Properties

Label 270.3.l.b.253.1
Level $270$
Weight $3$
Character 270.253
Analytic conductor $7.357$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Error: no document with id 275815335 found in table mf_hecke_traces.

Error: table True does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [270,3,Mod(37,270)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("270.37"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(270, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 253.1
Character \(\chi\) \(=\) 270.253
Dual form 270.3.l.b.127.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.36603 + 0.366025i) q^{2} +(1.73205 + 1.00000i) q^{4} +(-4.54899 + 2.07525i) q^{5} +(-9.78534 - 2.62197i) q^{7} +(2.00000 + 2.00000i) q^{8} +(-6.97363 + 1.16980i) q^{10} +(8.11214 + 14.0506i) q^{11} +(-20.2033 + 5.41347i) q^{13} +(-12.4073 - 7.16337i) q^{14} +(2.00000 + 3.46410i) q^{16} +(-7.49936 + 7.49936i) q^{17} -1.15457i q^{19} +(-9.95434 - 0.954551i) q^{20} +(5.93850 + 22.1628i) q^{22} +(-19.1900 + 5.14194i) q^{23} +(16.3867 - 18.8806i) q^{25} -29.5797 q^{26} +(-14.3267 - 14.3267i) q^{28} +(19.9833 - 11.5374i) q^{29} +(2.50793 - 4.34387i) q^{31} +(1.46410 + 5.46410i) q^{32} +(-12.9893 + 7.49936i) q^{34} +(49.9547 - 8.37971i) q^{35} +(33.0094 - 33.0094i) q^{37} +(0.422601 - 1.57717i) q^{38} +(-13.2485 - 4.94748i) q^{40} +(-26.2476 + 45.4622i) q^{41} +(-8.94107 + 33.3685i) q^{43} +32.4486i q^{44} -28.0961 q^{46} +(-15.5699 - 4.17194i) q^{47} +(46.4429 + 26.8138i) q^{49} +(29.2954 - 19.7935i) q^{50} +(-40.4067 - 10.8269i) q^{52} +(30.1924 + 30.1924i) q^{53} +(-66.0607 - 47.0815i) q^{55} +(-14.3267 - 24.8146i) q^{56} +(31.5207 - 8.44594i) q^{58} +(0.730822 + 0.421940i) q^{59} +(-15.8940 - 27.5292i) q^{61} +(5.01587 - 5.01587i) q^{62} +8.00000i q^{64} +(80.6705 - 66.5529i) q^{65} +(-9.02411 - 33.6785i) q^{67} +(-20.4886 + 5.48991i) q^{68} +(71.3066 + 6.83780i) q^{70} -1.68895 q^{71} +(100.701 + 100.701i) q^{73} +(57.1739 - 33.0094i) q^{74} +(1.15457 - 1.99977i) q^{76} +(-42.5396 - 158.760i) q^{77} +(-9.01283 + 5.20356i) q^{79} +(-16.2869 - 11.6077i) q^{80} +(-52.4953 + 52.4953i) q^{82} +(-6.02023 + 22.4678i) q^{83} +(18.5515 - 49.6776i) q^{85} +(-24.4275 + 42.3096i) q^{86} +(-11.8770 + 44.3256i) q^{88} +102.749i q^{89} +211.891 q^{91} +(-38.3800 - 10.2839i) q^{92} +(-19.7418 - 11.3980i) q^{94} +(2.39602 + 5.25211i) q^{95} +(-21.8580 - 5.85684i) q^{97} +(53.6276 + 53.6276i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{2} - 6 q^{7} + 48 q^{8} - 12 q^{10} + 12 q^{11} + 48 q^{16} + 36 q^{17} - 12 q^{20} - 12 q^{22} + 54 q^{23} + 54 q^{25} - 24 q^{28} - 72 q^{31} - 48 q^{32} + 336 q^{35} + 132 q^{37} + 36 q^{38}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/270\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(217\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.36603 + 0.366025i 0.683013 + 0.183013i
\(3\) 0 0
\(4\) 1.73205 + 1.00000i 0.433013 + 0.250000i
\(5\) −4.54899 + 2.07525i −0.909798 + 0.415050i
\(6\) 0 0
\(7\) −9.78534 2.62197i −1.39791 0.374568i −0.520313 0.853975i \(-0.674185\pi\)
−0.877592 + 0.479408i \(0.840852\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 0 0
\(10\) −6.97363 + 1.16980i −0.697363 + 0.116980i
\(11\) 8.11214 + 14.0506i 0.737467 + 1.27733i 0.953632 + 0.300974i \(0.0973117\pi\)
−0.216165 + 0.976357i \(0.569355\pi\)
\(12\) 0 0
\(13\) −20.2033 + 5.41347i −1.55410 + 0.416421i −0.930791 0.365552i \(-0.880880\pi\)
−0.623312 + 0.781973i \(0.714213\pi\)
\(14\) −12.4073 7.16337i −0.886237 0.511669i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.125000 + 0.216506i
\(17\) −7.49936 + 7.49936i −0.441139 + 0.441139i −0.892395 0.451256i \(-0.850976\pi\)
0.451256 + 0.892395i \(0.350976\pi\)
\(18\) 0 0
\(19\) 1.15457i 0.0607666i −0.999538 0.0303833i \(-0.990327\pi\)
0.999538 0.0303833i \(-0.00967280\pi\)
\(20\) −9.95434 0.954551i −0.497717 0.0477275i
\(21\) 0 0
\(22\) 5.93850 + 22.1628i 0.269932 + 1.00740i
\(23\) −19.1900 + 5.14194i −0.834347 + 0.223563i −0.650609 0.759413i \(-0.725486\pi\)
−0.183738 + 0.982975i \(0.558820\pi\)
\(24\) 0 0
\(25\) 16.3867 18.8806i 0.655466 0.755224i
\(26\) −29.5797 −1.13768
\(27\) 0 0
\(28\) −14.3267 14.3267i −0.511669 0.511669i
\(29\) 19.9833 11.5374i 0.689080 0.397840i −0.114187 0.993459i \(-0.536426\pi\)
0.803267 + 0.595619i \(0.203093\pi\)
\(30\) 0 0
\(31\) 2.50793 4.34387i 0.0809011 0.140125i −0.822736 0.568423i \(-0.807554\pi\)
0.903637 + 0.428299i \(0.140887\pi\)
\(32\) 1.46410 + 5.46410i 0.0457532 + 0.170753i
\(33\) 0 0
\(34\) −12.9893 + 7.49936i −0.382038 + 0.220569i
\(35\) 49.9547 8.37971i 1.42728 0.239420i
\(36\) 0 0
\(37\) 33.0094 33.0094i 0.892146 0.892146i −0.102579 0.994725i \(-0.532709\pi\)
0.994725 + 0.102579i \(0.0327095\pi\)
\(38\) 0.422601 1.57717i 0.0111211 0.0415044i
\(39\) 0 0
\(40\) −13.2485 4.94748i −0.331212 0.123687i
\(41\) −26.2476 + 45.4622i −0.640186 + 1.10883i 0.345205 + 0.938527i \(0.387809\pi\)
−0.985391 + 0.170307i \(0.945524\pi\)
\(42\) 0 0
\(43\) −8.94107 + 33.3685i −0.207932 + 0.776012i 0.780604 + 0.625026i \(0.214912\pi\)
−0.988536 + 0.150986i \(0.951755\pi\)
\(44\) 32.4486i 0.737467i
\(45\) 0 0
\(46\) −28.0961 −0.610785
\(47\) −15.5699 4.17194i −0.331274 0.0887647i 0.0893481 0.996000i \(-0.471522\pi\)
−0.420622 + 0.907236i \(0.638188\pi\)
\(48\) 0 0
\(49\) 46.4429 + 26.8138i 0.947814 + 0.547221i
\(50\) 29.2954 19.7935i 0.585908 0.395869i
\(51\) 0 0
\(52\) −40.4067 10.8269i −0.777052 0.208210i
\(53\) 30.1924 + 30.1924i 0.569669 + 0.569669i 0.932036 0.362367i \(-0.118031\pi\)
−0.362367 + 0.932036i \(0.618031\pi\)
\(54\) 0 0
\(55\) −66.0607 47.0815i −1.20110 0.856027i
\(56\) −14.3267 24.8146i −0.255835 0.443118i
\(57\) 0 0
\(58\) 31.5207 8.44594i 0.543460 0.145620i
\(59\) 0.730822 + 0.421940i 0.0123868 + 0.00715153i 0.506181 0.862427i \(-0.331057\pi\)
−0.493794 + 0.869579i \(0.664390\pi\)
\(60\) 0 0
\(61\) −15.8940 27.5292i −0.260557 0.451298i 0.705833 0.708378i \(-0.250573\pi\)
−0.966390 + 0.257080i \(0.917240\pi\)
\(62\) 5.01587 5.01587i 0.0809011 0.0809011i
\(63\) 0 0
\(64\) 8.00000i 0.125000i
\(65\) 80.6705 66.5529i 1.24109 1.02389i
\(66\) 0 0
\(67\) −9.02411 33.6785i −0.134688 0.502663i −0.999999 0.00142763i \(-0.999546\pi\)
0.865311 0.501236i \(-0.167121\pi\)
