Properties

Label 270.3.l.b
Level $270$
Weight $3$
Character orbit 270.l
Analytic conductor $7.357$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [270,3,Mod(37,270)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(270, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("270.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 270 = 2 \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 270.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.35696713773\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 12 q^{2} - 6 q^{7} + 48 q^{8}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 24 q + 12 q^{2} - 6 q^{7} + 48 q^{8} - 12 q^{10} + 12 q^{11} + 48 q^{16} + 36 q^{17} - 12 q^{20} - 12 q^{22} + 54 q^{23} + 54 q^{25} - 24 q^{28} - 72 q^{31} - 48 q^{32} + 336 q^{35} + 132 q^{37} + 36 q^{38} + 12 q^{40} - 24 q^{41} + 108 q^{43} + 216 q^{46} - 48 q^{47} - 54 q^{50} - 384 q^{53} - 552 q^{55} - 24 q^{56} + 60 q^{58} - 456 q^{61} - 144 q^{62} - 264 q^{65} + 12 q^{67} + 36 q^{68} + 174 q^{70} + 168 q^{71} - 432 q^{73} - 72 q^{76} + 48 q^{77} - 48 q^{82} + 246 q^{83} + 324 q^{85} - 216 q^{86} + 24 q^{88} + 1224 q^{91} + 108 q^{92} - 432 q^{95} - 102 q^{97} - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
37.1 −0.366025 + 1.36603i 0 −1.73205 1.00000i −4.34994 + 2.46536i 0 −0.882779 + 3.29458i 2.00000 2.00000i 0 −1.77556 6.84452i
37.2 −0.366025 + 1.36603i 0 −1.73205 1.00000i −3.85499 3.18419i 0 0.348547 1.30080i 2.00000 2.00000i 0 5.76070 4.10052i
37.3 −0.366025 + 1.36603i 0 −1.73205 1.00000i 0.477275 + 4.97717i 0 2.62197 9.78534i 2.00000 2.00000i 0 −6.97363 1.16980i
37.4 −0.366025 + 1.36603i 0 −1.73205 1.00000i 0.591182 4.96493i 0 −1.80392 + 6.73232i 2.00000 2.00000i 0 6.56583 + 2.62486i
37.5 −0.366025 + 1.36603i 0 −1.73205 1.00000i 4.80008 + 1.39971i 0 2.39851 8.95134i 2.00000 2.00000i 0 −3.66899 + 6.04471i
37.6 −0.366025 + 1.36603i 0 −1.73205 1.00000i 4.93447 + 0.806874i 0 −1.58425 + 5.91251i 2.00000 2.00000i 0 −2.90835 + 6.44527i
73.1 −0.366025 1.36603i 0 −1.73205 + 1.00000i −4.34994 2.46536i 0 −0.882779 3.29458i 2.00000 + 2.00000i 0 −1.77556 + 6.84452i
73.2 −0.366025 1.36603i 0 −1.73205 + 1.00000i −3.85499 + 3.18419i 0 0.348547 + 1.30080i 2.00000 + 2.00000i 0 5.76070 + 4.10052i
73.3 −0.366025 1.36603i 0 −1.73205 + 1.00000i 0.477275 4.97717i 0 2.62197 + 9.78534i 2.00000 + 2.00000i 0 −6.97363 + 1.16980i
73.4 −0.366025 1.36603i 0 −1.73205 + 1.00000i 0.591182 + 4.96493i 0 −1.80392 6.73232i 2.00000 + 2.00000i 0 6.56583 2.62486i
73.5 −0.366025 1.36603i 0 −1.73205 + 1.00000i 4.80008 1.39971i 0 2.39851 + 8.95134i 2.00000 + 2.00000i 0 −3.66899 6.04471i
73.6 −0.366025 1.36603i 0 −1.73205 + 1.00000i 4.93447 0.806874i 0 −1.58425 5.91251i 2.00000 + 2.00000i 0 −2.90835 6.44527i
127.1 1.36603 0.366025i 0 1.73205 1.00000i −4.54899 2.07525i 0 −9.78534 + 2.62197i 2.00000 2.00000i 0 −6.97363 1.16980i
127.2 1.36603 0.366025i 0 1.73205 1.00000i −3.61223 + 3.45714i 0 −8.95134 + 2.39851i 2.00000 2.00000i 0 −3.66899 + 6.04471i
127.3 1.36603 0.366025i 0 1.73205 1.00000i −3.16601 + 3.86994i 0 5.91251 1.58425i 2.00000 2.00000i 0 −2.90835 + 6.44527i
127.4 1.36603 0.366025i 0 1.73205 1.00000i 0.0399035 4.99984i 0 3.29458 0.882779i 2.00000 2.00000i 0 −1.77556 6.84452i
127.5 1.36603 0.366025i 0 1.73205 1.00000i 4.00416 + 2.99444i 0 6.73232 1.80392i 2.00000 2.00000i 0 6.56583 + 2.62486i
127.6 1.36603 0.366025i 0 1.73205 1.00000i 4.68508 1.74643i 0 −1.30080 + 0.348547i 2.00000 2.00000i 0 5.76070 4.10052i
253.1 1.36603 + 0.366025i 0 1.73205 + 1.00000i −4.54899 + 2.07525i 0 −9.78534 2.62197i 2.00000 + 2.00000i 0 −6.97363 + 1.16980i
253.2 1.36603 + 0.366025i 0 1.73205 + 1.00000i −3.61223 3.45714i 0 −8.95134 2.39851i 2.00000 + 2.00000i 0 −3.66899 6.04471i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 37.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
9.c even 3 1 inner
45.k odd 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 270.3.l.b 24
3.b odd 2 1 90.3.k.a 24
5.c odd 4 1 inner 270.3.l.b 24
9.c even 3 1 inner 270.3.l.b 24
9.c even 3 1 810.3.g.i 12
9.d odd 6 1 90.3.k.a 24
9.d odd 6 1 810.3.g.k 12
15.e even 4 1 90.3.k.a 24
45.k odd 12 1 inner 270.3.l.b 24
45.k odd 12 1 810.3.g.i 12
45.l even 12 1 90.3.k.a 24
45.l even 12 1 810.3.g.k 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
90.3.k.a 24 3.b odd 2 1
90.3.k.a 24 9.d odd 6 1
90.3.k.a 24 15.e even 4 1
90.3.k.a 24 45.l even 12 1
270.3.l.b 24 1.a even 1 1 trivial
270.3.l.b 24 5.c odd 4 1 inner
270.3.l.b 24 9.c even 3 1 inner
270.3.l.b 24 45.k odd 12 1 inner
810.3.g.i 12 9.c even 3 1
810.3.g.i 12 45.k odd 12 1
810.3.g.k 12 9.d odd 6 1
810.3.g.k 12 45.l even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{24} + 6 T_{7}^{23} + 18 T_{7}^{22} + 1196 T_{7}^{21} - 3891 T_{7}^{20} - 86784 T_{7}^{19} + \cdots + 11\!\cdots\!81 \) acting on \(S_{3}^{\mathrm{new}}(270, [\chi])\). Copy content Toggle raw display