Properties

Label 27.15.d.a.8.3
Level $27$
Weight $15$
Character 27.8
Analytic conductor $33.569$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,15,Mod(8,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.8"); S:= CuspForms(chi, 15); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 15, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 15 \)
Character orbit: \([\chi]\) \(=\) 27.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.5688214010\)
Analytic rank: \(0\)
Dimension: \(26\)
Relative dimension: \(13\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 8.3
Character \(\chi\) \(=\) 27.8
Dual form 27.15.d.a.17.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-129.548 - 74.7948i) q^{2} +(2996.54 + 5190.15i) q^{4} +(-31950.1 + 18446.4i) q^{5} +(153772. - 266342. i) q^{7} +1.55438e6i q^{8} +5.51879e6 q^{10} +(-8.07458e6 - 4.66186e6i) q^{11} +(2.46419e7 + 4.26810e7i) q^{13} +(-3.98420e7 + 2.30028e7i) q^{14} +(1.65355e8 - 2.86402e8i) q^{16} -1.60558e8i q^{17} +1.10366e9 q^{19} +(-1.91479e8 - 1.10551e8i) q^{20} +(6.97366e8 + 1.20787e9i) q^{22} +(5.63572e9 - 3.25379e9i) q^{23} +(-2.37122e9 + 4.10707e9i) q^{25} -7.37234e9i q^{26} +1.84314e9 q^{28} +(-5.84016e9 - 3.37182e9i) q^{29} +(-5.34495e9 - 9.25772e9i) q^{31} +(-2.07879e10 + 1.20019e10i) q^{32} +(-1.20089e10 + 2.08000e10i) q^{34} +1.13462e10i q^{35} -1.45967e11 q^{37} +(-1.42978e11 - 8.25481e10i) q^{38} +(-2.86727e10 - 4.96625e10i) q^{40} +(-1.88610e11 + 1.08894e11i) q^{41} +(-7.02322e10 + 1.21646e11i) q^{43} -5.58777e10i q^{44} -9.73465e11 q^{46} +(-4.86126e11 - 2.80665e11i) q^{47} +(2.91820e11 + 5.05446e11i) q^{49} +(6.14375e11 - 3.54710e11i) q^{50} +(-1.47680e11 + 2.55790e11i) q^{52} -2.07734e12i q^{53} +3.43979e11 q^{55} +(4.13995e11 + 2.39020e11i) q^{56} +(5.04389e11 + 8.73628e11i) q^{58} +(-1.90853e12 + 1.10189e12i) q^{59} +(2.01361e12 - 3.48768e12i) q^{61} +1.59910e12i q^{62} -1.82762e12 q^{64} +(-1.57462e12 - 9.09108e11i) q^{65} +(1.82254e12 + 3.15674e12i) q^{67} +(8.33320e11 - 4.81118e11i) q^{68} +(8.48638e11 - 1.46988e12i) q^{70} +4.60775e12i q^{71} -1.45384e13 q^{73} +(1.89097e13 + 1.09175e13i) q^{74} +(3.30716e12 + 5.72817e12i) q^{76} +(-2.48330e12 + 1.43373e12i) q^{77} +(1.41356e13 - 2.44835e13i) q^{79} +1.22008e13i q^{80} +3.25789e13 q^{82} +(-3.75647e12 - 2.16880e12i) q^{83} +(2.96172e12 + 5.12985e12i) q^{85} +(1.81969e13 - 1.05060e13i) q^{86} +(7.24628e12 - 1.25509e13i) q^{88} -1.98593e13i q^{89} +1.51570e13 q^{91} +(3.37753e13 + 1.95002e13i) q^{92} +(4.19846e13 + 7.27195e13i) q^{94} +(-3.52621e13 + 2.03586e13i) q^{95} +(8.91638e12 - 1.54436e13i) q^{97} -8.73064e13i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 3 q^{2} + 98303 q^{4} + 107994 q^{5} - 146330 q^{7} - 32772 q^{10} + 15978711 q^{11} - 23281436 q^{13} + 349442850 q^{14} - 671072257 q^{16} + 195706222 q^{19} - 2822935854 q^{20} - 204235521 q^{22}+ \cdots + 7621755375583 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −129.548 74.7948i −1.01210 0.584335i −0.100292 0.994958i \(-0.531978\pi\)
