Properties

Label 2700.2.j.a.593.1
Level $2700$
Weight $2$
Character 2700.593
Analytic conductor $21.560$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2700,2,Mod(593,2700)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2700, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2700.593"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2700 = 2^{2} \cdot 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2700.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-24, 0,-20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,24,0,20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(61)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.5596085457\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 593.1
Root \(-1.22474 + 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 2700.593
Dual form 2700.2.j.a.1457.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.44949 + 2.44949i) q^{7} +6.00000i q^{11} +(-2.44949 - 2.44949i) q^{13} +(-3.67423 - 3.67423i) q^{17} +1.00000i q^{19} +(3.67423 - 3.67423i) q^{23} -6.00000 q^{29} -5.00000 q^{31} +(4.89898 - 4.89898i) q^{37} -6.00000i q^{41} +(7.34847 + 7.34847i) q^{43} +(-7.34847 - 7.34847i) q^{47} -5.00000i q^{49} +(3.67423 - 3.67423i) q^{53} +6.00000 q^{59} +5.00000 q^{61} +(4.89898 - 4.89898i) q^{67} -6.00000i q^{71} +(-2.44949 - 2.44949i) q^{73} +(-14.6969 - 14.6969i) q^{77} +5.00000i q^{79} +(11.0227 - 11.0227i) q^{83} +6.00000 q^{89} +12.0000 q^{91} +(-4.89898 + 4.89898i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 24 q^{29} - 20 q^{31} + 24 q^{59} + 20 q^{61} + 24 q^{89} + 48 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2700\mathbb{Z}\right)^\times\).

\(n\) \(1001\) \(1351\) \(2377\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.44949 + 2.44949i −0.925820 + 0.925820i −0.997433 0.0716124i \(-0.977186\pi\)
0.0716124 + 0.997433i \(0.477186\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 6.00000i 1.80907i 0.426401 + 0.904534i \(0.359781\pi\)
−0.426401 + 0.904534i \(0.640219\pi\)
\(12\) 0 0
\(13\) −2.44949 2.44949i −0.679366 0.679366i 0.280491 0.959857i \(-0.409503\pi\)
−0.959857 + 0.280491i \(0.909503\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.67423 3.67423i −0.891133 0.891133i 0.103497 0.994630i \(-0.466997\pi\)
−0.994630 + 0.103497i \(0.966997\pi\)
\(18\) 0 0
\(19\) 1.00000i 0.229416i 0.993399 + 0.114708i \(0.0365932\pi\)
−0.993399 + 0.114708i \(0.963407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 3.67423 3.67423i 0.766131 0.766131i −0.211292 0.977423i \(-0.567767\pi\)
0.977423 + 0.211292i \(0.0677671\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.89898 4.89898i 0.805387 0.805387i −0.178545 0.983932i \(-0.557139\pi\)
0.983932 + 0.178545i \(0.0571389\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.00000i 0.937043i −0.883452 0.468521i \(-0.844787\pi\)
0.883452 0.468521i \(-0.155213\pi\)
\(42\) 0 0
\(43\) 7.34847 + 7.34847i 1.12063 + 1.12063i 0.991647 + 0.128984i \(0.0411717\pi\)
0.128984 + 0.991647i \(0.458828\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −7.34847 7.34847i −1.07188 1.07188i −0.997208 0.0746766i \(-0.976208\pi\)
−0.0746766 0.997208i \(-0.523792\pi\)
\(48\) 0 0
\(49\) 5.00000i 0.714286i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.67423 3.67423i 0.504695 0.504695i −0.408198 0.912893i \(-0.633843\pi\)
0.912893 + 0.408198i \(0.133843\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 5.00000 0.640184 0.320092 0.947386i \(-0.396286\pi\)
0.320092 + 0.947386i \(0.396286\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 4.89898 4.89898i 0.598506 0.598506i −0.341409 0.939915i \(-0.610904\pi\)
0.939915 + 0.341409i \(0.110904\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000i 0.712069i −0.934473 0.356034i \(-0.884129\pi\)
