319i \(0.255546\pi\)
\(572\) 0 0
\(573\) −13.5267 −0.565087
\(574\) 0 0
\(575\) 4.58521 0.191217
\(576\) 0 0
\(577\) −7.59021 −0.315985 −0.157992 0.987440i \(-0.550502\pi\)
−0.157992 + 0.987440i \(0.550502\pi\)
\(578\) 0 0
\(579\) 25.2152 1.04791
\(580\) 0 0
\(581\) 32.1819 1.33513
\(582\) 0 0
\(583\) 34.2446 1.41827
\(584\) 0 0
\(585\) −2.14625 −0.0887366
\(586\) 0 0
\(587\) 1.80378 0.0744499 0.0372250 0.999307i \(-0.488148\pi\)
0.0372250 + 0.999307i \(0.488148\pi\)
\(588\) 0 0
\(589\) −1.05728 −0.0435644
\(590\) 0 0
\(591\) −18.3515 −0.754882
\(592\) 0 0
\(593\) 40.5264 1.66422 0.832109 0.554612i \(-0.187133\pi\)
0.832109 + 0.554612i \(0.187133\pi\)
\(594\) 0 0
\(595\) 4.58521 0.187975
\(596\) 0 0
\(597\) 37.2146 1.52309
\(598\) 0 0
\(599\) −26.0146 −1.06293 −0.531464 0.847081i \(-0.678358\pi\)
−0.531464 + 0.847081i \(0.678358\pi\)
\(600\) 0 0
\(601\) −38.0555 −1.55232 −0.776159 0.630538i \(-0.782834\pi\)
−0.776159 + 0.630538i \(0.782834\pi\)
\(602\) 0 0
\(603\) −1.55569 −0.0633527
\(604\) 0 0
\(605\) −4.31668 −0.175498
\(606\) 0 0
\(607\) 23.9475 0.971999 0.486000 0.873959i \(-0.338456\pi\)
0.486000 + 0.873959i \(0.338456\pi\)
\(608\) 0 0
\(609\) 27.8593 1.12892
\(610\) 0 0
\(611\) −18.2467 −0.738181
\(612\) 0 0
\(613\) 21.3208 0.861140 0.430570 0.902557i \(-0.358313\pi\)
0.430570 + 0.902557i \(0.358313\pi\)
\(614\) 0 0
\(615\) 13.6147 0.548999
\(616\) 0 0
\(617\) 7.40530 0.298126 0.149063 0.988828i \(-0.452374\pi\)
0.149063 + 0.988828i \(0.452374\pi\)
\(618\) 0 0
\(619\) 4.41796 0.177573 0.0887864 0.996051i \(-0.471701\pi\)
0.0887864 + 0.996051i \(0.471701\pi\)
\(620\) 0 0
\(621\) −25.8221 −1.03620
\(622\) 0 0
\(623\) −29.0552 −1.16407
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 8.00000 0.319489
\(628\) 0 0
\(629\) −0.981378 −0.0391301
\(630\) 0 0
\(631\) −39.8894 −1.58797 −0.793985 0.607937i \(-0.791997\pi\)
−0.793985 + 0.607937i \(0.791997\pi\)
\(632\) 0 0
\(633\) −1.47917 −0.0587919
\(634\) 0 0
\(635\) 6.03866 0.239637
\(636\) 0 0
\(637\) 38.6958 1.53318
\(638\) 0 0
\(639\) −9.50280 −0.375925
\(640\) 0 0
\(641\) 27.1815 1.07361 0.536803 0.843708i \(-0.319632\pi\)
0.536803 + 0.843708i \(0.319632\pi\)
\(642\) 0 0
\(643\) 9.98558 0.393793 0.196896 0.980424i \(-0.436914\pi\)
0.196896 + 0.980424i \(0.436914\pi\)
\(644\) 0 0
\(645\) 12.7261 0.501090
\(646\) 0 0
\(647\) −37.9506 −1.49199 −0.745997 0.665949i \(-0.768027\pi\)
−0.745997 + 0.665949i \(0.768027\pi\)
\(648\) 0 0
\(649\) −29.9739 −1.17658
\(650\) 0 0
\(651\) 3.48120 0.136439
\(652\) 0 0
\(653\) −25.2188 −0.986887 −0.493443 0.869778i \(-0.664262\pi\)
−0.493443 + 0.869778i \(0.664262\pi\)
\(654\) 0 0