\(68\) −20.4886 + 5.48991i −0.301304 + 0.0807340i
\(69\) 0 0
\(70\) 71.3066 + 6.83780i 1.01867 + 0.0976828i
\(71\) −1.68895 −0.0237880 −0.0118940 0.999929i \(-0.503786\pi\)
−0.0118940 + 0.999929i \(0.503786\pi\)
\(72\) 0 0
\(73\) 100.701 + 100.701i 1.37946 + 1.37946i 0.845520 + 0.533944i \(0.179291\pi\)
0.533944 + 0.845520i \(0.320709\pi\)
\(74\) 57.1739 33.0094i 0.772621 0.446073i
\(75\) 0 0
\(76\) 1.15457 1.99977i 0.0151917 0.0263127i
\(77\) −42.5396 158.760i −0.552463 2.06182i
\(78\) 0 0
\(79\) −9.01283 + 5.20356i −0.114086 + 0.0658679i −0.555957 0.831211i \(-0.687648\pi\)
0.441871 + 0.897079i \(0.354315\pi\)
\(80\) −16.2869 11.6077i −0.203586 0.145096i
\(81\) 0 0
\(82\) −52.4953 + 52.4953i −0.640186 + 0.640186i
\(83\) −6.02023 + 22.4678i −0.0725329 + 0.270696i −0.992663 0.120917i \(-0.961416\pi\)
0.920130 + 0.391614i \(0.128083\pi\)
\(84\) 0 0
\(85\) 18.5515 49.6776i 0.218253 0.584442i
\(86\) −24.4275 + 42.3096i −0.284040 + 0.491972i
\(87\) 0 0
\(88\) −11.8770 + 44.3256i −0.134966 + 0.503699i
\(89\) 102.749i 1.15449i 0.816572 + 0.577243i \(0.195871\pi\)
−0.816572 + 0.577243i \(0.804129\pi\)
\(90\) 0 0
\(91\) 211.891 2.32847
\(92\) −38.3800 10.2839i −0.417174 0.111781i
\(93\) 0 0
\(94\) −19.7418 11.3980i −0.210020 0.121255i
\(95\) 2.39602 + 5.25211i 0.0252212 + 0.0552854i
\(96\) 0 0
\(97\) −21.8580 5.85684i −0.225341 0.0603798i 0.144382 0.989522i \(-0.453881\pi\)
−0.369723 + 0.929142i \(0.620547\pi\)
\(98\) 53.6276 + 53.6276i 0.547221 + 0.547221i
\(99\) 0 0
\(100\) 47.2631 16.3155i 0.472631 0.163155i
\(101\) −28.6802 49.6756i −0.283963 0.491838i 0.688394 0.725337i \(-0.258316\pi\)
−0.972357 + 0.233499i \(0.924983\pi\)
\(102\) 0 0
\(103\) −30.7382 + 8.23627i −0.298429 + 0.0799638i −0.404927 0.914349i \(-0.632703\pi\)
0.106498 + 0.994313i \(0.466036\pi\)
\(104\) −51.2336 29.5797i −0.492631 0.284421i
\(105\) 0 0
\(106\) 30.1924 + 52.2949i 0.284834 + 0.493348i
\(107\) 16.8887 16.8887i 0.157838 0.157838i −0.623770 0.781608i \(-0.714400\pi\)
0.781608 + 0.623770i \(0.214400\pi\)
\(108\) 0 0
\(109\) 8.42672i 0.0773094i −0.999253 0.0386547i \(-0.987693\pi\)
0.999253 0.0386547i \(-0.0123072\pi\)
\(110\) −73.0075 88.4944i −0.663705 0.804495i
\(111\) 0 0
\(112\) −10.4879 39.1414i −0.0936419 0.349476i
\(113\) 48.3042 12.9431i 0.427471 0.114541i −0.0386677 0.999252i \(-0.512311\pi\)
0.466139 + 0.884712i \(0.345645\pi\)
\(114\) 0 0
\(115\) 76.6243 63.2147i 0.666298 0.549693i
\(116\) 46.1495 0.397840
\(117\) 0 0
\(118\) 0.843880 + 0.843880i 0.00715153 + 0.00715153i
\(119\) 93.0469 53.7207i 0.781907 0.451434i
\(120\) 0 0
\(121\) −71.1136 + 123.172i −0.587716 + 1.01795i
\(122\) −11.6352 43.4232i −0.0953705 0.355928i
\(123\) 0 0
\(124\) 8.68774 5.01587i 0.0700624 0.0404505i
\(125\) −35.3608 + 119.894i −0.282886 + 0.959153i
\(126\) 0 0
\(127\) −144.508 + 144.508i −1.13786 + 1.13786i −0.149025 + 0.988833i \(0.547614\pi\)
−0.988833 + 0.149025i \(0.952386\pi\)
\(128\) −2.92820 + 10.9282i −0.0228766 + 0.0853766i
\(129\) 0 0
\(130\) 134.558 61.3854i 1.03506 0.472196i
\(131\) −52.4476 + 90.8420i −0.400364 + 0.693450i −0.993770 0.111453i \(-0.964450\pi\)
0.593406 + 0.804903i \(0.297783\pi\)
\(132\) 0 0
\(133\) −3.02724 + 11.2978i −0.0227612 + 0.0849461i
\(134\) 49.3087i 0.367975i
\(135\) 0 0
\(136\) −29.9974 −0.220569
\(137\) −55.6524 14.9120i −0.406222 0.108847i 0.0499215 0.998753i \(-0.484103\pi\)
−0.456143 + 0.889906i \(0.650770\pi\)
\(138\) 0 0
\(139\) −108.159 62.4459i −0.778126 0.449251i 0.0576399 0.998337i \(-0.481642\pi\)
−0.835766 + 0.549086i \(0.814976\pi\)
\(140\) 94.9038 + 35.4406i 0.677884 + 0.253147i
\(141\) 0 0
\(142\) −2.30714 0.618197i −0.0162475 0.00435350i
\(143\) −239.955 239.955i −1.67801 1.67801i
\(144\) 0 0
\(145\) −66.9610 + 93.9538i −0.461800 + 0.647958i
\(146\) 100.701 + 174.419i 0.689732 + 1.19465i
\(147\) 0 0
\(148\) 90.1833 24.1646i 0.609347 0.163274i
\(149\) 158.796 + 91.6809i 1.06574 + 0.615308i 0.927016 0.375022i \(-0.122365\pi\)
0.138729 + 0.990330i \(0.455698\pi\)
\(150\) 0 0
\(151\) −45.6297 79.0329i −0.302183 0.523397i 0.674447 0.738323i \(-0.264382\pi\)
−0.976630 + 0.214927i \(0.931049\pi\)
\(152\) 2.30913 2.30913i 0.0151917 0.0151917i
\(153\) 0 0
\(154\) 232.441i 1.50936i
\(155\) −2.39395 + 24.9648i −0.0154448 + 0.161063i
\(156\) 0 0
\(157\) −9.28597 34.6557i −0.0591463 0.220737i 0.930026 0.367492i \(-0.119784\pi\)
−0.989173 + 0.146755i \(0.953117\pi\)
\(158\) −14.2164 + 3.80927i −0.0899772 + 0.0241093i
\(159\) 0 0
\(160\) −17.9996 21.8178i −0.112497 0.136361i
\(161\) 201.263 1.25008
\(162\) 0 0
\(163\) −158.678 158.678i −0.973485 0.973485i 0.0261726 0.999657i \(-0.491668\pi\)
−0.999657 + 0.0261726i \(0.991668\pi\)
\(164\) −90.9245 + 52.4953i −0.554417 + 0.320093i
\(165\) 0 0
\(166\) −16.4476 + 28.4880i −0.0990818 + 0.171615i
\(167\) −51.7555 193.154i −0.309913 1.15661i −0.928633 0.370999i \(-0.879015\pi\)
0.618720 0.785611i \(-0.287651\pi\)
\(168\) 0 0
\(169\) 232.511 134.240i 1.37581 0.794322i
\(170\) 43.5250 61.0706i 0.256030 0.359239i
\(171\) 0 0
\(172\) −48.8549 + 48.8549i −0.284040 + 0.284040i
\(173\) −63.1904 + 235.830i −0.365262 + 1.36318i 0.501803 + 0.864982i \(0.332670\pi\)
−0.867065 + 0.498195i \(0.833996\pi\)
\(174\) 0 0
\(175\) −209.854 + 141.788i −1.19916 + 0.810216i
\(176\) −32.4486 + 56.2025i −0.184367 + 0.319333i
\(177\) 0 0
\(178\) −37.6088 + 140.358i −0.211286 + 0.788529i
\(179\) 112.194i 0.626781i 0.949624 + 0.313391i \(0.101465\pi\)
−0.949624 + 0.313391i \(0.898535\pi\)
\(180\) 0 0
\(181\) −11.2065 −0.0619143 −0.0309572 0.999521i \(-0.509856\pi\)
−0.0309572 + 0.999521i \(0.509856\pi\)
\(182\) 289.448 + 77.5573i 1.59037 + 0.426139i
\(183\) 0 0
\(184\) −48.6639 28.0961i −0.264477 0.152696i
\(185\) −81.6567 + 218.662i −0.441387 + 1.18196i
\(186\) 0 0
\(187\) −166.207 44.5349i −0.888806 0.238155i
\(188\) −22.7959 22.7959i −0.121255 0.121255i
\(189\) 0 0
\(190\) 1.35061 + 8.05152i 0.00710848 + 0.0423764i
\(191\) −43.4409 75.2419i −0.227439 0.393937i 0.729609 0.683864i \(-0.239702\pi\)
−0.957049 + 0.289928i \(0.906369\pi\)
\(192\) 0 0
\(193\) 79.8914 21.4068i 0.413945 0.110916i −0.0458351 0.998949i \(-0.514595\pi\)
0.459780 + 0.888033i \(0.347928\pi\)
\(194\) −27.7149 16.0012i −0.142860 0.0824804i
\(195\) 0 0
\(196\) 53.6276 + 92.8858i 0.273610 + 0.473907i