0.934473 0.356034i \(-0.115871\pi\)
\(72\) 0 0
\(73\) −2.44949 2.44949i −0.286691 0.286691i 0.549079 0.835770i \(-0.314979\pi\)
−0.835770 + 0.549079i \(0.814979\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −14.6969 14.6969i −1.67487 1.67487i
\(78\) 0 0
\(79\) 5.00000i 0.562544i 0.959628 + 0.281272i \(0.0907563\pi\)
−0.959628 + 0.281272i \(0.909244\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.0227 11.0227i 1.20990 1.20990i 0.238840 0.971059i \(-0.423233\pi\)
0.971059 0.238840i \(-0.0767671\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −4.89898 + 4.89898i −0.497416 + 0.497416i −0.910633 0.413217i \(-0.864405\pi\)
0.413217 + 0.910633i \(0.364405\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 12.0000i 1.19404i −0.802225 0.597022i \(-0.796350\pi\)
0.802225 0.597022i \(-0.203650\pi\)
\(102\) 0 0
\(103\) −4.89898 4.89898i −0.482711 0.482711i 0.423286 0.905996i \(-0.360877\pi\)
−0.905996 + 0.423286i \(0.860877\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −7.34847 7.34847i −0.710403 0.710403i 0.256216 0.966620i \(-0.417524\pi\)
−0.966620 + 0.256216i \(0.917524\pi\)
\(108\) 0 0
\(109\) 11.0000i 1.05361i 0.849987 + 0.526804i \(0.176610\pi\)
−0.849987 + 0.526804i \(0.823390\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 18.0000 1.65006
\(120\) 0 0
\(121\) −25.0000 −2.27273
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −14.6969 + 14.6969i −1.30414 + 1.30414i −0.378570 + 0.925573i \(0.623584\pi\)
−0.925573 + 0.378570i \(0.876416\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.0000i 1.04844i 0.851581 + 0.524222i \(0.175644\pi\)
−0.851581 + 0.524222i \(0.824356\pi\)
\(132\) 0 0
\(133\) −2.44949 2.44949i −0.212398 0.212398i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.0227 11.0227i −0.941733 0.941733i 0.0566604 0.998394i \(-0.481955\pi\)
−0.998394 + 0.0566604i \(0.981955\pi\)
\(138\) 0 0
\(139\) 20.0000i 1.69638i −0.529694 0.848189i \(-0.677693\pi\)
0.529694 0.848189i \(-0.322307\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 14.6969 14.6969i 1.22902 1.22902i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) 4.00000 0.325515 0.162758 0.986666i \(-0.447961\pi\)
0.162758 + 0.986666i \(0.447961\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −7.34847 + 7.34847i −0.586472 + 0.586472i −0.936674 0.350202i \(-0.886113\pi\)
0.350202 + 0.936674i \(0.386113\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 18.0000i 1.41860i
\(162\) 0 0
\(163\) −4.89898 4.89898i −0.383718 0.383718i 0.488722 0.872440i \(-0.337463\pi\)
−0.872440 + 0.488722i \(0.837463\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.67423 3.67423i −0.284321 0.284321i 0.550509 0.834829i \(-0.314434\pi\)
−0.834829 + 0.550509i \(0.814434\pi\)
\(168\) 0 0
\(169\) 1.00000i 0.0769231i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.67423 + 3.67423i −0.279347 + 0.279347i −0.832848 0.553501i \(-0.813291\pi\)
0.553501 + 0.832848i \(0.313291\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) 0 0
\(181\) 19.0000 1.41226 0.706129 0.708083i \(-0.250440\pi\)
0.706129 + 0.708083i \(0.250440\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 22.0454 22.0454i 1.61212 1.61212i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000i 0.868290i −0.900843 0.434145i \(-0.857051\pi\)
0.900843 0.434145i \(-0.142949\pi\)
\(192\) 0 0
\(193\) 17.1464 + 17.1464i 1.23423 + 1.23423i 0.962325 + 0.271902i \(0.0876526\pi\)
0.271902 + 0.962325i \(0.412347\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −18.3712 18.3712i −1.30889 1.30889i −0.922215 0.386676i \(-0.873623\pi\)
−0.386676 0.922215i \(-0.626377\pi\)
\(198\) 0 0
\(199\) 8.00000i 0.567105i 0.958957 + 0.283552i \(0.0915130\pi\)