−0.911805 + 0.410623i \(0.865311\pi\)
\(3\) 0 0
\(4\) 2996.54 + 5190.15i 0.182894 + 0.316782i
\(5\) −31950.1 + 18446.4i −0.408962 + 0.236114i −0.690344 0.723482i \(-0.742541\pi\)
0.281382 + 0.959596i \(0.409207\pi\)
\(6\) 0 0
\(7\) 153772. 266342.i 0.186721 0.323410i −0.757434 0.652911i \(-0.773547\pi\)
0.944155 + 0.329502i \(0.106881\pi\)
\(8\) 1.55438e6i 0.741184i
\(9\) 0 0
\(10\) 5.51879e6 0.551879
\(11\) −8.07458e6 4.66186e6i −0.414354 0.239227i 0.278305 0.960493i \(-0.410227\pi\)
−0.692659 + 0.721266i \(0.743561\pi\)
\(12\) 0 0
\(13\) 2.46419e7 + 4.26810e7i 0.392708 + 0.680191i 0.992806 0.119736i \(-0.0382049\pi\)
−0.600097 + 0.799927i \(0.704872\pi\)
\(14\) −3.98420e7 + 2.30028e7i −0.377959 + 0.218215i
\(15\) 0 0
\(16\) 1.65355e8 2.86402e8i 0.615994 1.06693i
\(17\) 1.60558e8i 0.391281i −0.980676 0.195641i \(-0.937321\pi\)
0.980676 0.195641i \(-0.0626786\pi\)
\(18\) 0 0
\(19\) 1.10366e9 1.23470 0.617348 0.786690i \(-0.288207\pi\)
0.617348 + 0.786690i \(0.288207\pi\)
\(20\) −1.91479e8 1.10551e8i −0.149593 0.0863678i
\(21\) 0 0
\(22\) 6.97366e8 + 1.20787e9i 0.279577 + 0.484242i
\(23\) 5.63572e9 3.25379e9i 1.65522 0.955639i 0.680338 0.732898i \(-0.261833\pi\)
0.974878 0.222741i \(-0.0715005\pi\)
\(24\) 0 0
\(25\) −2.37122e9 + 4.10707e9i −0.388500 + 0.672902i
\(26\) 7.37234e9i 0.917892i
\(27\) 0 0
\(28\) 1.84314e9 0.136600
\(29\) −5.84016e9 3.37182e9i −0.338562 0.195469i 0.321074 0.947054i \(-0.395956\pi\)
−0.659636 + 0.751585i \(0.729290\pi\)
\(30\) 0 0
\(31\) −5.34495e9 9.25772e9i −0.194273 0.336490i 0.752389 0.658719i \(-0.228901\pi\)
−0.946662 + 0.322229i \(0.895568\pi\)
\(32\) −2.07879e10 + 1.20019e10i −0.605007 + 0.349301i
\(33\) 0 0
\(34\) −1.20089e10 + 2.08000e10i −0.228639 + 0.396015i
\(35\) 1.13462e10i 0.176350i
\(36\) 0 0
\(37\) −1.45967e11 −1.53759 −0.768796 0.639494i \(-0.779144\pi\)
−0.768796 + 0.639494i \(0.779144\pi\)
\(38\) −1.42978e11 8.25481e10i −1.24963 0.721476i
\(39\) 0 0
\(40\) −2.86727e10 4.96625e10i −0.175004 0.303116i
\(41\) −1.88610e11 + 1.08894e11i −0.968453 + 0.559137i −0.898764 0.438432i \(-0.855534\pi\)
−0.0696888 + 0.997569i \(0.522201\pi\)
\(42\) 0 0
\(43\) −7.02322e10 + 1.21646e11i −0.258379 + 0.447525i −0.965808 0.259259i \(-0.916522\pi\)
0.707429 + 0.706785i \(0.249855\pi\)
\(44\) 5.58777e10i 0.175013i
\(45\) 0 0
\(46\) −9.73465e11 −2.23365