\(197\) −91.8988 + 91.8988i −0.466492 + 0.466492i −0.900776 0.434284i \(-0.857001\pi\)
0.434284 + 0.900776i \(0.357001\pi\)
\(198\) 0 0
\(199\) 67.5469i 0.339432i 0.985493 + 0.169716i \(0.0542850\pi\)
−0.985493 + 0.169716i \(0.945715\pi\)
\(200\) 70.5345 4.98790i 0.352673 0.0249395i
\(201\) 0 0
\(202\) −20.9954 78.3559i −0.103938 0.387900i
\(203\) −225.794 + 60.5014i −1.11229 + 0.298036i
\(204\) 0 0
\(205\) 25.0547 261.278i 0.122218 1.27453i
\(206\) −45.0038 −0.218465
\(207\) 0 0
\(208\) −59.1595 59.1595i −0.284421 0.284421i
\(209\) 16.2224 9.36600i 0.0776191 0.0448134i
\(210\) 0 0
\(211\) −140.894 + 244.035i −0.667744 + 1.15657i 0.310790 + 0.950479i \(0.399406\pi\)
−0.978534 + 0.206087i \(0.933927\pi\)
\(212\) 22.1024 + 82.4873i 0.104257 + 0.389091i
\(213\) 0 0
\(214\) 29.2521 16.8887i 0.136692 0.0789191i
\(215\) −28.5752 170.348i −0.132908 0.792317i
\(216\) 0 0
\(217\) −35.9305 + 35.9305i −0.165578 + 0.165578i
\(218\) 3.08439 11.5111i 0.0141486 0.0528033i
\(219\) 0 0
\(220\) −67.3389 147.608i −0.306086 0.670947i
\(221\) 110.915 192.110i 0.501876 0.869275i
\(222\) 0 0
\(223\) −90.8647 + 339.112i −0.407465 + 1.52068i 0.391999 + 0.919966i \(0.371784\pi\)
−0.799464 + 0.600714i \(0.794883\pi\)
\(224\) 57.3069i 0.255835i
\(225\) 0 0
\(226\) 70.7223 0.312931
\(227\) −323.682 86.7303i −1.42591 0.382072i −0.538335 0.842731i \(-0.680946\pi\)
−0.887577 + 0.460659i \(0.847613\pi\)
\(228\) 0 0
\(229\) 334.125 + 192.907i 1.45906 + 0.842390i 0.998965 0.0454788i \(-0.0144814\pi\)
0.460097 + 0.887869i \(0.347815\pi\)
\(230\) 127.809 58.3065i 0.555691 0.253506i
\(231\) 0 0
\(232\) 63.0414 + 16.8919i 0.271730 + 0.0728099i
\(233\) 30.9334 + 30.9334i 0.132761 + 0.132761i 0.770365 0.637603i \(-0.220074\pi\)
−0.637603 + 0.770365i \(0.720074\pi\)
\(234\) 0 0
\(235\) 79.4852 13.3333i 0.338235 0.0567376i
\(236\) 0.843880 + 1.46164i 0.00357576 + 0.00619340i
\(237\) 0 0
\(238\) 146.768 39.3263i 0.616671 0.165236i
\(239\) −113.445 65.4974i −0.474664 0.274048i 0.243526 0.969894i \(-0.421696\pi\)
−0.718190 + 0.695847i \(0.755029\pi\)
\(240\) 0 0
\(241\) 32.6896 + 56.6200i 0.135641 + 0.234938i 0.925842 0.377910i \(-0.123357\pi\)
−0.790201 + 0.612848i \(0.790024\pi\)
\(242\) −142.227 + 142.227i −0.587716 + 0.587716i
\(243\) 0 0
\(244\) 63.5759i 0.260557i
\(245\) −266.914 25.5951i −1.08944 0.104470i
\(246\) 0 0
\(247\) 6.25021 + 23.3261i 0.0253045 + 0.0944376i
\(248\) 13.7036 3.67187i 0.0552565 0.0148059i
\(249\) 0 0
\(250\) −92.1880 + 150.836i −0.368752 + 0.603342i
\(251\) −341.145 −1.35914 −0.679572 0.733609i \(-0.737834\pi\)
−0.679572 + 0.733609i \(0.737834\pi\)
\(252\) 0 0
\(253\) −227.919 227.919i −0.900867 0.900867i
\(254\) −250.295 + 144.508i −0.985414 + 0.568929i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 84.8755 + 316.760i 0.330255 + 1.23253i 0.908923 + 0.416965i \(0.136906\pi\)
−0.578668 + 0.815563i \(0.696427\pi\)
\(258\) 0 0
\(259\) −409.558 + 236.458i −1.58130 + 0.912967i
\(260\) 206.278 34.6024i 0.793378 0.133086i
\(261\) 0 0
\(262\) −104.895 + 104.895i −0.400364 + 0.400364i
\(263\) −68.1118 + 254.197i −0.258980 + 0.966527i 0.706853 + 0.707361i \(0.250114\pi\)
−0.965833 + 0.259166i \(0.916552\pi\)
\(264\) 0 0
\(265\) −200.002 74.6883i −0.754725 0.281843i
\(266\) −8.27058 + 14.3251i −0.0310924 + 0.0538536i
\(267\) 0 0
\(268\) 18.0482 67.3569i 0.0673441 0.251332i
\(269\) 424.447i 1.57787i −0.614476 0.788935i \(-0.710633\pi\)
0.614476 0.788935i \(-0.289367\pi\)
\(270\) 0 0
\(271\) 513.264 1.89396 0.946981 0.321290i \(-0.104116\pi\)
0.946981 + 0.321290i \(0.104116\pi\)
\(272\) −40.9773 10.9798i −0.150652 0.0403670i
\(273\) 0 0
\(274\) −70.5644 40.7404i −0.257534 0.148687i
\(275\) 398.215 + 77.0809i 1.44806 + 0.280294i
\(276\) 0 0
\(277\) 202.878 + 54.3610i 0.732412 + 0.196249i 0.605703 0.795691i \(-0.292892\pi\)
0.126709 + 0.991940i \(0.459559\pi\)
\(278\) −124.892 124.892i −0.449251 0.449251i
\(279\) 0 0
\(280\) 116.669 + 83.1500i 0.416674 + 0.296964i
\(281\) 181.603 + 314.546i 0.646275 + 1.11938i 0.984005 + 0.178139i \(0.0570075\pi\)
−0.337730 + 0.941243i \(0.609659\pi\)
\(282\) 0 0
\(283\) 114.709 30.7362i 0.405333 0.108609i −0.0503917 0.998730i \(-0.516047\pi\)
0.455724 + 0.890121i \(0.349380\pi\)
\(284\) −2.92534 1.68895i −0.0103005 0.00594699i
\(285\) 0 0
\(286\) −239.955 415.614i −0.839004 1.45320i
\(287\) 376.043 376.043i 1.31025 1.31025i
\(288\) 0 0
\(289\) 176.519i 0.610793i
\(290\) −125.860 + 103.834i −0.434000 + 0.358048i
\(291\) 0 0
\(292\) 73.7181 + 275.120i 0.252459 + 0.942191i
\(293\) 481.195 128.936i 1.64230 0.440054i 0.684859 0.728675i \(-0.259864\pi\)
0.957443 + 0.288622i \(0.0931970\pi\)
\(294\) 0 0
\(295\) −4.20013 0.402763i −0.0142377 0.00136530i
\(296\) 132.038 0.446073
\(297\) 0 0
\(298\) 183.362 + 183.362i 0.615308 + 0.615308i
\(299\) 359.866 207.769i 1.20357 0.694879i
\(300\) 0 0
\(301\) 174.983 303.079i 0.581338 1.00691i
\(302\) −33.4032 124.663i −0.110607 0.412790i
\(303\) 0 0
\(304\) 3.99954 2.30913i 0.0131564 0.00759583i
\(305\) 129.432 + 92.2460i 0.424366 + 0.302446i
\(306\) 0 0
\(307\) 417.932 417.932i 1.36134 1.36134i 0.489135 0.872208i \(-0.337312\pi\)
0.872208 0.489135i \(-0.162688\pi\)
\(308\) 85.0793 317.520i 0.276231 1.03091i
\(309\) 0 0
\(310\) −12.4080 + 33.2263i −0.0400257 + 0.107182i
\(311\) 182.970 316.913i 0.588328 1.01901i −0.406123 0.913818i \(-0.633120\pi\)
0.994452 0.105196i \(-0.0335470\pi\)
\(312\) 0 0
\(313\) 157.443 587.584i 0.503012 1.87727i 0.0235127 0.999724i \(-0.492515\pi\)
0.479499 0.877542i \(-0.340818\pi\)
\(314\) 50.7395i 0.161591i
\(315\) 0 0
\(316\) −20.8142 −0.0658679
\(317\) −39.5983 10.6103i −0.124916 0.0334710i 0.195820 0.980640i \(-0.437263\pi\)
−0.320735 + 0.947169i \(0.603930\pi\)
\(318\) 0 0
\(319\) 324.215 + 187.186i 1.01635 + 0.586789i
\(320\) −16.6020 36.3919i −0.0518813 0.113725i
\(321\) 0 0
\(322\) 274.930 + 73.6672i 0.853819 + 0.228780i
\(323\) 8.65851 + 8.65851i 0.0268065 + 0.0268065i
\(324\) 0 0
\(325\) −228.856 + 470.160i −0.704171 + 1.44665i
\(326\) −158.678 274.838i −0.486742 0.843063i
\(327\) 0 0
\(328\) −143.420 + 38.4292i −0.437255 + 0.117162i
\(329\) 141.418 + 81.6477i 0.429842 + 0.248169i
\(330\) 0 0
\(331\) −72.8075 126.106i −0.219962 0.380986i 0.734834 0.678247i \(-0.237260\pi\)
