Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [270,3,Mod(37,270)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(270, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([4, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("270.37");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 270 = 2 \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 270.l (of order \(12\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.35696713773\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{12})\) |
Twist minimal: | no (minimal twist has level 90) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
37.1 | −0.366025 | + | 1.36603i | 0 | −1.73205 | − | 1.00000i | −4.34994 | + | 2.46536i | 0 | −0.882779 | + | 3.29458i | 2.00000 | − | 2.00000i | 0 | −1.77556 | − | 6.84452i | ||||||
37.2 | −0.366025 | + | 1.36603i | 0 | −1.73205 | − | 1.00000i | −3.85499 | − | 3.18419i | 0 | 0.348547 | − | 1.30080i | 2.00000 | − | 2.00000i | 0 | 5.76070 | − | 4.10052i | ||||||
37.3 | −0.366025 | + | 1.36603i | 0 | −1.73205 | − | 1.00000i | 0.477275 | + | 4.97717i | 0 | 2.62197 | − | 9.78534i | 2.00000 | − | 2.00000i | 0 | −6.97363 | − | 1.16980i | ||||||
37.4 | −0.366025 | + | 1.36603i | 0 | −1.73205 | − | 1.00000i | 0.591182 | − | 4.96493i | 0 | −1.80392 | + | 6.73232i | 2.00000 | − | 2.00000i | 0 | 6.56583 | + | 2.62486i | ||||||
37.5 | −0.366025 | + | 1.36603i | 0 | −1.73205 | − | 1.00000i | 4.80008 | + | 1.39971i | 0 | 2.39851 | − | 8.95134i | 2.00000 | − | 2.00000i | 0 | −3.66899 | + | 6.04471i | ||||||
37.6 | −0.366025 | + | 1.36603i | 0 | −1.73205 | − | 1.00000i | 4.93447 | + | 0.806874i | 0 | −1.58425 | + | 5.91251i | 2.00000 | − | 2.00000i | 0 | −2.90835 | + | 6.44527i | ||||||
73.1 | −0.366025 | − | 1.36603i | 0 | −1.73205 | + | 1.00000i | −4.34994 | − | 2.46536i | 0 | −0.882779 | − | 3.29458i | 2.00000 | + | 2.00000i | 0 | −1.77556 | + | 6.84452i | ||||||
73.2 | −0.366025 | − | 1.36603i | 0 | −1.73205 | + | 1.00000i | −3.85499 | + | 3.18419i | 0 | 0.348547 | + | 1.30080i | 2.00000 | + | 2.00000i | 0 | 5.76070 | + | 4.10052i | ||||||
73.3 | −0.366025 | − | 1.36603i | 0 | −1.73205 | + | 1.00000i | 0.477275 | − | 4.97717i | 0 | 2.62197 | + | 9.78534i | 2.00000 | + | 2.00000i | 0 | −6.97363 | + | 1.16980i | ||||||
73.4 | −0.366025 | − | 1.36603i | 0 | −1.73205 | + | 1.00000i | 0.591182 | + | 4.96493i | 0 | −1.80392 | − | 6.73232i | 2.00000 | + | 2.00000i | 0 | 6.56583 | − | 2.62486i | ||||||
73.5 | −0.366025 | − | 1.36603i | 0 | −1.73205 | + | 1.00000i | 4.80008 | − | 1.39971i | 0 | 2.39851 | + | 8.95134i | 2.00000 | + | 2.00000i | 0 | −3.66899 | − | 6.04471i | ||||||
73.6 | −0.366025 | − | 1.36603i | 0 | −1.73205 | + | 1.00000i | 4.93447 | − | 0.806874i | 0 | −1.58425 | − | 5.91251i | 2.00000 | + | 2.00000i | 0 | −2.90835 | − | 6.44527i | ||||||