−0.958957 + 0.283552i \(0.908487\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 14.6969 14.6969i 1.03152 1.03152i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.00000 −0.415029
\(210\) 0 0
\(211\) −25.0000 −1.72107 −0.860535 0.509390i \(-0.829871\pi\)
−0.860535 + 0.509390i \(0.829871\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 12.2474 12.2474i 0.831411 0.831411i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.0000i 1.21081i
\(222\) 0 0
\(223\) −14.6969 14.6969i −0.984180 0.984180i 0.0156970 0.999877i \(-0.495003\pi\)
−0.999877 + 0.0156970i \(0.995003\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.67423 + 3.67423i 0.243868 + 0.243868i 0.818448 0.574581i \(-0.194835\pi\)
−0.574581 + 0.818448i \(0.694835\pi\)
\(228\) 0 0
\(229\) 5.00000i 0.330409i −0.986259 0.165205i \(-0.947172\pi\)
0.986259 0.165205i \(-0.0528285\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −14.6969 + 14.6969i −0.962828 + 0.962828i −0.999333 0.0365050i \(-0.988378\pi\)
0.0365050 + 0.999333i \(0.488378\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 23.0000 1.48156 0.740780 0.671748i \(-0.234456\pi\)
0.740780 + 0.671748i \(0.234456\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.44949 2.44949i 0.155857 0.155857i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 22.0454 + 22.0454i 1.38598 + 1.38598i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.67423 + 3.67423i 0.229192 + 0.229192i 0.812355 0.583163i \(-0.198185\pi\)
−0.583163 + 0.812355i \(0.698185\pi\)
\(258\) 0 0
\(259\) 24.0000i 1.49129i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.34847 7.34847i 0.453126 0.453126i −0.443265 0.896391i \(-0.646180\pi\)
0.896391 + 0.443265i \(0.146180\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 17.0000 1.03268 0.516338 0.856385i \(-0.327295\pi\)
0.516338 + 0.856385i \(0.327295\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −7.34847 + 7.34847i −0.441527 + 0.441527i −0.892525 0.450998i \(-0.851068\pi\)
0.450998 + 0.892525i \(0.351068\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 18.0000i 1.07379i 0.843649 + 0.536895i \(0.180403\pi\)
−0.843649 + 0.536895i \(0.819597\pi\)
\(282\) 0 0
\(283\) 7.34847 + 7.34847i 0.436821 + 0.436821i 0.890941 0.454120i \(-0.150046\pi\)
−0.454120 + 0.890941i \(0.650046\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 14.6969 + 14.6969i 0.867533 + 0.867533i
\(288\) 0 0
\(289\) 10.0000i 0.588235i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.67423 + 3.67423i −0.214651 + 0.214651i −0.806240 0.591589i \(-0.798501\pi\)
0.591589 + 0.806240i \(0.298501\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −18.0000 −1.04097
\(300\) 0 0
\(301\) −36.0000 −2.07501
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 30.0000i 1.70114i −0.525859 0.850572i \(-0.676256\pi\)
0.525859 0.850572i \(-0.323744\pi\)
\(312\) 0 0
\(313\) −19.5959 19.5959i −1.10763 1.10763i −0.993462 0.114165i \(-0.963581\pi\)
−0.114165 0.993462i \(-0.536419\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.0227 11.0227i −0.619097 0.619097i 0.326203 0.945300i \(-0.394231\pi\)
−0.945300 + 0.326203i \(0.894231\pi\)
\(318\) 0 0
\(319\) 36.0000i 2.01561i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.67423 3.67423i 0.204440 0.204440i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 36.0000 1.98474
\(330\) 0 0
\(331\) −4.00000 −0.219860 −0.109930 0.993939i \(-0.535063\pi\)
−0.109930 + 0.993939i \(0.535063\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −12.2474 + 12.2474i −0.667161 + 0.667161i −0.957058 0.289897i \(-0.906379\pi\)
0.289897 + 0.957058i \(0.406379\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 30.0000i 1.62459i
\(342\) 0 0