\(47\) −4.86126e11 2.80665e11i −0.959542 0.553992i −0.0635100 0.997981i \(-0.520229\pi\)
−0.896032 + 0.443989i \(0.853563\pi\)
\(48\) 0 0
\(49\) 2.91820e11 + 5.05446e11i 0.430271 + 0.745251i
\(50\) 6.14375e11 3.54710e11i 0.786400 0.454028i
\(51\) 0 0
\(52\) −1.47680e11 + 2.55790e11i −0.143648 + 0.248806i
\(53\) 2.07734e12i 1.76838i −0.467128 0.884190i \(-0.654711\pi\)
0.467128 0.884190i \(-0.345289\pi\)
\(54\) 0 0
\(55\) 3.43979e11 0.225940
\(56\) 4.13995e11 + 2.39020e11i 0.239706 + 0.138394i
\(57\) 0 0
\(58\) 5.04389e11 + 8.73628e11i 0.228439 + 0.395668i
\(59\) −1.90853e12 + 1.10189e12i −0.766895 + 0.442767i −0.831766 0.555127i \(-0.812670\pi\)
0.0648709 + 0.997894i \(0.479336\pi\)
\(60\) 0 0
\(61\) 2.01361e12 3.48768e12i 0.640718 1.10976i −0.344555 0.938766i \(-0.611970\pi\)
0.985273 0.170990i \(-0.0546965\pi\)
\(62\) 1.59910e12i 0.454081i
\(63\) 0 0
\(64\) −1.82762e12 −0.415553
\(65\) −1.57462e12 9.09108e11i −0.321205 0.185448i
\(66\) 0 0
\(67\) 1.82254e12 + 3.15674e12i 0.300714 + 0.520852i 0.976298 0.216431i \(-0.0694416\pi\)
−0.675584 + 0.737283i \(0.736108\pi\)
\(68\) 8.33320e11 4.81118e11i 0.123951 0.0715630i
\(69\) 0 0
\(70\) 8.48638e11 1.46988e12i 0.103047 0.178483i
\(71\) 4.60775e12i 0.506618i 0.967385 + 0.253309i \(0.0815189\pi\)
−0.967385 + 0.253309i \(0.918481\pi\)
\(72\) 0 0
\(73\) −1.45384e13 −1.31601 −0.658003 0.753016i \(-0.728598\pi\)
−0.658003 + 0.753016i \(0.728598\pi\)
\(74\) 1.89097e13 + 1.09175e13i 1.55619 + 0.898469i
\(75\) 0 0
\(76\) 3.30716e12 + 5.72817e12i 0.225819 + 0.391130i
\(77\) −2.48330e12 + 1.43373e12i −0.154737 + 0.0893373i
\(78\) 0 0
\(79\) 1.41356e13 2.44835e13i 0.736077 1.27492i −0.218171 0.975910i \(-0.570009\pi\)
0.954249 0.299013i \(-0.0966575\pi\)
\(80\) 1.22008e13i 0.581779i
\(81\) 0 0
\(82\) 3.25789e13 1.30689
\(83\) −3.75647e12 2.16880e12i −0.138431 0.0799231i 0.429185 0.903217i \(-0.358801\pi\)
−0.567616 + 0.823293i \(0.692134\pi\)
\(84\) 0 0
\(85\) 2.96172e12 + 5.12985e12i 0.0923871 + 0.160019i
\(86\) 1.81969e13 1.05060e13i 0.523009 0.301959i
\(87\) 0 0
\(88\) 7.24628e12 1.25509e13i 0.177311 0.307112i
\(89\) 1.98593e13i 0.448986i −0.974476 0.224493i \(-0.927927\pi\)
0.974476 0.224493i \(-0.0720726\pi\)
\(90\) 0 0
\(91\) 1.51570e13 0.293307
\(92\) 3.37753e13 + 1.95002e13i 0.605458 + 0.349562i
\(93\) 0 0
\(94\) 4.19846e13 + 7.27195e13i 0.647433 + 1.12139i
\(95\) −3.52621e13 + 2.03586e13i −0.504944 + 0.291529i
\(96\) 0 0
\(97\) 8.91638e12 1.54436e13i 0.110354 0.191138i −0.805559 0.592515i \(-0.798135\pi\)
0.915913 + 0.401377i \(0.131468\pi\)
\(98\) 8.73064e13i 1.00569i
\(99\) 0 0
\(100\) −2.84218e13 −0.284218
\(101\) 1.16665e12 + 6.73563e11i 0.0108815 + 0.00628245i 0.505431 0.862867i \(-0.331334\pi\)