−0.954796 + 0.297261i \(0.903927\pi\)
\(332\) −32.8952 + 32.8952i −0.0990818 + 0.0990818i
\(333\) 0 0
\(334\) 282.797i 0.846698i
\(335\) 110.942 + 134.476i 0.331170 + 0.401420i
\(336\) 0 0
\(337\) −168.974 630.620i −0.501407 1.87128i −0.490691 0.871334i \(-0.663256\pi\)
−0.0107157 0.999943i \(-0.503411\pi\)
\(338\) 366.751 98.2707i 1.08506 0.290742i
\(339\) 0 0
\(340\) 81.8097 67.4927i 0.240617 0.198508i
\(341\) 81.3788 0.238648
\(342\) 0 0
\(343\) −33.1495 33.1495i −0.0966459 0.0966459i
\(344\) −84.6192 + 48.8549i −0.245986 + 0.142020i
\(345\) 0 0
\(346\) −172.639 + 299.020i −0.498958 + 0.864220i
\(347\) 91.7205 + 342.306i 0.264324 + 0.986472i 0.962663 + 0.270704i \(0.0872565\pi\)
−0.698338 + 0.715768i \(0.746077\pi\)
\(348\) 0 0
\(349\) −422.949 + 244.190i −1.21189 + 0.699685i −0.963171 0.268891i \(-0.913343\pi\)
−0.248719 + 0.968576i \(0.580009\pi\)
\(350\) −338.563 + 116.874i −0.967323 + 0.333926i
\(351\) 0 0
\(352\) −64.8971 + 64.8971i −0.184367 + 0.184367i
\(353\) 52.4481 195.739i 0.148578 0.554501i −0.850992 0.525179i \(-0.823998\pi\)
0.999570 0.0293222i \(-0.00933489\pi\)
\(354\) 0 0
\(355\) 7.68300 3.50499i 0.0216423 0.00987320i
\(356\) −102.749 + 177.967i −0.288622 + 0.499907i
\(357\) 0 0
\(358\) −41.0658 + 153.260i −0.114709 + 0.428100i
\(359\) 416.887i 1.16124i 0.814173 + 0.580622i \(0.197191\pi\)
−0.814173 + 0.580622i \(0.802809\pi\)
\(360\) 0 0
\(361\) 359.667 0.996307
\(362\) −15.3084 4.10186i −0.0422883 0.0113311i
\(363\) 0 0
\(364\) 367.005 + 211.891i 1.00826 + 0.582117i
\(365\) −667.067 249.108i −1.82758 0.682487i
\(366\) 0 0
\(367\) 133.020 + 35.6425i 0.362451 + 0.0971185i 0.435448 0.900214i \(-0.356590\pi\)
−0.0729974 + 0.997332i \(0.523256\pi\)
\(368\) −56.1922 56.1922i −0.152696 0.152696i
\(369\) 0 0
\(370\) −191.581 + 268.810i −0.517787 + 0.726513i
\(371\) −216.280 374.607i −0.582964 1.00972i
\(372\) 0 0
\(373\) −50.7484 + 13.5980i −0.136055 + 0.0364557i −0.326204 0.945300i \(-0.605770\pi\)
0.190149 + 0.981755i \(0.439103\pi\)
\(374\) −210.742 121.672i −0.563480 0.325326i
\(375\) 0 0
\(376\) −22.7959 39.4837i −0.0606274 0.105010i
\(377\) −341.273 + 341.273i −0.905232 + 0.905232i
\(378\) 0 0
\(379\) 430.016i 1.13461i −0.823509 0.567303i \(-0.807987\pi\)
0.823509 0.567303i \(-0.192013\pi\)
\(380\) −1.10209 + 11.4929i −0.00290024 + 0.0302446i
\(381\) 0 0
\(382\) −31.8010 118.683i −0.0832486 0.310688i
\(383\) 292.904 78.4834i 0.764763 0.204918i 0.144706 0.989475i \(-0.453776\pi\)
0.620057 + 0.784557i \(0.287110\pi\)
\(384\) 0 0
\(385\) 522.980 + 633.918i 1.35839 + 1.64654i
\(386\) 116.969 0.303029
\(387\) 0 0
\(388\) −32.0024 32.0024i −0.0824804 0.0824804i
\(389\) −35.9231 + 20.7402i −0.0923474 + 0.0533168i −0.545463 0.838135i \(-0.683646\pi\)
0.453115 + 0.891452i \(0.350313\pi\)
\(390\) 0 0
\(391\) 105.351 182.474i 0.269441 0.466685i
\(392\) 39.2582 + 146.513i 0.100148 + 0.373759i
\(393\) 0 0
\(394\) −159.173 + 91.8988i −0.403994 + 0.233246i
\(395\) 30.2006 42.3748i 0.0764572 0.107278i
\(396\) 0 0
\(397\) −26.1316 + 26.1316i −0.0658226 + 0.0658226i −0.739252 0.673429i \(-0.764821\pi\)
0.673429 + 0.739252i \(0.264821\pi\)
\(398\) −24.7239 + 92.2708i −0.0621203 + 0.231836i
\(399\) 0 0
\(400\) 98.1777 + 19.0038i 0.245444 + 0.0475096i
\(401\) 190.145 329.342i 0.474178 0.821301i −0.525385 0.850865i \(-0.676079\pi\)
0.999563 + 0.0295642i \(0.00941195\pi\)
\(402\) 0 0
\(403\) −27.1532 + 101.337i −0.0673778 + 0.251457i
\(404\) 114.721i 0.283963i
\(405\) 0 0
\(406\) −330.586 −0.814251
\(407\) 731.580 + 196.026i 1.79749 + 0.481637i
\(408\) 0 0
\(409\) −8.26410 4.77128i −0.0202056 0.0116657i 0.489863 0.871799i \(-0.337047\pi\)
−0.510069 + 0.860134i \(0.670380\pi\)
\(410\) 129.860 347.741i 0.316731 0.848150i
\(411\) 0 0
\(412\) −61.4764 16.4725i −0.149215 0.0399819i
\(413\) −6.04502 6.04502i −0.0146369 0.0146369i
\(414\) 0 0
\(415\) −19.2404 114.699i −0.0463624 0.276384i
\(416\) −59.1595 102.467i −0.142210 0.246315i
\(417\) 0 0
\(418\) 25.5884 6.85639i 0.0612163 0.0164028i
\(419\) −286.594 165.465i −0.683994 0.394904i 0.117364 0.993089i \(-0.462556\pi\)
−0.801358 + 0.598185i \(0.795889\pi\)
\(420\) 0 0
\(421\) −89.1896 154.481i −0.211852 0.366938i 0.740442 0.672120i \(-0.234616\pi\)
−0.952294 + 0.305182i \(0.901283\pi\)
\(422\) −281.788 + 281.788i −0.667744 + 0.667744i
\(423\) 0 0
\(424\) 120.770i 0.284834i
\(425\) 18.7030 + 264.482i 0.0440071 + 0.622311i
\(426\) 0 0
\(427\) 83.3472 + 311.056i 0.195193 + 0.728469i
\(428\) 46.1408 12.3634i 0.107806 0.0288864i
\(429\) 0 0
\(430\) 23.3172 243.159i 0.0542262 0.565487i
\(431\) −249.781 −0.579538 −0.289769 0.957097i \(-0.593579\pi\)
−0.289769 + 0.957097i \(0.593579\pi\)
\(432\) 0 0
\(433\) −24.9453 24.9453i −0.0576103 0.0576103i 0.677715 0.735325i \(-0.262970\pi\)
−0.735325 + 0.677715i \(0.762970\pi\)
\(434\) −62.2334 + 35.9305i −0.143395 + 0.0827892i
\(435\) 0 0
\(436\) 8.42672 14.5955i 0.0193273 0.0334759i
\(437\) 5.93671 + 22.1561i 0.0135852 + 0.0507005i
\(438\) 0 0
\(439\) −94.6999 + 54.6750i −0.215717 + 0.124544i −0.603966 0.797010i \(-0.706414\pi\)
0.388248 + 0.921555i \(0.373080\pi\)
\(440\) −37.9583 226.284i −0.0862689 0.514283i
\(441\) 0 0
\(442\) 221.829 221.829i 0.501876 0.501876i
\(443\) −95.7040 + 357.172i −0.216036 + 0.806258i 0.769763 + 0.638330i \(0.220374\pi\)
−0.985799 + 0.167928i \(0.946292\pi\)
\(444\) 0 0
\(445\) −213.231 467.406i −0.479170 1.05035i
\(446\) −248.247 + 429.976i −0.556608 + 0.964072i
\(447\) 0 0
\(448\) 20.9758 78.2827i 0.0468210 0.174738i
\(449\) 358.178i 0.797724i −0.917011 0.398862i \(-0.869405\pi\)
0.917011 0.398862i \(-0.130595\pi\)
\(450\) 0 0
\(451\) −851.698 −1.88847
\(452\) 96.6085 + 25.8862i 0.213736 + 0.0572703i
\(453\) 0 0
\(454\) −410.412 236.952i −0.903992 0.521920i
\(455\) −963.889 + 439.726i −2.11844 + 0.966431i
\(456\) 0 0
\(457\) 847.169 + 226.998i 1.85376 + 0.496714i 0.999724 0.0234957i \(-0.00747960\pi\)
0.854038 + 0.520210i \(0.174146\pi\)
\(458\) 385.815 + 385.815i 0.842390 + 0.842390i
\(459\) 0 0
\(460\) 195.932 32.8668i 0.425939 0.0714496i
\(461\) 107.336 + 185.912i 0.232833 + 0.403279i 0.958641 0.284619i \(-0.0918670\pi\)
−0.725807 + 0.687898i \(0.758534\pi\)
\(462\) 0 0
\(463\) 324.757 87.0183i 0.701419 0.187945i 0.109553 0.993981i \(-0.465058\pi\)
0.591866 + 0.806036i \(0.298391\pi\)