\(343\) −4.89898 4.89898i −0.264520 0.264520i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 7.34847 + 7.34847i 0.394486 + 0.394486i 0.876283 0.481797i \(-0.160016\pi\)
−0.481797 + 0.876283i \(0.660016\pi\)
\(348\) 0 0
\(349\) 23.0000i 1.23116i −0.788074 0.615581i \(-0.788921\pi\)
0.788074 0.615581i \(-0.211079\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.6969 + 14.6969i −0.782239 + 0.782239i −0.980208 0.197969i \(-0.936565\pi\)
0.197969 + 0.980208i \(0.436565\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 12.0000 0.633336 0.316668 0.948536i \(-0.397436\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(360\) 0 0
\(361\) 18.0000 0.947368
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −12.2474 + 12.2474i −0.639312 + 0.639312i −0.950386 0.311074i \(-0.899311\pi\)
0.311074 + 0.950386i \(0.399311\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 18.0000i 0.934513i
\(372\) 0 0
\(373\) −24.4949 24.4949i −1.26830 1.26830i −0.946967 0.321331i \(-0.895870\pi\)
−0.321331 0.946967i \(-0.604130\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 14.6969 + 14.6969i 0.756931 + 0.756931i
\(378\) 0 0
\(379\) 19.0000i 0.975964i 0.872854 + 0.487982i \(0.162267\pi\)
−0.872854 + 0.487982i \(0.837733\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.67423 + 3.67423i −0.187745 + 0.187745i −0.794720 0.606976i \(-0.792383\pi\)
0.606976 + 0.794720i \(0.292383\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.0000 0.912636 0.456318 0.889817i \(-0.349168\pi\)
0.456318 + 0.889817i \(0.349168\pi\)
\(390\) 0 0
\(391\) −27.0000 −1.36545
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −7.34847 + 7.34847i −0.368809 + 0.368809i −0.867043 0.498234i \(-0.833982\pi\)
0.498234 + 0.867043i \(0.333982\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 36.0000i 1.79775i −0.438201 0.898877i \(-0.644384\pi\)
0.438201 0.898877i \(-0.355616\pi\)
\(402\) 0 0
\(403\) 12.2474 + 12.2474i 0.610089 + 0.610089i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 29.3939 + 29.3939i 1.45700 + 1.45700i
\(408\) 0 0
\(409\) 11.0000i 0.543915i −0.962309 0.271957i \(-0.912329\pi\)
0.962309 0.271957i \(-0.0876710\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −14.6969 + 14.6969i −0.723189 + 0.723189i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −18.0000 −0.879358 −0.439679 0.898155i \(-0.644908\pi\)
−0.439679 + 0.898155i \(0.644908\pi\)
\(420\) 0 0
\(421\) 13.0000 0.633581 0.316791 0.948495i \(-0.397395\pi\)
0.316791 + 0.948495i \(0.397395\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −12.2474 + 12.2474i −0.592696 + 0.592696i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.00000i 0.289010i −0.989504 0.144505i \(-0.953841\pi\)
0.989504 0.144505i \(-0.0461589\pi\)
\(432\) 0 0
\(433\) −7.34847 7.34847i −0.353145 0.353145i 0.508133 0.861278i \(-0.330336\pi\)
−0.861278 + 0.508133i \(0.830336\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.67423 + 3.67423i 0.175762 + 0.175762i
\(438\) 0 0
\(439\) 35.0000i 1.67046i 0.549902 + 0.835229i \(0.314665\pi\)
−0.549902 + 0.835229i \(0.685335\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.67423 3.67423i 0.174568 0.174568i −0.614415 0.788983i \(-0.710608\pi\)
0.788983 + 0.614415i \(0.210608\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 36.0000 1.69517
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14.6969 14.6969i 0.687494 0.687494i −0.274184 0.961677i \(-0.588408\pi\)
0.961677 + 0.274184i \(0.0884076\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 12.0000i 0.558896i 0.960161 + 0.279448i \(0.0901514\pi\)
−0.960161 + 0.279448i \(0.909849\pi\)
\(462\) 0 0
\(463\) 19.5959 + 19.5959i 0.910700 + 0.910700i 0.996327 0.0856277i \(-0.0272896\pi\)