−0.494549 + 0.869150i \(0.664667\pi\)
\(102\) 0 0
\(103\) −1.12147e14 1.94245e14i −0.911859 1.57939i −0.811436 0.584441i \(-0.801314\pi\)
−0.100423 0.994945i \(-0.532020\pi\)
\(104\) −6.63422e13 + 3.83027e13i −0.504146 + 0.291069i
\(105\) 0 0
\(106\) −1.55374e14 + 2.69116e14i −1.03333 + 1.78977i
\(107\) 1.28823e14i 0.802244i −0.916025 0.401122i \(-0.868620\pi\)
0.916025 0.401122i \(-0.131380\pi\)
\(108\) 0 0
\(109\) −2.51082e14 −1.37351 −0.686753 0.726891i \(-0.740965\pi\)
−0.686753 + 0.726891i \(0.740965\pi\)
\(110\) −4.45619e13 2.57278e13i −0.228673 0.132024i
\(111\) 0 0
\(112\) −5.08539e13 8.80816e13i −0.230037 0.398436i
\(113\) −2.29159e14 + 1.32305e14i −0.974063 + 0.562376i −0.900473 0.434913i \(-0.856779\pi\)
−0.0735906 + 0.997289i \(0.523446\pi\)
\(114\) 0 0
\(115\) −1.20041e14 + 2.07918e14i −0.451280 + 0.781640i
\(116\) 4.04151e13i 0.143001i
\(117\) 0 0
\(118\) 3.29664e14 1.03490
\(119\) −4.27633e13 2.46894e13i −0.126544 0.0730603i
\(120\) 0 0
\(121\) −1.46409e14 2.53588e14i −0.385541 0.667776i
\(122\) −5.21721e14 + 3.01215e14i −1.29694 + 0.748787i
\(123\) 0 0
\(124\) 3.20327e13 5.54822e13i 0.0710626 0.123084i
\(125\) 4.00138e14i 0.839150i
\(126\) 0 0
\(127\) 3.84344e14 0.721264 0.360632 0.932708i \(-0.382561\pi\)
0.360632 + 0.932708i \(0.382561\pi\)
\(128\) 5.77354e14 + 3.33335e14i 1.02559 + 0.592123i
\(129\) 0 0
\(130\) 1.35993e14 + 2.35547e14i 0.216727 + 0.375383i
\(131\) 6.99904e14 4.04090e14i 1.05716 0.610350i 0.132512 0.991181i \(-0.457696\pi\)
0.924644 + 0.380832i \(0.124362\pi\)
\(132\) 0 0
\(133\) 1.69713e14 2.93951e14i 0.230543 0.399313i
\(134\) 5.45267e14i 0.702871i
\(135\) 0 0
\(136\) 2.49567e14 0.290012
\(137\) 7.42632e14 + 4.28759e14i 0.819841 + 0.473335i 0.850362 0.526199i \(-0.176383\pi\)
−0.0305207 + 0.999534i \(0.509717\pi\)
\(138\) 0 0
\(139\) 4.71586e14 + 8.16811e14i 0.470389 + 0.814738i 0.999427 0.0338608i \(-0.0107803\pi\)
−0.529038 + 0.848598i \(0.677447\pi\)
\(140\) −5.88885e13 + 3.39993e13i −0.0558643 + 0.0322533i
\(141\) 0 0
\(142\) 3.44636e14 5.96927e14i 0.296034 0.512746i
\(143\) 4.59508e14i 0.375786i
\(144\) 0 0
\(145\) 2.48792e14 0.184612
\(146\) 1.88343e15 + 1.08740e15i 1.33193 + 0.768987i
\(147\) 0 0
\(148\) −4.37394e14 7.57589e14i −0.281217 0.487081i
\(149\) −1.26645e15 + 7.31183e14i −0.776753 + 0.448458i −0.835278 0.549827i \(-0.814693\pi\)
0.0585254 + 0.998286i \(0.481360\pi\)
\(150\) 0 0
\(151\) 2.17909e14 3.77430e14i 0.121741 0.210862i −0.798713 0.601712i \(-0.794486\pi\)
0.920454 + 0.390850i \(0.127819\pi\)
\(152\) 1.71550e15i 0.915138i
\(153\) 0 0
\(154\) 4.28943e14 0.208812
\(155\) 3.41544e14 + 1.97190e14i 0.158900 + 0.0917411i
\(156\) 0 0
