Properties

Label 2-3e3-1.1-c15-0-16
Degree $2$
Conductor $27$
Sign $-1$
Analytic cond. $38.5272$
Root an. cond. $6.20703$
Motivic weight $15$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 109.·2-s − 2.08e4·4-s − 9.35e4·5-s + 3.01e6·7-s − 5.85e6·8-s − 1.02e7·10-s + 8.72e7·11-s + 5.76e7·13-s + 3.29e8·14-s + 4.25e7·16-s − 1.85e9·17-s − 6.88e9·19-s + 1.94e9·20-s + 9.52e9·22-s − 6.99e9·23-s − 2.17e10·25-s + 6.30e9·26-s − 6.28e10·28-s − 9.15e10·29-s − 1.80e10·31-s + 1.96e11·32-s − 2.02e11·34-s − 2.82e11·35-s + 6.30e11·37-s − 7.51e11·38-s + 5.48e11·40-s − 1.88e12·41-s + ⋯
L(s)  = 1  + 0.603·2-s − 0.635·4-s − 0.535·5-s + 1.38·7-s − 0.987·8-s − 0.323·10-s + 1.34·11-s + 0.254·13-s + 0.835·14-s + 0.0396·16-s − 1.09·17-s − 1.76·19-s + 0.340·20-s + 0.814·22-s − 0.428·23-s − 0.712·25-s + 0.153·26-s − 0.880·28-s − 0.985·29-s − 0.117·31-s + 1.01·32-s − 0.661·34-s − 0.741·35-s + 1.09·37-s − 1.06·38-s + 0.528·40-s − 1.51·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(16-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+15/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $-1$
Analytic conductor: \(38.5272\)
Root analytic conductor: \(6.20703\)
Motivic weight: \(15\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 27,\ (\ :15/2),\ -1)\)

Particular Values

\(L(8)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{17}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 - 109.T + 3.27e4T^{2} \)
5 \( 1 + 9.35e4T + 3.05e10T^{2} \)
7 \( 1 - 3.01e6T + 4.74e12T^{2} \)
11 \( 1 - 8.72e7T + 4.17e15T^{2} \)
13 \( 1 - 5.76e7T + 5.11e16T^{2} \)
17 \( 1 + 1.85e9T + 2.86e18T^{2} \)
19 \( 1 + 6.88e9T + 1.51e19T^{2} \)
23 \( 1 + 6.99e9T + 2.66e20T^{2} \)
29 \( 1 + 9.15e10T + 8.62e21T^{2} \)
31 \( 1 + 1.80e10T + 2.34e22T^{2} \)
37 \( 1 - 6.30e11T + 3.33e23T^{2} \)
41 \( 1 + 1.88e12T + 1.55e24T^{2} \)
43 \( 1 - 4.43e10T + 3.17e24T^{2} \)
47 \( 1 - 5.73e11T + 1.20e25T^{2} \)
53 \( 1 + 1.48e13T + 7.31e25T^{2} \)
59 \( 1 + 1.50e13T + 3.65e26T^{2} \)
61 \( 1 - 8.84e12T + 6.02e26T^{2} \)
67 \( 1 + 7.14e13T + 2.46e27T^{2} \)
71 \( 1 + 9.50e13T + 5.87e27T^{2} \)
73 \( 1 - 8.27e13T + 8.90e27T^{2} \)
79 \( 1 - 1.40e14T + 2.91e28T^{2} \)
83 \( 1 - 1.74e14T + 6.11e28T^{2} \)
89 \( 1 - 2.92e14T + 1.74e29T^{2} \)
97 \( 1 + 2.86e14T + 6.33e29T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.38317723443836339742690917711, −12.01681359676173459543952534908, −11.07283984775368171854660038128, −9.101612406957577577119720441628, −8.121747211098616479411865855620, −6.27104159198215689424811328293, −4.61390790197761290057435125072, −3.91951751823806493740027509424, −1.75935138748033260592014075180, 0, 1.75935138748033260592014075180, 3.91951751823806493740027509424, 4.61390790197761290057435125072, 6.27104159198215689424811328293, 8.121747211098616479411865855620, 9.101612406957577577119720441628, 11.07283984775368171854660038128, 12.01681359676173459543952534908, 13.38317723443836339742690917711

Graph of the $Z$-function along the critical line