−0.0856277 + 0.996327i \(0.527290\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 18.3712 + 18.3712i 0.850117 + 0.850117i 0.990147 0.140031i \(-0.0447201\pi\)
−0.140031 + 0.990147i \(0.544720\pi\)
\(468\) 0 0
\(469\) 24.0000i 1.10822i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −44.0908 + 44.0908i −2.02730 + 2.02730i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −30.0000 −1.37073 −0.685367 0.728197i \(-0.740358\pi\)
−0.685367 + 0.728197i \(0.740358\pi\)
\(480\) 0 0
\(481\) −24.0000 −1.09431
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 12.2474 12.2474i 0.554985 0.554985i −0.372890 0.927875i \(-0.621633\pi\)
0.927875 + 0.372890i \(0.121633\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000i 0.541552i 0.962642 + 0.270776i \(0.0872803\pi\)
−0.962642 + 0.270776i \(0.912720\pi\)
\(492\) 0 0
\(493\) 22.0454 + 22.0454i 0.992875 + 0.992875i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 14.6969 + 14.6969i 0.659248 + 0.659248i
\(498\) 0 0
\(499\) 13.0000i 0.581960i −0.956729 0.290980i \(-0.906019\pi\)
0.956729 0.290980i \(-0.0939813\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.3712 18.3712i 0.819130 0.819130i −0.166852 0.985982i \(-0.553360\pi\)
0.985982 + 0.166852i \(0.0533602\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 12.0000 0.530849
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 44.0908 44.0908i 1.93911 1.93911i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 18.0000i 0.788594i 0.918983 + 0.394297i \(0.129012\pi\)
−0.918983 + 0.394297i \(0.870988\pi\)
\(522\) 0 0
\(523\) −2.44949 2.44949i −0.107109 0.107109i 0.651521 0.758630i \(-0.274131\pi\)
−0.758630 + 0.651521i \(0.774131\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.3712 + 18.3712i 0.800261 + 0.800261i
\(528\) 0 0
\(529\) 4.00000i 0.173913i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −14.6969 + 14.6969i −0.636595 + 0.636595i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 30.0000 1.29219
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −12.2474 + 12.2474i −0.523663 + 0.523663i −0.918676 0.395013i \(-0.870740\pi\)
0.395013 + 0.918676i \(0.370740\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.00000i 0.255609i
\(552\) 0 0
\(553\) −12.2474 12.2474i −0.520814 0.520814i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(558\) 0 0
\(559\) 36.0000i 1.52264i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 7.34847 7.34847i 0.309701 0.309701i −0.535092 0.844794i \(-0.679723\pi\)
0.844794 + 0.535092i \(0.179723\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) −7.00000 −0.292941 −0.146470 0.989215i \(-0.546791\pi\)
−0.146470 + 0.989215i \(0.546791\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 2.44949 2.44949i 0.101974 0.101974i −0.654279 0.756253i \(-0.727028\pi\)
0.756253 + 0.654279i \(0.227028\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 54.0000i 2.24030i
\(582\) 0 0
\(583\) 22.0454 + 22.0454i 0.913027 + 0.913027i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 33.0681 + 33.0681i 1.36487 + 1.36487i 0.867594 + 0.497273i \(0.165665\pi\)
0.497273 + 0.867594i \(0.334335\pi\)
\(588\) 0 0
\(589\) 5.00000i 0.206021i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −25.7196 + 25.7196i −1.05618 + 1.05618i −0.0578541 + 0.998325i \(0.518426\pi\)
−0.998325 + 0.0578541i \(0.981574\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.00000 −0.245153 −0.122577 0.992459i \(-0.539116\pi\)
−0.122577 + 0.992459i \(0.539116\pi\)
\(600\) 0 0
\(601\) 19.0000 0.775026 0.387513 0.921864i \(-0.373334\pi\)
0.387513 + 0.921864i \(0.373334\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 12.2474 12.2474i 0.497109 0.497109i −0.413428 0.910537i \(-0.635669\pi\)
0.910537 + 0.413428i \(0.135669\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 36.0000i 1.45640i