\(655\) −19.2368 −0.751646
\(656\) 0 0
\(657\) 1.64370 0.0641269
\(658\) 0 0
\(659\) −14.0204 −0.546157 −0.273078 0.961992i \(-0.588042\pi\)
−0.273078 + 0.961992i \(0.588042\pi\)
\(660\) 0 0
\(661\) −17.3068 −0.673156 −0.336578 0.941656i \(-0.609270\pi\)
−0.336578 + 0.941656i \(0.609270\pi\)
\(662\) 0 0
\(663\) 4.11315 0.159741
\(664\) 0 0
\(665\) −9.51845 −0.369110
\(666\) 0 0
\(667\) 18.6889 0.723636
\(668\) 0 0
\(669\) 28.6023 1.10583
\(670\) 0 0
\(671\) 17.0959 0.659981
\(672\) 0 0
\(673\) −39.3910 −1.51841 −0.759205 0.650852i \(-0.774412\pi\)
−0.759205 + 0.650852i \(0.774412\pi\)
\(674\) 0 0
\(675\) −5.63159 −0.216760
\(676\) 0 0
\(677\) 10.5216 0.404379 0.202189 0.979346i \(-0.435194\pi\)
0.202189 + 0.979346i \(0.435194\pi\)
\(678\) 0 0
\(679\) 39.6631 1.52213
\(680\) 0 0
\(681\) −41.3771 −1.58558
\(682\) 0 0
\(683\) −3.32344 −0.127168 −0.0635839 0.997976i \(-0.520253\pi\)
−0.0635839 + 0.997976i \(0.520253\pi\)
\(684\) 0 0
\(685\) −7.81650 −0.298653
\(686\) 0 0
\(687\) 17.4333 0.665121
\(688\) 0 0
\(689\) −36.5496 −1.39243
\(690\) 0 0
\(691\) 34.4001 1.30864 0.654321 0.756217i \(-0.272955\pi\)
0.654321 + 0.756217i \(0.272955\pi\)
\(692\) 0 0
\(693\) 9.22039 0.350254
\(694\) 0 0
\(695\) −3.75564 −0.142459
\(696\) 0 0
\(697\) 9.13318 0.345944
\(698\) 0 0
\(699\) 26.5975 1.00601
\(700\) 0 0
\(701\) −10.1273 −0.382502 −0.191251 0.981541i \(-0.561254\pi\)
−0.191251 + 0.981541i \(0.561254\pi\)
\(702\) 0 0
\(703\) 2.03724 0.0768361
\(704\) 0 0
\(705\) −9.85788 −0.371269
\(706\) 0 0
\(707\) −15.2077 −0.571943
\(708\) 0 0
\(709\) 20.7719 0.780107 0.390053 0.920792i \(-0.372457\pi\)
0.390053 + 0.920792i \(0.372457\pi\)
\(710\) 0 0
\(711\) 1.56417 0.0586609
\(712\) 0 0
\(713\) 2.33530 0.0874576
\(714\) 0 0
\(715\) −7.13318 −0.266766
\(716\) 0 0
\(717\) −22.0401 −0.823102
\(718\) 0 0
\(719\) −31.6944 −1.18200 −0.591000 0.806672i \(-0.701267\pi\)
−0.591000 + 0.806672i \(0.701267\pi\)
\(720\) 0 0
\(721\) −9.86647 −0.367447
\(722\) 0 0
\(723\) −18.2528 −0.678830
\(724\) 0 0
\(725\) 4.07590 0.151375
\(726\) 0 0
\(727\) −40.6613 −1.50804 −0.754022 0.656849i \(-0.771889\pi\)
−0.754022 + 0.656849i \(0.771889\pi\)
\(728\) 0 0
\(729\) 29.8997 1.10740
\(730\) 0 0
\(731\) 8.53707 0.315755
\(732\) 0 0
\(733\) −39.0108 −1.44090 −0.720448 0.693509i \(-0.756064\pi\)
−0.720448 + 0.693509i \(0.756064\pi\)
\(734\) 0 0
\(735\) 20.9057 0.771118
\(736\) 0 0
\(737\) −5.17042 −0.190455
\(738\) 0 0
\(739\) 13.2618 0.487842 0.243921 0.969795i \(-0.421566\pi\)
0.243921 + 0.969795i \(0.421566\pi\)
\(740\) 0 0
\(741\) −8.53848 −0.313669
\(742\) 0 0
\(743\) 9.75564 0.357900 0.178950 0.983858i \(-0.442730\pi\)