\(464\) 79.9333 + 46.1495i 0.172270 + 0.0994601i
\(465\) 0 0
\(466\) 30.9334 + 53.5783i 0.0663807 + 0.114975i
\(467\) 551.200 551.200i 1.18030 1.18030i 0.200632 0.979667i \(-0.435700\pi\)
0.979667 0.200632i \(-0.0642996\pi\)
\(468\) 0 0
\(469\) 353.216i 0.753126i
\(470\) 113.459 + 10.8799i 0.241402 + 0.0231488i
\(471\) 0 0
\(472\) 0.617763 + 2.30552i 0.00130882 + 0.00488458i
\(473\) −541.380 + 145.062i −1.14457 + 0.306686i
\(474\) 0 0
\(475\) −21.7989 18.9195i −0.0458925 0.0398305i
\(476\) 214.883 0.451434
\(477\) 0 0
\(478\) −130.995 130.995i −0.274048 0.274048i
\(479\) −535.392 + 309.109i −1.11773 + 0.645321i −0.940820 0.338906i \(-0.889943\pi\)
−0.176909 + 0.984227i \(0.556610\pi\)
\(480\) 0 0
\(481\) −488.205 + 845.595i −1.01498 + 1.75799i
\(482\) 23.9304 + 89.3095i 0.0496482 + 0.185289i
\(483\) 0 0
\(484\) −246.345 + 142.227i −0.508977 + 0.293858i
\(485\) 111.586 18.7182i 0.230075 0.0385942i
\(486\) 0 0
\(487\) −418.202 + 418.202i −0.858732 + 0.858732i −0.991189 0.132457i \(-0.957713\pi\)
0.132457 + 0.991189i \(0.457713\pi\)
\(488\) 23.2704 86.8463i 0.0476853 0.177964i
\(489\) 0 0
\(490\) −355.243 132.661i −0.724985 0.270736i
\(491\) −163.231 + 282.725i −0.332447 + 0.575815i −0.982991 0.183653i \(-0.941208\pi\)
0.650544 + 0.759468i \(0.274541\pi\)
\(492\) 0 0
\(493\) −63.3392 + 236.385i −0.128477 + 0.479483i
\(494\) 34.1518i 0.0691332i
\(495\) 0 0
\(496\) 20.0635 0.0404505
\(497\) 16.5269 + 4.42837i 0.0332533 + 0.00891021i
\(498\) 0 0
\(499\) −196.690 113.559i −0.394169 0.227574i 0.289796 0.957088i \(-0.406413\pi\)
−0.683965 + 0.729515i \(0.739746\pi\)
\(500\) −181.141 + 172.302i −0.362282 + 0.344604i
\(501\) 0 0
\(502\) −466.013 124.868i −0.928312 0.248740i
\(503\) 521.931 + 521.931i 1.03764 + 1.03764i 0.999264 + 0.0383723i \(0.0122173\pi\)
0.0383723 + 0.999264i \(0.487783\pi\)
\(504\) 0 0
\(505\) 233.556 + 166.455i 0.462487 + 0.329615i
\(506\) −227.919 394.768i −0.450434 0.780174i
\(507\) 0 0
\(508\) −394.803 + 105.787i −0.777172 + 0.208243i
\(509\) 211.134 + 121.899i 0.414802 + 0.239486i 0.692851 0.721081i \(-0.256354\pi\)
−0.278049 + 0.960567i \(0.589688\pi\)
\(510\) 0 0
\(511\) −721.357 1249.43i −1.41166 2.44506i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 0 0
\(514\) 463.768i 0.902273i
\(515\) 122.735 101.256i 0.238321 0.196614i
\(516\) 0 0
\(517\) −67.6867 252.610i −0.130922 0.488608i
\(518\) −646.016 + 173.100i −1.24714 + 0.334169i
\(519\) 0 0
\(520\) 294.447 + 28.2354i 0.566244 + 0.0542988i
\(521\) −411.938 −0.790669 −0.395334 0.918537i \(-0.629371\pi\)
−0.395334 + 0.918537i \(0.629371\pi\)
\(522\) 0 0
\(523\) −109.244 109.244i −0.208880 0.208880i 0.594911 0.803791i \(-0.297187\pi\)
−0.803791 + 0.594911i \(0.797187\pi\)
\(524\) −181.684 + 104.895i −0.346725 + 0.200182i
\(525\) 0 0
\(526\) −186.085 + 322.308i −0.353773 + 0.612753i
\(527\) 13.7683 + 51.3841i 0.0261259 + 0.0975031i
\(528\) 0 0
\(529\) −116.311 + 67.1524i −0.219870 + 0.126942i
\(530\) −245.870 175.232i −0.463906 0.330626i
\(531\) 0 0
\(532\) −16.5412 + 16.5412i −0.0310924 + 0.0310924i
\(533\) 284.181 1060.58i 0.533173 1.98983i
\(534\) 0 0
\(535\) −41.7782 + 111.875i −0.0780901 + 0.209112i
\(536\) 49.3087 85.4051i 0.0919938 0.159338i
\(537\) 0 0
\(538\) 155.358 579.806i 0.288770 1.07771i
\(539\) 870.070i 1.61423i
\(540\) 0 0
\(541\) −944.075 −1.74506 −0.872528 0.488565i \(-0.837521\pi\)
−0.872528 + 0.488565i \(0.837521\pi\)
\(542\) 701.131 + 187.868i 1.29360 + 0.346619i
\(543\) 0 0
\(544\) −51.9571 29.9974i −0.0955094 0.0551424i
\(545\) 17.4876 + 38.3331i 0.0320873 + 0.0703360i
\(546\) 0 0
\(547\) 871.576 + 233.538i 1.59337 + 0.426943i 0.943033 0.332699i \(-0.107959\pi\)
0.650341 + 0.759642i \(0.274626\pi\)
\(548\) −81.4807 81.4807i −0.148687 0.148687i
\(549\) 0 0
\(550\) 515.759 + 251.051i 0.937743 + 0.456457i
\(551\) −13.3207 23.0721i −0.0241754 0.0418731i
\(552\) 0 0
\(553\) 101.837 27.2872i 0.184154 0.0493439i
\(554\) 257.239 + 148.517i 0.464331 + 0.268081i
\(555\) 0 0
\(556\) −124.892 216.319i −0.224626 0.389063i
\(557\) 195.150 195.150i 0.350360 0.350360i −0.509884 0.860243i \(-0.670312\pi\)
0.860243 + 0.509884i \(0.170312\pi\)
\(558\) 0 0
\(559\) 722.558i 1.29259i
\(560\) 128.938 + 156.289i 0.230246 + 0.279087i
\(561\) 0 0
\(562\) 132.943 + 496.150i 0.236553 + 0.882828i
\(563\) 60.5941 16.2361i 0.107627 0.0288386i −0.204604 0.978845i \(-0.565591\pi\)
0.312231 + 0.950006i \(0.398924\pi\)
\(564\) 0 0
\(565\) −192.875 + 159.121i −0.341372 + 0.281631i
\(566\) 167.946 0.296724
\(567\) 0 0
\(568\) −3.37789 3.37789i −0.00594699 0.00594699i
\(569\) 22.5971 13.0464i 0.0397136 0.0229287i −0.480012 0.877262i \(-0.659368\pi\)
0.519725 + 0.854333i \(0.326034\pi\)
\(570\) 0 0
\(571\) 468.026 810.645i 0.819660 1.41969i −0.0862725 0.996272i \(-0.527496\pi\)
0.905933 0.423422i \(-0.139171\pi\)
\(572\) −175.659 655.569i −0.307097 1.14610i
\(573\) 0 0
\(574\) 651.325 376.043i 1.13471 0.655127i
\(575\) −217.377 + 446.578i −0.378047 + 0.776657i
\(576\) 0 0
\(577\) 371.244 371.244i 0.643405 0.643405i −0.307986 0.951391i \(-0.599655\pi\)
0.951391 + 0.307986i \(0.0996551\pi\)
\(578\) −64.6105 + 241.130i −0.111783 + 0.417179i
\(579\) 0 0
\(580\) −209.934 + 95.7718i −0.361955 + 0.165124i
\(581\) 117.820 204.070i 0.202788 0.351240i
\(582\) 0 0
\(583\) −179.298 + 669.148i −0.307543 + 1.14777i
\(584\) 402.803i 0.689732i
\(585\) 0 0
\(586\) 704.518 1.20225
\(587\) −600.077 160.790i −1.02228 0.273919i −0.291527 0.956563i \(-0.594163\pi\)
−0.730751 + 0.682644i \(0.760830\pi\)
\(588\) 0 0
\(589\) −5.01528 2.89558i −0.00851491 0.00491609i
\(590\) −5.59007 2.08754i −0.00947469 0.00353820i
\(591\) 0 0
\(592\) 180.367 + 48.3291i 0.304673 + 0.0816370i
\(593\) −300.303 300.303i −0.506413 0.506413i 0.407011 0.913423i \(-0.366571\pi\)
−0.913423 + 0.407011i \(0.866571\pi\)
\(594\) 0 0
\(595\) −311.786 + 437.471i −0.524010 + 0.735245i
\(596\) 183.362 + 317.592i 0.307654 + 0.532872i
\(597\) 0 0
\(598\) 567.635 152.097i 0.949222 0.254343i
\(599\) −239.651 138.363i −0.400085 0.230989i 0.286435 0.958100i \(-0.407530\pi\)
−0.686521 + 0.727110i \(0.740863\pi\)
\(600\) 0 0
\(601\) 321.077 + 556.122i 0.534238 + 0.925328i 0.999200 + 0.0399972i \(0.0127349\pi\)
−0.464961 + 0.885331i \(0.653932\pi\)
\(602\) 349.966 349.966i 0.581338 0.581338i