\(612\) 0 0
\(613\) −19.5959 19.5959i −0.791472 0.791472i 0.190262 0.981733i \(-0.439066\pi\)
−0.981733 + 0.190262i \(0.939066\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 25.7196 + 25.7196i 1.03543 + 1.03543i 0.999349 + 0.0360851i \(0.0114887\pi\)
0.0360851 + 0.999349i \(0.488511\pi\)
\(618\) 0 0
\(619\) 4.00000i 0.160774i −0.996764 0.0803868i \(-0.974384\pi\)
0.996764 0.0803868i \(-0.0256155\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14.6969 + 14.6969i −0.588820 + 0.588820i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −36.0000 −1.43541
\(630\) 0 0
\(631\) −1.00000 −0.0398094 −0.0199047 0.999802i \(-0.506336\pi\)
−0.0199047 + 0.999802i \(0.506336\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −12.2474 + 12.2474i −0.485262 + 0.485262i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24.0000i 0.947943i −0.880540 0.473972i \(-0.842820\pi\)
0.880540 0.473972i \(-0.157180\pi\)
\(642\) 0 0
\(643\) −22.0454 22.0454i −0.869386 0.869386i 0.123018 0.992404i \(-0.460743\pi\)
−0.992404 + 0.123018i \(0.960743\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 11.0227 + 11.0227i 0.433347 + 0.433347i 0.889765 0.456418i \(-0.150868\pi\)
−0.456418 + 0.889765i \(0.650868\pi\)
\(648\) 0 0
\(649\) 36.0000i 1.41312i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.67423 3.67423i 0.143784 0.143784i −0.631551 0.775335i \(-0.717581\pi\)
0.775335 + 0.631551i \(0.217581\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 18.0000 0.701180 0.350590 0.936529i \(-0.385981\pi\)
0.350590 + 0.936529i \(0.385981\pi\)
\(660\) 0 0
\(661\) −38.0000 −1.47803 −0.739014 0.673690i \(-0.764708\pi\)
−0.739014 + 0.673690i \(0.764708\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −22.0454 + 22.0454i −0.853602 + 0.853602i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 30.0000i 1.15814i
\(672\) 0 0
\(673\) 26.9444 + 26.9444i 1.03863 + 1.03863i 0.999223 + 0.0394065i \(0.0125467\pi\)
0.0394065 + 0.999223i \(0.487453\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −14.6969 14.6969i −0.564849 0.564849i 0.365832 0.930681i \(-0.380785\pi\)
−0.930681 + 0.365832i \(0.880785\pi\)
\(678\) 0 0
\(679\) 24.0000i 0.921035i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −25.7196 + 25.7196i −0.984135 + 0.984135i −0.999876 0.0157413i \(-0.994989\pi\)
0.0157413 + 0.999876i \(0.494989\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −18.0000 −0.685745
\(690\) 0 0
\(691\) −35.0000 −1.33146 −0.665731 0.746191i \(-0.731880\pi\)
−0.665731 + 0.746191i \(0.731880\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −22.0454 + 22.0454i −0.835029 + 0.835029i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.0000i 0.453234i −0.973984 0.226617i \(-0.927233\pi\)
0.973984 0.226617i \(-0.0727665\pi\)
\(702\) 0 0
\(703\) 4.89898 + 4.89898i 0.184769 + 0.184769i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 29.3939 + 29.3939i 1.10547 + 1.10547i
\(708\) 0 0
\(709\) 14.0000i 0.525781i −0.964826 0.262891i \(-0.915324\pi\)
0.964826 0.262891i \(-0.0846758\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −18.3712 + 18.3712i −0.688006 + 0.688006i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 24.0000 0.895049 0.447524 0.894272i \(-0.352306\pi\)
0.447524 + 0.894272i \(0.352306\pi\)
\(720\) 0 0
\(721\) 24.0000 0.893807
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 54.0000i 1.99726i
\(732\) 0 0
\(733\) −14.6969 14.6969i −0.542844 0.542844i 0.381518 0.924362i \(-0.375402\pi\)
−0.924362 + 0.381518i \(0.875402\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 29.3939 + 29.3939i 1.08274 + 1.08274i
\(738\) 0 0
\(739\) 7.00000i 0.257499i 0.991677 + 0.128750i \(0.0410963\pi\)