\(157\) 2.39012e14 + 4.13981e14i 0.101653 + 0.176069i 0.912366 0.409376i \(-0.134253\pi\)
−0.810713 + 0.585444i \(0.800920\pi\)
\(158\) −3.66248e15 + 2.11453e15i −1.48996 + 0.860231i
\(159\) 0 0
\(160\) 4.42784e14 7.66924e14i 0.164950 0.285701i
\(161\) 2.00137e15i 0.713750i
\(162\) 0 0
\(163\) −3.72556e15 −1.21865 −0.609325 0.792921i \(-0.708559\pi\)
−0.609325 + 0.792921i \(0.708559\pi\)
\(164\) −1.13036e15 6.52611e14i −0.354249 0.204526i
\(165\) 0 0
\(166\) 3.24430e14 + 5.61929e14i 0.0934037 + 0.161780i
\(167\) 2.33686e15 1.34919e15i 0.645086 0.372441i −0.141485 0.989940i \(-0.545188\pi\)
0.786571 + 0.617500i \(0.211854\pi\)
\(168\) 0 0
\(169\) 7.54246e14 1.30639e15i 0.191560 0.331792i
\(170\) 8.86085e14i 0.215940i
\(171\) 0 0
\(172\) −8.41813e14 −0.189024
\(173\) 2.06128e15 + 1.19008e15i 0.444441 + 0.256598i 0.705480 0.708730i \(-0.250732\pi\)
−0.261039 + 0.965328i \(0.584065\pi\)
\(174\) 0 0
\(175\) 7.29256e14 + 1.26311e15i 0.145082 + 0.251289i
\(176\) −2.67034e15 + 1.54172e15i −0.510478 + 0.294725i
\(177\) 0 0
\(178\) −1.48537e15 + 2.57274e15i −0.262358 + 0.454418i
\(179\) 9.72633e15i 1.65188i −0.563761 0.825938i \(-0.690646\pi\)
0.563761 0.825938i \(-0.309354\pi\)
\(180\) 0 0
\(181\) −7.95145e15 −1.24939 −0.624693 0.780871i \(-0.714776\pi\)
−0.624693 + 0.780871i \(0.714776\pi\)
\(182\) −1.96356e15 1.13366e15i −0.296855 0.171389i
\(183\) 0 0
\(184\) 5.05760e15 + 8.76003e15i 0.708305 + 1.22682i
\(185\) 4.66365e15 2.69256e15i 0.628817 0.363047i
\(186\) 0 0
\(187\) −7.48499e14 + 1.29644e15i −0.0936052 + 0.162129i
\(188\) 3.36409e15i 0.405287i
\(189\) 0 0
\(190\) 6.09087e15 0.681403
\(191\) −5.81012e15 3.35448e15i −0.626544 0.361736i 0.152868 0.988247i \(-0.451149\pi\)
−0.779413 + 0.626511i \(0.784482\pi\)
\(192\) 0 0
\(193\) −7.23820e15 1.25369e16i −0.725653 1.25687i −0.958705 0.284404i \(-0.908204\pi\)
0.233051 0.972464i \(-0.425129\pi\)
\(194\) −2.31021e15 + 1.33380e15i −0.223377 + 0.128967i
\(195\) 0 0
\(196\) −1.74890e15 + 3.02918e15i −0.157388 + 0.272604i
\(197\) 8.61721e15i 0.748347i 0.927359 + 0.374174i \(0.122074\pi\)
−0.927359 + 0.374174i \(0.877926\pi\)
\(198\) 0 0
\(199\) −2.20192e15 −0.178168 −0.0890842 0.996024i \(-0.528394\pi\)
−0.0890842 + 0.996024i \(0.528394\pi\)
\(200\) −6.38393e15 3.68576e15i −0.498744 0.287950i
\(201\) 0 0
\(202\) −1.00758e14 1.74518e14i −0.00734210 0.0127169i
\(203\) −1.79611e15 + 1.03699e15i −0.126433 + 0.0729962i
\(204\) 0 0
\(205\) 4.01742e15 6.95837e15i 0.264040 0.457331i
\(206\) 3.35521e16i 2.13132i
\(207\) 0 0
\(208\) 1.62986e16 0.967623
\(209\) −8.91160e15 5.14511e15i −0.511601 0.295373i
\(210\) 0 0
\(211\) −9.35311e15 1.62001e16i −0.502318 0.870040i −0.999996 0.00267859i \(-0.999147\pi\)