\(603\) 0 0
\(604\) 182.519i 0.302183i
\(605\) 67.8815 707.889i 0.112201 1.17006i
\(606\) 0 0
\(607\) 252.760 + 943.312i 0.416408 + 1.55406i 0.781999 + 0.623280i \(0.214200\pi\)
−0.365591 + 0.930776i \(0.619133\pi\)
\(608\) 6.30867 1.69040i 0.0103761 0.00278027i
\(609\) 0 0
\(610\) 143.042 + 173.386i 0.234496 + 0.284239i
\(611\) 337.149 0.551798
\(612\) 0 0
\(613\) −409.139 409.139i −0.667437 0.667437i 0.289685 0.957122i \(-0.406450\pi\)
−0.957122 + 0.289685i \(0.906450\pi\)
\(614\) 723.880 417.932i 1.17896 0.680672i
\(615\) 0 0
\(616\) 232.441 402.599i 0.377339 0.653571i
\(617\) 185.796 + 693.400i 0.301128 + 1.12383i 0.936227 + 0.351395i \(0.114292\pi\)
−0.635099 + 0.772430i \(0.719041\pi\)
\(618\) 0 0
\(619\) −7.99592 + 4.61645i −0.0129175 + 0.00745791i −0.506445 0.862272i \(-0.669041\pi\)
0.493527 + 0.869730i \(0.335707\pi\)
\(620\) −29.1113 + 40.8464i −0.0469536 + 0.0658813i
\(621\) 0 0
\(622\) 365.940 365.940i 0.588328 0.588328i
\(623\) 269.406 1005.44i 0.432433 1.61386i
\(624\) 0 0
\(625\) −87.9548 618.780i −0.140728 0.990048i
\(626\) 430.142 745.027i 0.687127 1.19014i
\(627\) 0 0
\(628\) 18.5719 69.3114i 0.0295732 0.110369i
\(629\) 495.099i 0.787121i
\(630\) 0 0
\(631\) 1103.76 1.74923 0.874614 0.484820i \(-0.161115\pi\)
0.874614 + 0.484820i \(0.161115\pi\)
\(632\) −28.4328 7.61854i −0.0449886 0.0120547i
\(633\) 0 0
\(634\) −50.2086 28.9879i −0.0791933 0.0457223i
\(635\) 357.475 957.256i 0.562953 1.50749i
\(636\) 0 0
\(637\) −1083.46 290.312i −1.70088 0.455748i
\(638\) 374.371 + 374.371i 0.586789 + 0.586789i
\(639\) 0 0
\(640\) −9.35840 55.7891i −0.0146225 0.0871704i
\(641\) 261.993 + 453.785i 0.408726 + 0.707933i 0.994747 0.102362i \(-0.0326400\pi\)
−0.586022 + 0.810295i \(0.699307\pi\)
\(642\) 0 0
\(643\) 394.979 105.834i 0.614275 0.164595i 0.0617512 0.998092i \(-0.480331\pi\)
0.552524 + 0.833497i \(0.313665\pi\)
\(644\) 348.597 + 201.263i 0.541300 + 0.312520i
\(645\) 0 0
\(646\) 8.65851 + 14.9970i 0.0134033 + 0.0232151i
\(647\) −829.739 + 829.739i −1.28244 + 1.28244i −0.343166 + 0.939275i \(0.611499\pi\)
−0.939275 + 0.343166i \(0.888501\pi\)
\(648\) 0 0
\(649\) 13.6913i 0.0210961i
\(650\) −484.713 + 558.484i −0.745713 + 0.859206i
\(651\) 0 0
\(652\) −116.160 433.516i −0.178160 0.664903i
\(653\) −554.527 + 148.585i −0.849199 + 0.227542i −0.657072 0.753828i \(-0.728205\pi\)
−0.192127 + 0.981370i \(0.561538\pi\)
\(654\) 0 0
\(655\) 50.0639 522.082i 0.0764335 0.797071i
\(656\) −209.981 −0.320093
\(657\) 0 0
\(658\) 163.295 + 163.295i 0.248169 + 0.248169i
\(659\) 565.064 326.240i 0.857456 0.495053i −0.00570347 0.999984i \(-0.501815\pi\)
0.863160 + 0.504931i \(0.168482\pi\)
\(660\) 0 0
\(661\) −441.648 + 764.957i −0.668152 + 1.15727i 0.310269 + 0.950649i \(0.399581\pi\)
−0.978420 + 0.206624i \(0.933752\pi\)
\(662\) −53.2988 198.914i −0.0805118 0.300474i
\(663\) 0 0
\(664\) −56.9761 + 32.8952i −0.0858073 + 0.0495409i
\(665\) −9.67493 57.6760i −0.0145488 0.0867308i
\(666\) 0 0
\(667\) −324.155 + 324.155i −0.485990 + 0.485990i
\(668\) 103.511 386.308i 0.154956 0.578305i
\(669\) 0 0
\(670\) 102.328 + 224.305i 0.152728 + 0.334783i
\(671\) 257.868 446.641i 0.384305 0.665635i
\(672\) 0 0
\(673\) −152.431 + 568.879i −0.226494 + 0.845288i 0.755306 + 0.655372i \(0.227488\pi\)
−0.981800 + 0.189916i \(0.939178\pi\)
\(674\) 923.292i 1.36987i
\(675\) 0 0
\(676\) 536.961 0.794322
\(677\) −1121.40 300.478i −1.65643 0.443838i −0.695024 0.718987i \(-0.744606\pi\)
−0.961402 + 0.275149i \(0.911273\pi\)
\(678\) 0 0
\(679\) 198.532 + 114.622i 0.292389 + 0.168811i
\(680\) 136.458 62.2523i 0.200674 0.0915474i
\(681\) 0 0
\(682\) 111.166 + 29.7867i 0.162999 + 0.0436755i
\(683\) 31.6260 + 31.6260i 0.0463045 + 0.0463045i 0.729880 0.683575i \(-0.239576\pi\)
−0.683575 + 0.729880i \(0.739576\pi\)
\(684\) 0 0
\(685\) 284.108 47.6581i 0.414757 0.0695738i
\(686\) −33.1495 57.4167i −0.0483229 0.0836978i
\(687\) 0 0
\(688\) −133.474 + 35.7643i −0.194003 + 0.0519830i
\(689\) −773.434 446.542i −1.12255 0.648102i
\(690\) 0 0
\(691\) 297.024 + 514.461i 0.429847 + 0.744517i 0.996859 0.0791924i \(-0.0252341\pi\)
−0.567012 + 0.823709i \(0.691901\pi\)
\(692\) −345.279 + 345.279i −0.498958 + 0.498958i
\(693\) 0 0
\(694\) 501.170i 0.722147i
\(695\) 621.608 + 59.6078i 0.894399 + 0.0857666i
\(696\) 0 0
\(697\) −144.097 537.778i −0.206739 0.771561i
\(698\) −667.139 + 178.759i −0.955787 + 0.256102i
\(699\) 0 0
\(700\) −505.265 + 35.7301i −0.721807 + 0.0510431i
\(701\) 539.121 0.769075 0.384537 0.923109i \(-0.374361\pi\)
0.384537 + 0.923109i \(0.374361\pi\)
\(702\) 0 0
\(703\) −38.1115 38.1115i −0.0542127 0.0542127i
\(704\) −112.405 + 64.8971i −0.159666 + 0.0921834i
\(705\) 0 0
\(706\) 143.291 248.187i 0.202961 0.351540i
\(707\) 150.398 + 561.292i 0.212727 + 0.793907i
\(708\) 0 0
\(709\) 603.510 348.437i 0.851213 0.491448i −0.00984700 0.999952i \(-0.503134\pi\)
0.861060 + 0.508504i \(0.169801\pi\)
\(710\) 11.7781 1.97573i 0.0165889 0.00278272i
\(711\) 0 0
\(712\) −205.499 + 205.499i −0.288622 + 0.288622i
\(713\) −25.7913 + 96.2544i −0.0361729 + 0.134999i
\(714\) 0 0
\(715\) 1589.52 + 593.586i 2.22311 + 0.830191i
\(716\) −112.194 + 194.325i −0.156695 + 0.271404i
\(717\) 0 0
\(718\) −152.591 + 569.478i −0.212522 + 0.793145i
\(719\) 446.528i 0.621041i −0.950567 0.310520i \(-0.899497\pi\)
0.950567 0.310520i \(-0.100503\pi\)
\(720\) 0 0
\(721\) 322.379 0.447128
\(722\) 491.314 + 131.647i 0.680491 + 0.182337i
\(723\) 0 0
\(724\) −19.4102 11.2065i −0.0268097 0.0154786i
\(725\) 109.627 566.356i 0.151210 0.781181i
\(726\) 0 0
\(727\) −451.432 120.961i −0.620952 0.166384i −0.0653917 0.997860i \(-0.520830\pi\)
−0.555561 + 0.831476i \(0.687496\pi\)
\(728\) 423.781 + 423.781i 0.582117 + 0.582117i
\(729\) 0 0
\(730\) −820.051 584.451i −1.12336 0.800618i
\(731\) −183.190 317.295i −0.250602 0.434056i
\(732\) 0 0
\(733\) 766.887 205.487i 1.04623 0.280337i 0.305538 0.952180i \(-0.401164\pi\)
0.740693 + 0.671843i \(0.234497\pi\)
\(734\) 168.662 + 97.3771i 0.229785 + 0.132666i
\(735\) 0 0
\(736\) −56.1922 97.3277i −0.0763481 0.132239i
\(737\) 399.999 399.999i 0.542739 0.542739i
\(738\) 0 0
\(739\) 5.34957i 0.00723893i 0.999993 + 0.00361947i \(0.00115211\pi\)
−0.999993 + 0.00361947i \(0.998848\pi\)