−0.991677 + 0.128750i \(0.958904\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 22.0454 22.0454i 0.808768 0.808768i −0.175680 0.984447i \(-0.556212\pi\)
0.984447 + 0.175680i \(0.0562123\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 36.0000 1.31541
\(750\) 0 0
\(751\) 25.0000 0.912263 0.456131 0.889912i \(-0.349235\pi\)
0.456131 + 0.889912i \(0.349235\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −24.4949 + 24.4949i −0.890282 + 0.890282i −0.994549 0.104267i \(-0.966750\pi\)
0.104267 + 0.994549i \(0.466750\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 30.0000i 1.08750i −0.839248 0.543750i \(-0.817004\pi\)
0.839248 0.543750i \(-0.182996\pi\)
\(762\) 0 0
\(763\) −26.9444 26.9444i −0.975452 0.975452i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −14.6969 14.6969i −0.530676 0.530676i
\(768\) 0 0
\(769\) 47.0000i 1.69486i 0.530904 + 0.847432i \(0.321852\pi\)
−0.530904 + 0.847432i \(0.678148\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3.67423 + 3.67423i −0.132153 + 0.132153i −0.770089 0.637936i \(-0.779788\pi\)
0.637936 + 0.770089i \(0.279788\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.00000 0.214972
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −17.1464 + 17.1464i −0.611204 + 0.611204i −0.943260 0.332056i \(-0.892258\pi\)
0.332056 + 0.943260i \(0.392258\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −12.2474 12.2474i −0.434920 0.434920i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −33.0681 33.0681i −1.17133 1.17133i −0.981892 0.189440i \(-0.939333\pi\)
−0.189440 0.981892i \(-0.560667\pi\)
\(798\) 0 0
\(799\) 54.0000i 1.91038i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 14.6969 14.6969i 0.518644 0.518644i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) 16.0000 0.561836 0.280918 0.959732i \(-0.409361\pi\)
0.280918 + 0.959732i \(0.409361\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −7.34847 + 7.34847i −0.257090 + 0.257090i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 24.0000i 0.837606i −0.908077 0.418803i \(-0.862450\pi\)
0.908077 0.418803i \(-0.137550\pi\)
\(822\) 0 0
\(823\) 2.44949 + 2.44949i 0.0853838 + 0.0853838i 0.748509 0.663125i \(-0.230770\pi\)
−0.663125 + 0.748509i \(0.730770\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 3.67423 + 3.67423i 0.127766 + 0.127766i 0.768098 0.640332i \(-0.221203\pi\)
−0.640332 + 0.768098i \(0.721203\pi\)
\(828\) 0 0
\(829\) 26.0000i 0.903017i −0.892267 0.451509i \(-0.850886\pi\)
0.892267 0.451509i \(-0.149114\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −18.3712 + 18.3712i −0.636523 + 0.636523i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 61.2372 61.2372i 2.10414 2.10414i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 36.0000i 1.23406i
\(852\) 0 0
\(853\) −9.79796 9.79796i −0.335476 0.335476i 0.519186 0.854661i \(-0.326235\pi\)
−0.854661 + 0.519186i \(0.826235\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 40.4166 + 40.4166i 1.38060 + 1.38060i 0.843544 + 0.537060i \(0.180465\pi\)
0.537060 + 0.843544i \(0.319535\pi\)
\(858\) 0 0
\(859\) 43.0000i 1.46714i −0.679613 0.733571i \(-0.737852\pi\)
0.679613 0.733571i \(-0.262148\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.67423 + 3.67423i −0.125072 + 0.125072i −0.766872 0.641800i \(-0.778188\pi\)
0.641800 + 0.766872i \(0.278188\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −30.0000 −1.01768
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 12.2474 12.2474i 0.413567 0.413567i −0.469412 0.882979i \(-0.655534\pi\)
0.882979 + 0.469412i \(0.155534\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 30.0000i 1.01073i −0.862907 0.505363i \(-0.831359\pi\)
0.862907 0.505363i \(-0.168641\pi\)
\(882\) 0 0
\(883\) 12.2474 + 12.2474i 0.412159 + 0.412159i 0.882490 0.470331i \(-0.155865\pi\)