0.178950 + 0.983858i \(0.442730\pi\)
\(744\) 0 0
\(745\) −12.1890 −0.446572
\(746\) 0 0
\(747\) −5.45941 −0.199749
\(748\) 0 0
\(749\) −51.6941 −1.88886
\(750\) 0 0
\(751\) 15.2200 0.555385 0.277692 0.960670i \(-0.410430\pi\)
0.277692 + 0.960670i \(0.410430\pi\)
\(752\) 0 0
\(753\) −8.11104 −0.295583
\(754\) 0 0
\(755\) −4.72612 −0.172001
\(756\) 0 0
\(757\) −4.25222 −0.154550 −0.0772748 0.997010i \(-0.524622\pi\)
−0.0772748 + 0.997010i \(0.524622\pi\)
\(758\) 0 0
\(759\) −17.6703 −0.641389
\(760\) 0 0
\(761\) −41.6686 −1.51049 −0.755243 0.655445i \(-0.772481\pi\)
−0.755243 + 0.655445i \(0.772481\pi\)
\(762\) 0 0
\(763\) 17.0931 0.618812
\(764\) 0 0
\(765\) −0.777846 −0.0281231
\(766\) 0 0
\(767\) 31.9914 1.15514
\(768\) 0 0
\(769\) −42.5996 −1.53618 −0.768090 0.640342i \(-0.778792\pi\)
−0.768090 + 0.640342i \(0.778792\pi\)
\(770\) 0 0
\(771\) −39.8811 −1.43628
\(772\) 0 0
\(773\) −53.0943 −1.90967 −0.954835 0.297137i \(-0.903968\pi\)
−0.954835 + 0.297137i \(0.903968\pi\)
\(774\) 0 0
\(775\) 0.509311 0.0182950
\(776\) 0 0
\(777\) −6.70784 −0.240642
\(778\) 0 0
\(779\) −18.9596 −0.679298
\(780\) 0 0
\(781\) −31.5830 −1.13013
\(782\) 0 0
\(783\) −22.9538 −0.820303
\(784\) 0 0
\(785\) −9.32940 −0.332981
\(786\) 0 0
\(787\) 54.1724 1.93104 0.965519 0.260334i \(-0.0838328\pi\)
0.965519 + 0.260334i \(0.0838328\pi\)
\(788\) 0 0
\(789\) 11.8124 0.420531
\(790\) 0 0
\(791\) −91.4071 −3.25006
\(792\) 0 0
\(793\) −18.2467 −0.647958
\(794\) 0 0
\(795\) −19.7462 −0.700324
\(796\) 0 0
\(797\) −3.25561 −0.115320 −0.0576598 0.998336i \(-0.518364\pi\)
−0.0576598 + 0.998336i \(0.518364\pi\)
\(798\) 0 0
\(799\) −6.61297 −0.233950
\(800\) 0 0
\(801\) 4.92899 0.174157
\(802\) 0 0
\(803\) 5.46293 0.192783
\(804\) 0 0
\(805\) 21.0242 0.741005
\(806\) 0 0
\(807\) −36.7458 −1.29351
\(808\) 0 0
\(809\) −13.5149 −0.475160 −0.237580 0.971368i \(-0.576354\pi\)
−0.237580 + 0.971368i \(0.576354\pi\)
\(810\) 0 0
\(811\) −10.2626 −0.360370 −0.180185 0.983633i \(-0.557670\pi\)
−0.180185 + 0.983633i \(0.557670\pi\)
\(812\) 0 0
\(813\) 0.999653 0.0350594
\(814\) 0 0
\(815\) 18.1999 0.637516
\(816\) 0 0
\(817\) −17.7221 −0.620018
\(818\) 0 0
\(819\) −9.84102 −0.343873
\(820\) 0 0
\(821\) 45.3236 1.58181 0.790903 0.611942i \(-0.209611\pi\)
0.790903 + 0.611942i \(0.209611\pi\)
\(822\) 0 0
\(823\) 37.7338 1.31532 0.657660 0.753315i \(-0.271547\pi\)
0.657660 + 0.753315i \(0.271547\pi\)
\(824\) 0 0
\(825\) −3.85375 −0.134170
\(826\) 0 0
\(827\) 16.1627 0.562032 0.281016 0.959703i \(-0.409329\pi\)
0.281016 + 0.959703i \(0.409329\pi\)
\(828\) 0 0
\(829\) 30.7590 1.06830 0.534152 0.845388i \(-0.320631\pi\)
0.534152 + 0.845388i \(0.320631\pi\)