\(740\) −360.096 + 297.078i −0.486616 + 0.401456i
\(741\) 0 0
\(742\) −158.328 590.887i −0.213380 0.796343i
\(743\) 1388.28 371.988i 1.86848 0.500657i 0.868489 0.495708i \(-0.165091\pi\)
0.999988 0.00494907i \(-0.00157534\pi\)
\(744\) 0 0
\(745\) −912.622 87.5140i −1.22500 0.117468i
\(746\) −74.3008 −0.0995989
\(747\) 0 0
\(748\) −243.343 243.343i −0.325326 0.325326i
\(749\) −209.543 + 120.980i −0.279764 + 0.161522i
\(750\) 0 0
\(751\) −104.684 + 181.317i −0.139392 + 0.241435i −0.927267 0.374401i \(-0.877848\pi\)
0.787874 + 0.615836i \(0.211182\pi\)
\(752\) −16.6878 62.2796i −0.0221912 0.0828186i
\(753\) 0 0
\(754\) −591.101 + 341.273i −0.783954 + 0.452616i
\(755\) 371.582 + 264.827i 0.492162 + 0.350764i
\(756\) 0 0
\(757\) −854.924 + 854.924i −1.12936 + 1.12936i −0.139076 + 0.990282i \(0.544413\pi\)
−0.990282 + 0.139076i \(0.955587\pi\)
\(758\) 157.397 587.413i 0.207647 0.774951i
\(759\) 0 0
\(760\) −5.71219 + 15.2963i −0.00751605 + 0.0201267i
\(761\) −214.446 + 371.432i −0.281795 + 0.488084i −0.971827 0.235695i \(-0.924263\pi\)
0.690032 + 0.723779i \(0.257597\pi\)
\(762\) 0 0
\(763\) −22.0946 + 82.4584i −0.0289576 + 0.108071i
\(764\) 173.764i 0.227439i
\(765\) 0 0
\(766\) 428.842 0.559845
\(767\) −17.0492 4.56832i −0.0222284 0.00595609i
\(768\) 0 0
\(769\) −417.404 240.988i −0.542788 0.313379i 0.203420 0.979092i \(-0.434794\pi\)
−0.746208 + 0.665713i \(0.768128\pi\)
\(770\) 482.373 + 1057.37i 0.626459 + 1.37321i
\(771\) 0 0
\(772\) 159.783 + 42.8137i 0.206973 + 0.0554581i
\(773\) −398.239 398.239i −0.515187 0.515187i 0.400924 0.916111i \(-0.368689\pi\)
−0.916111 + 0.400924i \(0.868689\pi\)
\(774\) 0 0
\(775\) −40.9182 118.533i −0.0527977 0.152946i
\(776\) −32.0024 55.4298i −0.0412402 0.0714301i
\(777\) 0 0
\(778\) −56.6634 + 15.1829i −0.0728321 + 0.0195153i
\(779\) 52.4892 + 30.3046i 0.0673802 + 0.0389020i
\(780\) 0 0
\(781\) −13.7010 23.7308i −0.0175428 0.0303851i
\(782\) 210.703 210.703i 0.269441 0.269441i
\(783\) 0 0
\(784\) 214.511i 0.273610i
\(785\) 114.161 + 138.378i 0.145428 + 0.176278i
\(786\) 0 0
\(787\) −184.125 687.164i −0.233958 0.873143i −0.978616 0.205697i \(-0.934054\pi\)
0.744658 0.667446i \(-0.232613\pi\)
\(788\) −251.072 + 67.2746i −0.318620 + 0.0853739i
\(789\) 0 0
\(790\) 56.7651 46.8309i 0.0718545 0.0592797i
\(791\) −506.610 −0.640468
\(792\) 0 0
\(793\) 470.140 + 470.140i 0.592863 + 0.592863i
\(794\) −45.2612 + 26.1316i −0.0570040 + 0.0329113i
\(795\) 0 0
\(796\) −67.5469 + 116.995i −0.0848579 + 0.146978i
\(797\) −177.694 663.163i −0.222954 0.832074i −0.983214 0.182456i \(-0.941595\pi\)
0.760261 0.649618i \(-0.225071\pi\)
\(798\) 0 0
\(799\) 148.051 85.4774i 0.185296 0.106980i
\(800\) 127.157 + 61.8952i 0.158947 + 0.0773691i
\(801\) 0 0
\(802\) 380.291 380.291i 0.474178 0.474178i
\(803\) −598.012 + 2231.81i −0.744722 + 2.77934i
\(804\) 0 0
\(805\) −915.542 + 417.671i −1.13732 + 0.518845i
\(806\) −74.1840 + 128.491i −0.0920397 + 0.159418i
\(807\) 0 0
\(808\) 41.9908 156.712i 0.0519688 0.193950i
\(809\) 1351.77i 1.67092i −0.549552 0.835459i \(-0.685202\pi\)
0.549552 0.835459i \(-0.314798\pi\)
\(810\) 0 0
\(811\) 226.208 0.278925 0.139463 0.990227i \(-0.455463\pi\)
0.139463 + 0.990227i \(0.455463\pi\)
\(812\) −451.589 121.003i −0.556144 0.149018i
\(813\) 0 0
\(814\) 927.606 + 535.554i 1.13957 + 0.657928i
\(815\) 1051.12 + 392.528i 1.28972 + 0.481630i
\(816\) 0 0
\(817\) 38.5262 + 10.3231i 0.0471557 + 0.0126353i
\(818\) −9.54256 9.54256i −0.0116657 0.0116657i
\(819\) 0 0
\(820\) 304.674 427.492i 0.371553 0.521331i
\(821\) 311.348 + 539.270i 0.379230 + 0.656846i 0.990950 0.134228i \(-0.0428556\pi\)
−0.611720 + 0.791074i \(0.709522\pi\)
\(822\) 0 0
\(823\) −1141.41 + 305.841i −1.38689 + 0.371617i −0.873621 0.486608i \(-0.838234\pi\)
−0.513274 + 0.858225i \(0.671567\pi\)
\(824\) −77.9489 45.0038i −0.0945982 0.0546163i
\(825\) 0 0
\(826\) −6.04502 10.4703i −0.00731843 0.0126759i
\(827\) 269.820 269.820i 0.326264 0.326264i −0.524900 0.851164i \(-0.675897\pi\)
0.851164 + 0.524900i \(0.175897\pi\)
\(828\) 0 0
\(829\) 228.498i 0.275630i 0.990458 + 0.137815i \(0.0440080\pi\)
−0.990458 + 0.137815i \(0.955992\pi\)
\(830\) 15.7000 163.725i 0.0189157 0.197259i
\(831\) 0 0
\(832\) −43.3078 161.627i −0.0520526 0.194263i
\(833\) −549.379 + 147.206i −0.659518 + 0.176717i
\(834\) 0 0
\(835\) 636.278 + 771.250i 0.762010 + 0.923653i
\(836\) 37.4640 0.0448134
\(837\) 0 0
\(838\) −330.930 330.930i −0.394904 0.394904i
\(839\) −1178.88 + 680.626i −1.40510 + 0.811234i −0.994910 0.100766i \(-0.967871\pi\)
−0.410189 + 0.912000i \(0.634537\pi\)
\(840\) 0 0
\(841\) −154.278 + 267.217i −0.183446 + 0.317738i
\(842\) −65.2913 243.670i −0.0775431 0.289395i
\(843\) 0 0
\(844\) −488.071 + 281.788i −0.578283 + 0.333872i
\(845\) −779.109 + 1093.18i −0.922022 + 1.29370i
\(846\) 0 0
\(847\) 1018.83 1018.83i 1.20286 1.20286i
\(848\) −44.2048 + 164.975i −0.0521283 + 0.194546i
\(849\) 0 0
\(850\) −71.2583 + 368.135i −0.0838333 + 0.433100i
\(851\) −463.717 + 803.182i −0.544909 + 0.943810i
\(852\) 0 0
\(853\) 212.386 792.635i 0.248987 0.929233i −0.722350 0.691527i \(-0.756938\pi\)
0.971337 0.237705i \(-0.0763952\pi\)
\(854\) 455.418i 0.533276i
\(855\) 0 0
\(856\) 67.5548 0.0789191
\(857\) −112.046 30.0226i −0.130742 0.0350322i 0.192855 0.981227i \(-0.438225\pi\)
−0.323597 + 0.946195i \(0.604892\pi\)
\(858\) 0 0
\(859\) 963.468 + 556.258i 1.12162 + 0.647565i 0.941813 0.336138i \(-0.109121\pi\)
0.179803 + 0.983703i \(0.442454\pi\)
\(860\) 120.854 323.627i 0.140528 0.376310i
\(861\) 0 0
\(862\) −341.207 91.4262i −0.395832 0.106063i
\(863\) −354.960 354.960i −0.411309 0.411309i 0.470885 0.882194i \(-0.343935\pi\)
−0.882194 + 0.470885i \(0.843935\pi\)
\(864\) 0 0
\(865\) −201.953 1203.92i −0.233472 1.39182i
\(866\) −24.9453 43.2064i −0.0288051 0.0498920i
\(867\) 0 0
\(868\) −98.1639 + 26.3029i −0.113092 + 0.0303029i
\(869\) −146.227 84.4240i −0.168270 0.0971508i
\(870\) 0 0
\(871\) 364.635 + 631.566i 0.418639 + 0.725104i
\(872\) 16.8534 16.8534i 0.0193273 0.0193273i
\(873\) 0 0
\(874\) 32.4388i 0.0371153i
\(875\) 660.377 1080.49i 0.754716 1.23485i
\(876\) 0 0
\(877\) 96.5961 + 360.501i 0.110144 + 0.411062i 0.998878 0.0473610i \(-0.0150811\pi\)
−0.888734 + 0.458423i \(0.848414\pi\)
\(878\) −149.375 + 40.0249i −0.170131 + 0.0455864i
