Properties

Label 27.16.a.b
Level $27$
Weight $16$
Character orbit 27.a
Self dual yes
Analytic conductor $38.527$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,16,Mod(1,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.1"); S:= CuspForms(chi, 16); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 16, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-273] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(38.5272463770\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 3470x^{3} - 72162x^{2} - 343807x + 342288 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{14}\cdot 5\cdot 71 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 55) q^{2} + ( - \beta_{2} - 70 \beta_1 + 19109) q^{4} + ( - \beta_{3} - 2 \beta_{2} + \cdots + 3393) q^{5} + ( - \beta_{4} + 2 \beta_{3} + \cdots + 431966) q^{7} + (3 \beta_{4} + 13 \beta_{3} + \cdots - 2669692) q^{8}+ \cdots + ( - 51944604 \beta_{4} + \cdots + 186525482918734) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 273 q^{2} + 95405 q^{4} + 16725 q^{5} + 2153539 q^{7} - 13315731 q^{8} - 30467925 q^{10} - 115943493 q^{11} + 65408428 q^{13} - 885109227 q^{14} + 1597063649 q^{16} - 1975444272 q^{17} - 263500334 q^{19}+ \cdots + 930960542438550 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 3470x^{3} - 72162x^{2} - 343807x + 342288 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 153\nu^{4} - 1509\nu^{3} - 509991\nu^{2} - 7510725\nu - 15417776 ) / 76960 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 3501\nu^{4} + 155607\nu^{3} - 16205907\nu^{2} - 703403145\nu - 2865538992 ) / 76960 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 25983\nu^{4} - 340467\nu^{3} - 84777729\nu^{2} - 914713875\nu - 1313859920 ) / 15392 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2294739\nu^{4} + 30957687\nu^{3} + 7648967853\nu^{2} + 77034917655\nu - 149155163152 ) / 76960 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} + 223\beta_{3} + 450\beta_{2} - 184652\beta _1 + 736465 ) / 1656288 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 44\beta_{4} + 866\beta_{3} - 9\beta_{2} - 75205\beta _1 + 143796218 ) / 103518 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 19591\beta_{4} + 953977\beta_{3} + 1924974\beta_{2} - 560255060\beta _1 + 78836545783 ) / 1656288 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 323617\beta_{4} + 8317711\beta_{3} + 5074488\beta_{2} - 2220988010\beta _1 + 1081199708557 ) / 207036 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.841091
68.7647
−14.4753
−9.33531
−43.7952
−342.118 0 84276.6 267526. 0 2.26179e6 −1.76220e7 0 −9.15253e7
1.2 −225.004 0 17858.9 −338163. 0 626121. 3.35462e6 0 7.60882e7
1.3 −84.4187 0 −25641.5 151347. 0 −2.00754e6 4.93085e6 0 −1.27765e7
1.4 109.269 0 −20828.4 −93591.2 0 3.01703e6 −5.85640e6 0 −1.02266e7
1.5 269.272 0 39739.4 29607.0 0 −1.74386e6 1.87720e6 0 7.97233e6
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 27.16.a.b 5
3.b odd 2 1 27.16.a.c yes 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.16.a.b 5 1.a even 1 1 trivial
27.16.a.c yes 5 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{5} + 273T_{2}^{4} - 92358T_{2}^{3} - 21593520T_{2}^{2} + 1213667712T_{2} + 191201762304 \) acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(27))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + \cdots + 191201762304 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} + \cdots - 37\!\cdots\!25 \) Copy content Toggle raw display
$7$ \( T^{5} + \cdots - 14\!\cdots\!75 \) Copy content Toggle raw display
$11$ \( T^{5} + \cdots + 67\!\cdots\!25 \) Copy content Toggle raw display
$13$ \( T^{5} + \cdots - 75\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{5} + \cdots - 47\!\cdots\!52 \) Copy content Toggle raw display
$19$ \( T^{5} + \cdots + 37\!\cdots\!24 \) Copy content Toggle raw display
$23$ \( T^{5} + \cdots + 24\!\cdots\!56 \) Copy content Toggle raw display
$29$ \( T^{5} + \cdots - 44\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{5} + \cdots - 19\!\cdots\!21 \) Copy content Toggle raw display
$37$ \( T^{5} + \cdots - 38\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{5} + \cdots + 32\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{5} + \cdots - 72\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{5} + \cdots - 76\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{5} + \cdots + 19\!\cdots\!81 \) Copy content Toggle raw display
$59$ \( T^{5} + \cdots + 48\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{5} + \cdots - 10\!\cdots\!08 \) Copy content Toggle raw display
$67$ \( T^{5} + \cdots - 44\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{5} + \cdots + 60\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{5} + \cdots + 25\!\cdots\!75 \) Copy content Toggle raw display
$79$ \( T^{5} + \cdots + 27\!\cdots\!28 \) Copy content Toggle raw display
$83$ \( T^{5} + \cdots + 19\!\cdots\!21 \) Copy content Toggle raw display
$89$ \( T^{5} + \cdots + 16\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{5} + \cdots - 34\!\cdots\!75 \) Copy content Toggle raw display
show more
show less