| L(s) = 1 | + 109.·2-s − 2.08e4·4-s − 9.35e4·5-s + 3.01e6·7-s − 5.85e6·8-s − 1.02e7·10-s + 8.72e7·11-s + 5.76e7·13-s + 3.29e8·14-s + 4.25e7·16-s − 1.85e9·17-s − 6.88e9·19-s + 1.94e9·20-s + 9.52e9·22-s − 6.99e9·23-s − 2.17e10·25-s + 6.30e9·26-s − 6.28e10·28-s − 9.15e10·29-s − 1.80e10·31-s + 1.96e11·32-s − 2.02e11·34-s − 2.82e11·35-s + 6.30e11·37-s − 7.51e11·38-s + 5.48e11·40-s − 1.88e12·41-s + ⋯ |
| L(s) = 1 | + 0.603·2-s − 0.635·4-s − 0.535·5-s + 1.38·7-s − 0.987·8-s − 0.323·10-s + 1.34·11-s + 0.254·13-s + 0.835·14-s + 0.0396·16-s − 1.09·17-s − 1.76·19-s + 0.340·20-s + 0.814·22-s − 0.428·23-s − 0.712·25-s + 0.153·26-s − 0.880·28-s − 0.985·29-s − 0.117·31-s + 1.01·32-s − 0.661·34-s − 0.741·35-s + 1.09·37-s − 1.06·38-s + 0.528·40-s − 1.51·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(16-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+15/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(8)\) |
\(=\) |
\(0\) |
| \(L(\frac12)\) |
\(=\) |
\(0\) |
| \(L(\frac{17}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| good | 2 | \( 1 - 109.T + 3.27e4T^{2} \) |
| 5 | \( 1 + 9.35e4T + 3.05e10T^{2} \) |
| 7 | \( 1 - 3.01e6T + 4.74e12T^{2} \) |
| 11 | \( 1 - 8.72e7T + 4.17e15T^{2} \) |
| 13 | \( 1 - 5.76e7T + 5.11e16T^{2} \) |
| 17 | \( 1 + 1.85e9T + 2.86e18T^{2} \) |
| 19 | \( 1 + 6.88e9T + 1.51e19T^{2} \) |
| 23 | \( 1 + 6.99e9T + 2.66e20T^{2} \) |
| 29 | \( 1 + 9.15e10T + 8.62e21T^{2} \) |
| 31 | \( 1 + 1.80e10T + 2.34e22T^{2} \) |
| 37 | \( 1 - 6.30e11T + 3.33e23T^{2} \) |
| 41 | \( 1 + 1.88e12T + 1.55e24T^{2} \) |
| 43 | \( 1 - 4.43e10T + 3.17e24T^{2} \) |
| 47 | \( 1 - 5.73e11T + 1.20e25T^{2} \) |
| 53 | \( 1 + 1.48e13T + 7.31e25T^{2} \) |
| 59 | \( 1 + 1.50e13T + 3.65e26T^{2} \) |
| 61 | \( 1 - 8.84e12T + 6.02e26T^{2} \) |
| 67 | \( 1 + 7.14e13T + 2.46e27T^{2} \) |
| 71 | \( 1 + 9.50e13T + 5.87e27T^{2} \) |
| 73 | \( 1 - 8.27e13T + 8.90e27T^{2} \) |
| 79 | \( 1 - 1.40e14T + 2.91e28T^{2} \) |
| 83 | \( 1 - 1.74e14T + 6.11e28T^{2} \) |
| 89 | \( 1 - 2.92e14T + 1.74e29T^{2} \) |
| 97 | \( 1 + 2.86e14T + 6.33e29T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.38317723443836339742690917711, −12.01681359676173459543952534908, −11.07283984775368171854660038128, −9.101612406957577577119720441628, −8.121747211098616479411865855620, −6.27104159198215689424811328293, −4.61390790197761290057435125072, −3.91951751823806493740027509424, −1.75935138748033260592014075180, 0,
1.75935138748033260592014075180, 3.91951751823806493740027509424, 4.61390790197761290057435125072, 6.27104159198215689424811328293, 8.121747211098616479411865855620, 9.101612406957577577119720441628, 11.07283984775368171854660038128, 12.01681359676173459543952534908, 13.38317723443836339742690917711