\(830\) 0 0
\(831\) −32.9227 −1.14208
\(832\) 0 0
\(833\) 14.0242 0.485909
\(834\) 0 0
\(835\) 15.7184 0.543957
\(836\) 0 0
\(837\) −2.86823 −0.0991406
\(838\) 0 0
\(839\) −13.8760 −0.479051 −0.239526 0.970890i \(-0.576992\pi\)
−0.239526 + 0.970890i \(0.576992\pi\)
\(840\) 0 0
\(841\) −12.3870 −0.427139
\(842\) 0 0
\(843\) −3.66884 −0.126361
\(844\) 0 0
\(845\) −5.38668 −0.185307
\(846\) 0 0
\(847\) −19.7929 −0.680091
\(848\) 0 0
\(849\) 18.5920 0.638075
\(850\) 0 0
\(851\) −4.49983 −0.154252
\(852\) 0 0
\(853\) 14.9034 0.510282 0.255141 0.966904i \(-0.417878\pi\)
0.255141 + 0.966904i \(0.417878\pi\)
\(854\) 0 0
\(855\) 1.61473 0.0552227
\(856\) 0 0
\(857\) −53.9835 −1.84404 −0.922021 0.387139i \(-0.873463\pi\)
−0.922021 + 0.387139i \(0.873463\pi\)
\(858\) 0 0
\(859\) 7.50876 0.256196 0.128098 0.991762i \(-0.459113\pi\)
0.128098 + 0.991762i \(0.459113\pi\)
\(860\) 0 0
\(861\) 62.4264 2.12749
\(862\) 0 0
\(863\) 4.97068 0.169204 0.0846020 0.996415i \(-0.473038\pi\)
0.0846020 + 0.996415i \(0.473038\pi\)
\(864\) 0 0
\(865\) −5.42569 −0.184479
\(866\) 0 0
\(867\) 1.49069 0.0506265
\(868\) 0 0
\(869\) 5.19860 0.176350
\(870\) 0 0
\(871\) 5.51845 0.186985
\(872\) 0 0
\(873\) −6.72854 −0.227727
\(874\) 0 0
\(875\) 4.58521 0.155008
\(876\) 0 0
\(877\) −12.9596 −0.437614 −0.218807 0.975768i \(-0.570217\pi\)
−0.218807 + 0.975768i \(0.570217\pi\)
\(878\) 0 0
\(879\) −39.2356 −1.32338
\(880\) 0 0
\(881\) −20.5482 −0.692285 −0.346143 0.938182i \(-0.612509\pi\)
−0.346143 + 0.938182i \(0.612509\pi\)
\(882\) 0 0
\(883\) 2.61046 0.0878489 0.0439245 0.999035i \(-0.486014\pi\)
0.0439245 + 0.999035i \(0.486014\pi\)
\(884\) 0 0
\(885\) 17.2836 0.580981
\(886\) 0 0
\(887\) −37.1488 −1.24734 −0.623668 0.781689i \(-0.714358\pi\)
−0.623668 + 0.781689i \(0.714358\pi\)
\(888\) 0 0
\(889\) 27.6885 0.928643
\(890\) 0 0
\(891\) 15.6700 0.524966
\(892\) 0 0
\(893\) 13.7279 0.459386
\(894\) 0 0
\(895\) 16.2073 0.541751
\(896\) 0 0
\(897\) 18.8596 0.629705
\(898\) 0 0
\(899\) 2.07590 0.0692352
\(900\) 0 0
\(901\) −13.2463 −0.441299
\(902\) 0 0
\(903\) 58.3520 1.94183
\(904\) 0 0
\(905\) 20.2446 0.672952
\(906\) 0 0
\(907\) 19.8126 0.657866 0.328933 0.944353i \(-0.393311\pi\)
0.328933 + 0.944353i \(0.393311\pi\)
\(908\) 0 0
\(909\) 2.57986 0.0855687
\(910\) 0 0
\(911\) −10.3034 −0.341367 −0.170683 0.985326i \(-0.554598\pi\)
−0.170683 + 0.985326i \(0.554598\pi\)
\(912\) 0 0
\(913\) −18.1446 −0.600500
\(914\) 0 0
\(915\) −9.85788 −0.325892
\(916\) 0 0
\(917\) −88.2050 −2.91279
\(918\) 0 0
\(919\) 2.11456 0.0697529 0.0348764 0.999392i \(-0.488896\pi\)
0.0348764 + 0.999392i \(0.488896\pi\)
\(920\) 0 0