0.497678 0.867362i \(-0.334186\pi\)
\(212\) 1.07817e16 6.22481e15i 0.560191 0.323426i
\(213\) 0 0
\(214\) −9.63528e15 + 1.66888e16i −0.468779 + 0.811949i
\(215\) 5.18213e15i 0.244028i
\(216\) 0 0
\(217\) −3.28762e15 −0.145099
\(218\) 3.25273e16 + 1.87797e16i 1.39012 + 0.802587i
\(219\) 0 0
\(220\) 1.03074e15 + 1.78530e15i 0.0413230 + 0.0715736i
\(221\) 6.85276e15 3.95645e15i 0.266146 0.153659i
\(222\) 0 0
\(223\) −4.64056e15 + 8.03769e15i −0.169214 + 0.293087i −0.938144 0.346246i \(-0.887456\pi\)
0.768930 + 0.639333i \(0.220790\pi\)
\(224\) 7.38224e15i 0.260887i
\(225\) 0 0
\(226\) 3.95829e16 1.31446
\(227\) −1.03337e16 5.96619e15i −0.332718 0.192095i 0.324329 0.945944i \(-0.394861\pi\)
−0.657047 + 0.753849i \(0.728195\pi\)
\(228\) 0 0
\(229\) −8.37085e14 1.44987e15i −0.0253467 0.0439018i 0.853074 0.521790i \(-0.174736\pi\)
−0.878421 + 0.477888i \(0.841402\pi\)
\(230\) 3.11023e16 1.79569e16i 0.913479 0.527397i
\(231\) 0 0
\(232\) 5.24107e15 9.07780e15i 0.144879 0.250937i
\(233\) 8.13317e15i 0.218157i 0.994033 + 0.109078i \(0.0347899\pi\)
−0.994033 + 0.109078i \(0.965210\pi\)
\(234\) 0 0
\(235\) 2.07091e16 0.523221
\(236\) −1.14380e16 6.60372e15i −0.280521 0.161959i
\(237\) 0 0
\(238\) 3.69328e15 + 6.39694e15i 0.0853833 + 0.147888i
\(239\) 2.32813e16 1.34415e16i 0.522664 0.301760i −0.215360 0.976535i \(-0.569093\pi\)
0.738024 + 0.674775i \(0.235759\pi\)
\(240\) 0 0
\(241\) 4.02326e16 6.96849e16i 0.852037 1.47577i −0.0273297 0.999626i \(-0.508700\pi\)
0.879367 0.476145i \(-0.157966\pi\)
\(242\) 4.38026e16i 0.901139i
\(243\) 0 0
\(244\) 2.41354e16 0.468734
\(245\) −1.86474e16 1.07661e16i −0.351929 0.203186i
\(246\) 0 0
\(247\) 2.71963e16 + 4.71053e16i 0.484876 + 0.839829i
\(248\) 1.43900e16 8.30806e15i 0.249401 0.143992i
\(249\) 0 0
\(250\) −2.99282e16 + 5.18372e16i −0.490344 + 0.849301i
\(251\) 3.03882e16i 0.484159i −0.970256 0.242080i \(-0.922170\pi\)
0.970256 0.242080i \(-0.0778295\pi\)
\(252\) 0 0
\(253\) −6.06748e16 −0.914460
\(254\) −4.97912e16 2.87470e16i −0.729989 0.421460i
\(255\) 0 0
\(256\) −3.48917e16 6.04342e16i −0.484219 0.838693i
\(257\) −2.70003e16 + 1.55886e16i −0.364617 + 0.210511i −0.671104 0.741363i \(-0.734180\pi\)
0.306487 + 0.951875i \(0.400846\pi\)
\(258\) 0 0
\(259\) −2.24456e16 + 3.88770e16i −0.287100 + 0.497272i
\(260\) 1.08967e16i 0.135669i
\(261\) 0 0
\(262\) −1.20895e17 −1.42659
\(263\) −7.00721e16 4.04561e16i −0.805109 0.464830i 0.0401454 0.999194i \(-0.487218\pi\)
−0.845255 + 0.534364i \(0.820551\pi\)
\(264\) 0 0
\(265\) 3.83194e16 + 6.63711e16i 0.417539 + 0.723200i
\(266\) −4.39720e16 + 2.53873e16i −0.466665 + 0.269429i
\(267\) 0 0
\(268\) −1.09226e16 + 1.89185e16i −0.109998 + 0.190522i
