Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [27,9,Mod(2,27)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(27, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 9, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("27.2");
S:= CuspForms(chi, 9);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 27.f (of order \(18\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(10.9992224717\) |
Analytic rank: | \(0\) |
Dimension: | \(138\) |
Relative dimension: | \(23\) over \(\Q(\zeta_{18})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −30.9899 | − | 5.46435i | −38.9279 | + | 71.0325i | 689.952 | + | 251.122i | −413.144 | − | 492.366i | 1594.52 | − | 1988.57i | −1524.27 | + | 554.788i | −13032.8 | − | 7524.48i | −3530.24 | − | 5530.29i | 10112.8 | + | 17515.9i |
2.2 | −29.3275 | − | 5.17124i | 80.7896 | − | 5.83408i | 592.802 | + | 215.762i | 641.275 | + | 764.242i | −2399.53 | − | 246.683i | 548.101 | − | 199.492i | −9667.37 | − | 5581.46i | 6492.93 | − | 942.667i | −14855.0 | − | 25729.5i |
2.3 | −24.3796 | − | 4.29877i | −14.9563 | − | 79.6072i | 335.322 | + | 122.047i | −12.1292 | − | 14.4550i | 22.4138 | + | 2005.08i | −3223.30 | + | 1173.19i | −2161.96 | − | 1248.21i | −6113.62 | + | 2381.25i | 233.565 | + | 404.547i |
2.4 | −23.0508 | − | 4.06447i | 55.5291 | − | 58.9705i | 274.257 | + | 99.8213i | −685.642 | − | 817.116i | −1519.67 | + | 1133.62i | 4384.71 | − | 1595.90i | −726.861 | − | 419.653i | −394.048 | − | 6549.16i | 12483.4 | + | 21621.9i |
2.5 | −21.5826 | − | 3.80559i | −80.3561 | − | 10.1929i | 210.764 | + | 76.7119i | 129.757 | + | 154.639i | 1695.50 | + | 525.792i | 1479.28 | − | 538.412i | 601.827 | + | 347.465i | 6353.21 | + | 1638.13i | −2212.01 | − | 3831.31i |
2.6 | −18.2801 | − | 3.22328i | 61.0463 | + | 53.2386i | 83.2125 | + | 30.2869i | −223.403 | − | 266.242i | −944.332 | − | 1169.98i | −1438.86 | + | 523.701i | 2691.76 | + | 1554.09i | 892.309 | + | 6500.04i | 3225.67 | + | 5587.03i |
2.7 | −18.1654 | − | 3.20306i | −0.948605 | + | 80.9944i | 79.1620 | + | 28.8126i | 462.775 | + | 551.514i | 276.662 | − | 1468.26i | 1642.82 | − | 597.939i | 2743.73 | + | 1584.09i | −6559.20 | − | 153.664i | −6639.98 | − | 11500.8i |
2.8 | −8.24786 | − | 1.45432i | 12.3580 | − | 80.0517i | −174.649 | − | 63.5671i | 723.153 | + | 861.820i | −218.348 | + | 642.283i | 2191.55 | − | 797.660i | 3204.82 | + | 1850.30i | −6255.56 | − | 1978.56i | −4711.10 | − | 8159.87i |
2.9 | −7.92414 | − | 1.39724i | −47.7313 | + | 65.4425i | −179.722 | − | 65.4133i | −625.377 | − | 745.295i | 469.668 | − | 451.883i | 845.976 | − | 307.910i | 3116.64 | + | 1799.40i | −2004.44 | − | 6247.31i | 3914.22 | + | 6779.62i |
2.10 | −7.66670 | − | 1.35185i | 72.7671 | − | 35.5802i | −183.611 | − | 66.8288i | −24.0534 | − | 28.6657i | −605.982 | + | 174.413i | −2598.90 | + | 945.921i | 3043.29 | + | 1757.05i | 4029.09 | − | 5178.14i | 145.659 | + | 252.288i |