\(921\) −5.56991 −0.183535
\(922\) 0 0
\(923\) 33.7089 1.10954
\(924\) 0 0
\(925\) −0.981378 −0.0322675
\(926\) 0 0
\(927\) 1.67377 0.0549739
\(928\) 0 0
\(929\) 9.43679 0.309611 0.154805 0.987945i \(-0.450525\pi\)
0.154805 + 0.987945i \(0.450525\pi\)
\(930\) 0 0
\(931\) −29.1128 −0.954133
\(932\) 0 0
\(933\) 14.4871 0.474286
\(934\) 0 0
\(935\) −2.58521 −0.0845455
\(936\) 0 0
\(937\) 38.7590 1.26620 0.633101 0.774069i \(-0.281782\pi\)
0.633101 + 0.774069i \(0.281782\pi\)
\(938\) 0 0
\(939\) 41.6678 1.35978
\(940\) 0 0
\(941\) −28.0787 −0.915340 −0.457670 0.889122i \(-0.651316\pi\)
−0.457670 + 0.889122i \(0.651316\pi\)
\(942\) 0 0
\(943\) 41.8776 1.36372
\(944\) 0 0
\(945\) −25.8221 −0.839991
\(946\) 0 0
\(947\) −23.7353 −0.771292 −0.385646 0.922647i \(-0.626021\pi\)
−0.385646 + 0.922647i \(0.626021\pi\)
\(948\) 0 0
\(949\) −5.83064 −0.189271
\(950\) 0 0
\(951\) −25.0214 −0.811376
\(952\) 0 0
\(953\) 20.4899 0.663734 0.331867 0.943326i \(-0.392321\pi\)
0.331867 + 0.943326i \(0.392321\pi\)
\(954\) 0 0
\(955\) −9.07414 −0.293632
\(956\) 0 0
\(957\) −15.7075 −0.507751
\(958\) 0 0
\(959\) −35.8403 −1.15734
\(960\) 0 0
\(961\) −30.7406 −0.991632
\(962\) 0 0
\(963\) 8.76951 0.282593
\(964\) 0 0
\(965\) 16.9152 0.544518
\(966\) 0 0
\(967\) 28.7888 0.925786 0.462893 0.886414i \(-0.346811\pi\)
0.462893 + 0.886414i \(0.346811\pi\)
\(968\) 0 0
\(969\) −3.09452 −0.0994104
\(970\) 0 0
\(971\) 51.1385 1.64111 0.820557 0.571565i \(-0.193664\pi\)
0.820557 + 0.571565i \(0.193664\pi\)
\(972\) 0 0
\(973\) −17.2204 −0.552060
\(974\) 0 0
\(975\) 4.11315 0.131726
\(976\) 0 0
\(977\) 53.8103 1.72154 0.860771 0.508992i \(-0.169982\pi\)
0.860771 + 0.508992i \(0.169982\pi\)
\(978\) 0 0
\(979\) 16.3817 0.523563
\(980\) 0 0
\(981\) −2.89972 −0.0925808
\(982\) 0 0
\(983\) 50.8520 1.62193 0.810963 0.585097i \(-0.198944\pi\)
0.810963 + 0.585097i \(0.198944\pi\)
\(984\) 0 0
\(985\) −12.3108 −0.392254
\(986\) 0 0
\(987\) −45.2005 −1.43875
\(988\) 0 0
\(989\) 39.1443 1.24472
\(990\) 0 0
\(991\) −21.8426 −0.693854 −0.346927 0.937892i \(-0.612775\pi\)
−0.346927 + 0.937892i \(0.612775\pi\)
\(992\) 0 0
\(993\) −38.6613 −1.22688
\(994\) 0 0
\(995\) 24.9647 0.791435
\(996\) 0 0
\(997\) 49.9893 1.58318 0.791589 0.611054i \(-0.209254\pi\)
0.791589 + 0.611054i \(0.209254\pi\)
\(998\) 0 0
\(999\) 5.52672 0.174858
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2720.2.a.q.1.3 yes 4
4.3 odd 2 2720.2.a.k.1.2 4
8.3 odd 2 5440.2.a.cc.1.3 4
8.5 even 2 5440.2.a.bw.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2720.2.a.k.1.2 4 4.3 odd 2
2720.2.a.q.1.3 yes 4 1.1 even 1 trivial
5440.2.a.bw.1.2 4 8.5 even 2
5440.2.a.cc.1.3 4 8.3 odd 2