\(879\) 0 0
\(880\) 30.9738 323.004i 0.0351975 0.367050i
\(881\) −1377.92 −1.56404 −0.782022 0.623251i \(-0.785812\pi\)
−0.782022 + 0.623251i \(0.785812\pi\)
\(882\) 0 0
\(883\) −25.5579 25.5579i −0.0289444 0.0289444i 0.692486 0.721431i \(-0.256515\pi\)
−0.721431 + 0.692486i \(0.756515\pi\)
\(884\) 384.219 221.829i 0.434637 0.250938i
\(885\) 0 0
\(886\) −261.468 + 452.876i −0.295111 + 0.511147i
\(887\) 39.5459 + 147.587i 0.0445839 + 0.166389i 0.984628 0.174663i \(-0.0558835\pi\)
−0.940044 + 0.341052i \(0.889217\pi\)
\(888\) 0 0
\(889\) 1792.96 1035.16i 2.01682 1.16441i
\(890\) −120.196 716.536i −0.135052 0.805096i
\(891\) 0 0
\(892\) −496.494 + 496.494i −0.556608 + 0.556608i
\(893\) −4.81678 + 17.9765i −0.00539393 + 0.0201304i
\(894\) 0 0
\(895\) −232.830 510.369i −0.260146 0.570245i
\(896\) 57.3069 99.2585i 0.0639586 0.110780i
\(897\) 0 0
\(898\) 131.102 489.280i 0.145994 0.544855i
\(899\) 115.740i 0.128743i
\(900\) 0 0
\(901\) −452.848 −0.502606
\(902\) −1163.44 311.743i −1.28985 0.345613i
\(903\) 0 0
\(904\) 122.495 + 70.7223i 0.135503 + 0.0782326i
\(905\) 50.9783 23.2563i 0.0563296 0.0256976i
\(906\) 0 0
\(907\) −1602.13 429.289i −1.76640 0.473307i −0.778405 0.627763i \(-0.783971\pi\)
−0.988000 + 0.154456i \(0.950637\pi\)
\(908\) −473.903 473.903i −0.521920 0.521920i
\(909\) 0 0
\(910\) −1477.65 + 247.870i −1.62379 + 0.272384i
\(911\) −79.1611 137.111i −0.0868947 0.150506i 0.819302 0.573362i \(-0.194361\pi\)
−0.906197 + 0.422856i \(0.861028\pi\)
\(912\) 0 0
\(913\) −364.524 + 97.6739i −0.399260 + 0.106981i
\(914\) 1074.17 + 620.171i 1.17524 + 0.678524i
\(915\) 0 0
\(916\) 385.815 + 668.250i 0.421195 + 0.729531i
\(917\) 751.403 751.403i 0.819415 0.819415i
\(918\) 0 0
\(919\) 449.294i 0.488894i −0.969663 0.244447i \(-0.921394\pi\)
0.969663 0.244447i \(-0.0786065\pi\)
\(920\) 279.678 + 26.8191i 0.303998 + 0.0291512i
\(921\) 0 0
\(922\) 78.5756 + 293.248i 0.0852230 + 0.318056i
\(923\) 34.1223 9.14306i 0.0369690 0.00990580i
\(924\) 0 0
\(925\) −82.3238 1164.15i −0.0889987 1.25854i
\(926\) 475.477 0.513474
\(927\) 0 0
\(928\) 92.2990 + 92.2990i 0.0994601 + 0.0994601i
\(929\) 851.351 491.528i 0.916417 0.529094i 0.0339268 0.999424i \(-0.489199\pi\)
0.882490 + 0.470331i \(0.155865\pi\)
\(930\) 0 0
\(931\) 30.9583 53.6214i 0.0332528 0.0575955i
\(932\) 22.6448 + 84.5117i 0.0242970 + 0.0906778i
\(933\) 0 0
\(934\) 954.706 551.200i 1.02217 0.590149i
\(935\) 848.494 142.332i 0.907480 0.152226i
\(936\) 0 0
\(937\) −890.763 + 890.763i −0.950654 + 0.950654i −0.998838 0.0481843i \(-0.984657\pi\)
0.0481843 + 0.998838i \(0.484657\pi\)
\(938\) −129.286 + 482.502i −0.137832 + 0.514395i
\(939\) 0 0
\(940\) 151.006 + 56.3912i 0.160644 + 0.0599906i
\(941\) −141.451 + 245.001i −0.150320 + 0.260362i −0.931345 0.364137i \(-0.881364\pi\)
0.781025 + 0.624500i \(0.214697\pi\)
\(942\) 0 0
\(943\) 269.928 1007.38i 0.286243 1.06828i
\(944\) 3.37552i 0.00357576i
\(945\) 0 0
\(946\) −792.636 −0.837882
\(947\) 419.826 + 112.492i 0.443322 + 0.118788i 0.473573 0.880755i \(-0.342964\pi\)
−0.0302512 + 0.999542i \(0.509631\pi\)
\(948\) 0 0
\(949\) −2579.63 1489.35i −2.71827 1.56939i
\(950\) −22.8529 33.8235i −0.0240556 0.0356036i
\(951\) 0 0
\(952\) 293.535 + 78.6525i 0.308335 + 0.0826182i
\(953\) 521.907 + 521.907i 0.547647 + 0.547647i 0.925760 0.378113i \(-0.123427\pi\)
−0.378113 + 0.925760i \(0.623427\pi\)
\(954\) 0 0
\(955\) 353.758 + 252.124i 0.370428 + 0.264004i
\(956\) −130.995 226.890i −0.137024 0.237332i
\(957\) 0 0
\(958\) −844.501 + 226.283i −0.881525 + 0.236204i
\(959\) 505.479 + 291.838i 0.527089 + 0.304315i
\(960\) 0 0
\(961\) 467.921 + 810.462i 0.486910 + 0.843353i
\(962\) −976.410 + 976.410i −1.01498 + 1.01498i
\(963\) 0 0
\(964\) 130.758i 0.135641i
\(965\) −319.001 + 263.174i −0.330571 + 0.272720i
\(966\) 0 0
\(967\) 364.541 + 1360.49i 0.376981 + 1.40691i 0.850428 + 0.526091i \(0.176343\pi\)
−0.473447 + 0.880822i \(0.656990\pi\)
\(968\) −388.572 + 104.118i −0.401417 + 0.107559i
\(969\) 0 0
\(970\) 159.281 + 15.2739i 0.164207 + 0.0157463i
\(971\) 684.172 0.704605 0.352303 0.935886i \(-0.385399\pi\)
0.352303 + 0.935886i \(0.385399\pi\)
\(972\) 0 0
\(973\) 894.646 + 894.646i 0.919472 + 0.919472i
\(974\) −724.348 + 418.202i −0.743684 + 0.429366i
\(975\) 0 0
\(976\) 63.5759 110.117i 0.0651393 0.112825i
\(977\) 282.136 + 1052.94i 0.288777 + 1.07773i 0.946035 + 0.324066i \(0.105050\pi\)
−0.657257 + 0.753666i \(0.728283\pi\)
\(978\) 0 0
\(979\) −1443.69 + 833.516i −1.47466 + 0.851396i
\(980\) −436.713 311.246i −0.445626 0.317598i
\(981\) 0 0
\(982\) −326.463 + 326.463i −0.332447 + 0.332447i
\(983\) −360.626 + 1345.88i −0.366863 + 1.36915i 0.498015 + 0.867168i \(0.334062\pi\)
−0.864878 + 0.501982i \(0.832604\pi\)
\(984\) 0 0
\(985\) 227.334 608.760i 0.230796 0.618031i
\(986\) −173.046 + 299.724i −0.175503 + 0.303980i
\(987\) 0 0
\(988\) −12.5004 + 46.6522i −0.0126522 + 0.0472188i
\(989\) 686.316i 0.693950i
\(990\) 0 0
\(991\) −454.036 −0.458160 −0.229080 0.973408i \(-0.573572\pi\)
−0.229080 + 0.973408i \(0.573572\pi\)
\(992\) 27.4072 + 7.34374i 0.0276282 + 0.00740296i
\(993\) 0 0
\(994\) 20.9553 + 12.0985i 0.0210818 + 0.0121716i
\(995\) −140.177 307.270i −0.140881 0.308815i
\(996\) 0 0
\(997\) −636.610 170.579i −0.638526 0.171092i −0.0749902 0.997184i \(-0.523893\pi\)
−0.563536 + 0.826092i \(0.690559\pi\)
\(998\) −227.119 227.119i −0.227574 0.227574i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 270.3.l.b.253.1 24
3.2 odd 2 90.3.k.a.13.2 yes 24
5.2 odd 4 inner 270.3.l.b.37.3 24
9.2 odd 6 90.3.k.a.43.2 yes 24
9.4 even 3 810.3.g.i.163.5 12
9.5 odd 6 810.3.g.k.163.2 12
9.7 even 3 inner 270.3.l.b.73.3 24
15.2 even 4 90.3.k.a.67.2 yes 24
45.2 even 12 90.3.k.a.7.2 24
45.7 odd 12 inner 270.3.l.b.127.1 24
45.22 odd 12 810.3.g.i.487.5 12
45.32 even 12 810.3.g.k.487.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.k.a.7.2 24 45.2 even 12
90.3.k.a.13.2 yes 24 3.2 odd 2
90.3.k.a.43.2 yes 24 9.2 odd 6
90.3.k.a.67.2 yes 24 15.2 even 4
270.3.l.b.37.3 24 5.2 odd 4 inner
270.3.l.b.73.3 24 9.7 even 3 inner
270.3.l.b.127.1 24 45.7 odd 12 inner
270.3.l.b.253.1 24 1.1 even 1 trivial
810.3.g.i.163.5 12 9.4 even 3
810.3.g.i.487.5 12 45.22 odd 12
810.3.g.k.163.2 12 9.5 odd 6
810.3.g.k.487.2 12 45.32 even 12