2.11 | −3.24198 | − | 0.571649i | −71.7460 | + | 37.5966i | −230.378 | − | 83.8506i | 387.667 | + | 462.003i | 254.092 | − | 80.8741i | −3862.15 | + | 1405.71i | 1428.79 | + | 824.913i | 3733.99 | − | 5394.82i | −992.706 | − | 1719.42i |
2.12 | −2.46646 | − | 0.434904i | −52.6972 | − | 61.5143i | −234.667 | − | 85.4118i | −411.949 | − | 490.942i | 103.223 | + | 174.641i | 243.334 | − | 88.5664i | 1096.91 | + | 633.301i | −1007.01 | + | 6483.26i | 802.546 | + | 1390.05i |
2.13 | 1.99728 | + | 0.352174i | 77.6955 | + | 22.9000i | −236.696 | − | 86.1504i | 67.5893 | + | 80.5497i | 147.115 | + | 73.1000i | 3385.55 | − | 1232.24i | −892.041 | − | 515.020i | 5512.18 | + | 3558.45i | 106.627 | + | 184.683i |
2.14 | 7.08460 | + | 1.24921i | 14.6630 | + | 79.6618i | −191.930 | − | 69.8569i | 349.559 | + | 416.588i | 4.36750 | + | 582.689i | 22.4234 | − | 8.16143i | −2867.39 | − | 1655.49i | −6130.99 | + | 2336.16i | 1956.08 | + | 3388.03i |
2.15 | 13.3375 | + | 2.35175i | 34.9288 | + | 73.0820i | −68.2042 | − | 24.8243i | −636.805 | − | 758.914i | 293.990 | + | 1056.87i | −2502.00 | + | 910.653i | −3853.85 | − | 2225.02i | −4120.96 | + | 5105.33i | −6708.58 | − | 11619.6i |
2.16 | 14.0349 | + | 2.47473i | 37.9905 | − | 71.5383i | −49.7072 | − | 18.0920i | −245.194 | − | 292.211i | 710.230 | − | 910.016i | −336.792 | + | 122.582i | −3812.44 | − | 2201.11i | −3674.45 | − | 5435.54i | −2718.13 | − | 4707.95i |
2.17 | 14.2805 | + | 2.51803i | −64.8590 | − | 48.5213i | −42.9702 | − | 15.6399i | 501.169 | + | 597.270i | −804.038 | − | 856.223i | −473.173 | + | 172.221i | −3789.11 | − | 2187.64i | 1852.37 | + | 6294.08i | 5652.98 | + | 9791.25i |
2.18 | 14.5831 | + | 2.57139i | −73.7172 | + | 33.5675i | −34.5070 | − | 12.5595i | −51.5257 | − | 61.4059i | −1161.34 | + | 299.961i | 3577.75 | − | 1302.19i | −3753.91 | − | 2167.32i | 4307.45 | − | 4949.00i | −593.505 | − | 1027.98i |
2.19 | 21.0020 | + | 3.70323i | 80.9924 | + | 1.11237i | 186.811 | + | 67.9935i | 674.968 | + | 804.395i | 1696.89 | + | 323.295i | −2905.52 | + | 1057.52i | −1056.43 | − | 609.927i | 6558.53 | + | 180.188i | 11196.8 | + | 19393.5i |
2.20 | 25.1387 | + | 4.43262i | −80.5339 | − | 8.67746i | 371.742 | + | 135.303i | −546.503 | − | 651.297i | −1986.05 | − | 575.116i | −3663.86 | + | 1333.53i | 3086.08 | + | 1781.75i | 6410.40 | + | 1397.66i | −10851.4 | − | 18795.2i |
See next 80 embeddings (of 138 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.f | odd | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 27.9.f.a | ✓ | 138 |
3.b | odd | 2 | 1 | 81.9.f.a | 138 | ||
27.e | even | 9 | 1 | 81.9.f.a | 138 | ||
27.f | odd | 18 | 1 | inner | 27.9.f.a | ✓ | 138 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.9.f.a | ✓ | 138 | 1.a | even | 1 | 1 | trivial |
27.9.f.a | ✓ | 138 | 27.f | odd | 18 | 1 | inner |
81.9.f.a | 138 | 3.b | odd | 2 | 1 | ||
81.9.f.a | 138 | 27.e | even | 9 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{9}^{\mathrm{new}}(27, [\chi])\).