127.1 | 1.36603 | − | 0.366025i | 0 | 1.73205 | − | 1.00000i | −4.54899 | − | 2.07525i | 0 | −9.78534 | + | 2.62197i | 2.00000 | − | 2.00000i | 0 | −6.97363 | − | 1.16980i | ||||||
127.2 | 1.36603 | − | 0.366025i | 0 | 1.73205 | − | 1.00000i | −3.61223 | + | 3.45714i | 0 | −8.95134 | + | 2.39851i | 2.00000 | − | 2.00000i | 0 | −3.66899 | + | 6.04471i | ||||||
127.3 | 1.36603 | − | 0.366025i | 0 | 1.73205 | − | 1.00000i | −3.16601 | + | 3.86994i | 0 | 5.91251 | − | 1.58425i | 2.00000 | − | 2.00000i | 0 | −2.90835 | + | 6.44527i | ||||||
127.4 | 1.36603 | − | 0.366025i | 0 | 1.73205 | − | 1.00000i | 0.0399035 | − | 4.99984i | 0 | 3.29458 | − | 0.882779i | 2.00000 | − | 2.00000i | 0 | −1.77556 | − | 6.84452i | ||||||
127.5 | 1.36603 | − | 0.366025i | 0 | 1.73205 | − | 1.00000i | 4.00416 | + | 2.99444i | 0 | 6.73232 | − | 1.80392i | 2.00000 | − | 2.00000i | 0 | 6.56583 | + | 2.62486i | ||||||
127.6 | 1.36603 | − | 0.366025i | 0 | 1.73205 | − | 1.00000i | 4.68508 | − | 1.74643i | 0 | −1.30080 | + | 0.348547i | 2.00000 | − | 2.00000i | 0 | 5.76070 | − | 4.10052i | ||||||
253.1 | 1.36603 | + | 0.366025i | 0 | 1.73205 | + | 1.00000i | −4.54899 | + | 2.07525i | 0 | −9.78534 | − | 2.62197i | 2.00000 | + | 2.00000i | 0 | −6.97363 | + | 1.16980i | ||||||
253.2 | 1.36603 | + | 0.366025i | 0 | 1.73205 | + | 1.00000i | −3.61223 | − | 3.45714i | 0 | −8.95134 | − | 2.39851i | 2.00000 | + | 2.00000i | 0 | −3.66899 | − | 6.04471i | ||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
9.c | even | 3 | 1 | inner |
45.k | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 270.3.l.b | 24 | |
3.b | odd | 2 | 1 | 90.3.k.a | ✓ | 24 | |
5.c | odd | 4 | 1 | inner | 270.3.l.b | 24 | |
9.c | even | 3 | 1 | inner | 270.3.l.b | 24 | |
9.c | even | 3 | 1 | 810.3.g.i | 12 | ||
9.d | odd | 6 | 1 | 90.3.k.a | ✓ | 24 | |
9.d | odd | 6 | 1 | 810.3.g.k | 12 | ||
15.e | even | 4 | 1 | 90.3.k.a | ✓ | 24 | |
45.k | odd | 12 | 1 | inner | 270.3.l.b | 24 | |
45.k | odd | 12 | 1 | 810.3.g.i | 12 | ||
45.l | even | 12 | 1 | 90.3.k.a | ✓ | 24 | |
45.l | even | 12 | 1 | 810.3.g.k | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
90.3.k.a | ✓ | 24 | 3.b | odd | 2 | 1 | |
90.3.k.a | ✓ | 24 | 9.d | odd | 6 | 1 | |
90.3.k.a | ✓ | 24 | 15.e | even | 4 | 1 | |
90.3.k.a | ✓ | 24 | 45.l | even | 12 | 1 | |
270.3.l.b | 24 | 1.a | even | 1 | 1 | trivial | |
270.3.l.b | 24 | 5.c | odd | 4 | 1 | inner | |
270.3.l.b | 24 | 9.c | even | 3 | 1 | inner | |
270.3.l.b | 24 | 45.k | odd | 12 | 1 | inner | |
810.3.g.i | 12 | 9.c | even | 3 | 1 | ||
810.3.g.i | 12 | 45.k | odd | 12 | 1 | ||
810.3.g.k | 12 | 9.d | odd | 6 | 1 | ||
810.3.g.k | 12 | 45.l | even | 12 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{24} + 6 T_{7}^{23} + 18 T_{7}^{22} + 1196 T_{7}^{21} - 3891 T_{7}^{20} - 86784 T_{7}^{19} + \cdots + 11\!\cdots\!81 \) acting on \(S_{3}^{\mathrm{new}}(270, [\chi])\).