−0.470331 + 0.882490i \(0.655865\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 18.3712 + 18.3712i 0.616844 + 0.616844i 0.944720 0.327877i \(-0.106333\pi\)
−0.327877 + 0.944720i \(0.606333\pi\)
\(888\) 0 0
\(889\) 72.0000i 2.41480i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.34847 7.34847i 0.245907 0.245907i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 30.0000 1.00056
\(900\) 0 0
\(901\) −27.0000 −0.899500
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 4.89898 4.89898i 0.162668 0.162668i −0.621080 0.783748i \(-0.713306\pi\)
0.783748 + 0.621080i \(0.213306\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 30.0000i 0.993944i 0.867766 + 0.496972i \(0.165555\pi\)
−0.867766 + 0.496972i \(0.834445\pi\)
\(912\) 0 0
\(913\) 66.1362 + 66.1362i 2.18879 + 2.18879i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −29.3939 29.3939i −0.970671 0.970671i
\(918\) 0 0
\(919\) 16.0000i 0.527791i 0.964551 + 0.263896i \(0.0850075\pi\)
−0.964551 + 0.263896i \(0.914993\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −14.6969 + 14.6969i −0.483756 + 0.483756i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −42.0000 −1.37798 −0.688988 0.724773i \(-0.741945\pi\)
−0.688988 + 0.724773i \(0.741945\pi\)
\(930\) 0 0
\(931\) 5.00000 0.163868
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 4.89898 4.89898i 0.160043 0.160043i −0.622543 0.782586i \(-0.713900\pi\)
0.782586 + 0.622543i \(0.213900\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) −22.0454 22.0454i −0.717897 0.717897i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −18.3712 18.3712i −0.596983 0.596983i 0.342526 0.939508i \(-0.388718\pi\)
−0.939508 + 0.342526i \(0.888718\pi\)
\(948\) 0 0
\(949\) 12.0000i 0.389536i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 14.6969 14.6969i 0.476081 0.476081i −0.427795 0.903876i \(-0.640710\pi\)
0.903876 + 0.427795i \(0.140710\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 54.0000 1.74375
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4.89898 4.89898i 0.157541 0.157541i −0.623935 0.781476i \(-0.714467\pi\)
0.781476 + 0.623935i \(0.214467\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 12.0000i 0.385098i −0.981287 0.192549i \(-0.938325\pi\)
0.981287 0.192549i \(-0.0616755\pi\)
\(972\) 0 0
\(973\) 48.9898 + 48.9898i 1.57054 + 1.57054i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −14.6969 14.6969i −0.470197 0.470197i 0.431782 0.901978i \(-0.357885\pi\)
−0.901978 + 0.431782i \(0.857885\pi\)
\(978\) 0 0
\(979\) 36.0000i 1.15056i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 18.3712 18.3712i 0.585949 0.585949i −0.350582 0.936532i \(-0.614016\pi\)
0.936532 + 0.350582i \(0.114016\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 54.0000 1.71710
\(990\) 0 0
\(991\) −37.0000 −1.17534 −0.587672 0.809099i \(-0.699955\pi\)
−0.587672 + 0.809099i \(0.699955\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 22.0454 22.0454i 0.698185 0.698185i −0.265834 0.964019i \(-0.585647\pi\)
0.964019 + 0.265834i \(0.0856472\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2700.2.j.a.593.1 4
3.2 odd 2 2700.2.j.g.593.1 yes 4
5.2 odd 4 2700.2.j.g.1457.1 yes 4
5.3 odd 4 2700.2.j.g.1457.2 yes 4
5.4 even 2 inner 2700.2.j.a.593.2 yes 4
15.2 even 4 inner 2700.2.j.a.1457.1 yes 4
15.8 even 4 inner 2700.2.j.a.1457.2 yes 4
15.14 odd 2 2700.2.j.g.593.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2700.2.j.a.593.1 4 1.1 even 1 trivial
2700.2.j.a.593.2 yes 4 5.4 even 2 inner
2700.2.j.a.1457.1 yes 4 15.2 even 4 inner
2700.2.j.a.1457.2 yes 4 15.8 even 4 inner
2700.2.j.g.593.1 yes 4 3.2 odd 2
2700.2.j.g.593.2 yes 4 15.14 odd 2
2700.2.j.g.1457.1 yes 4 5.2 odd 4
2700.2.j.g.1457.2 yes 4 5.3 odd 4