\(269\) 1.11604e17i 1.09500i 0.836805 + 0.547501i \(0.184421\pi\)
−0.836805 + 0.547501i \(0.815579\pi\)
\(270\) 0 0
\(271\) −2.03175e17 −1.89272 −0.946360 0.323115i \(-0.895270\pi\)
−0.946360 + 0.323115i \(0.895270\pi\)
\(272\) −4.59842e16 2.65490e16i −0.417471 0.241027i
\(273\) 0 0
\(274\) −6.41379e16 1.11090e17i −0.553173 0.958123i
\(275\) 3.82932e16 2.21086e16i 0.321953 0.185880i
\(276\) 0 0
\(277\) 4.89924e16 8.48574e16i 0.391535 0.678158i −0.601117 0.799161i \(-0.705278\pi\)
0.992652 + 0.121002i \(0.0386109\pi\)
\(278\) 1.41089e17i 1.09946i
\(279\) 0 0
\(280\) −1.76363e16 −0.130707
\(281\) 5.09960e16 + 2.94426e16i 0.368631 + 0.212829i 0.672860 0.739770i \(-0.265065\pi\)
−0.304229 + 0.952599i \(0.598399\pi\)
\(282\) 0 0
\(283\) 1.30701e17 + 2.26381e17i 0.899028 + 1.55716i 0.828738 + 0.559636i \(0.189059\pi\)
0.0702902 + 0.997527i \(0.477607\pi\)
\(284\) −2.39149e16 + 1.38073e16i −0.160487 + 0.0926574i
\(285\) 0 0
\(286\) −3.43688e16 + 5.95285e16i −0.219585 + 0.380332i
\(287\) 6.69798e16i 0.417609i
\(288\) 0 0
\(289\) 1.42599e17 0.846899
\(290\) −3.22306e16 1.86083e16i −0.186845 0.107875i
\(291\) 0 0
\(292\) −4.35649e16 7.54567e16i −0.240690 0.416886i
\(293\) 4.72349e16 2.72711e16i 0.254795 0.147106i −0.367163 0.930157i \(-0.619671\pi\)
0.621958 + 0.783051i \(0.286338\pi\)
\(294\) 0 0
\(295\) 4.06519e16 7.04112e16i 0.209087 0.362149i
\(296\) 2.26887e17i 1.13964i
\(297\) 0 0
\(298\) 2.18755e17 1.04820
\(299\) 2.77749e17 + 1.60359e17i 1.30003 + 0.750575i
\(300\) 0 0
\(301\) 2.15996e16 + 3.74115e16i 0.0964893 + 0.167124i
\(302\) −5.64596e16 + 3.25970e16i −0.246428 + 0.142275i
\(303\) 0 0
\(304\) 1.82495e17 3.16091e17i 0.760565 1.31734i
\(305\) 1.48576e17i 0.605130i
\(306\) 0 0
\(307\) 2.69380e17 1.04809 0.524043 0.851692i \(-0.324423\pi\)
0.524043 + 0.851692i \(0.324423\pi\)
\(308\) −1.48826e16 8.59246e15i −0.0566009 0.0326785i
\(309\) 0 0
\(310\) −2.94976e16 5.10914e16i −0.107215 0.185702i
\(311\) −1.15333e17 + 6.65875e16i −0.409855 + 0.236630i −0.690727 0.723115i \(-0.742710\pi\)
0.280872 + 0.959745i \(0.409376\pi\)
\(312\) 0 0
\(313\) −1.05131e17 + 1.82092e17i −0.357206 + 0.618699i −0.987493 0.157663i \(-0.949604\pi\)
0.630287 + 0.776362i \(0.282937\pi\)
\(314\) 7.15074e16i 0.237598i
\(315\) 0 0
\(316\) 1.69431e17 0.538497
\(317\) 3.44228e17 + 1.98740e17i 1.07012 + 0.617833i 0.928214 0.372047i \(-0.121344\pi\)
0.141904 + 0.989880i \(0.454677\pi\)
\(318\) 0 0
\(319\) 3.14379e16 + 5.44520e16i 0.0935231 + 0.161987i
\(320\) 5.83927e16 3.37130e16i 0.169945 0.0981179i
\(321\) 0 0
\(322\) −1.49692e17 + 2.59274e17i −0.417069 + 0.722385i
\(323\) 1.77201e17i 0.483114i
\(324\) 0 0
\(325\) −2.33725e17 −0.610269
\(326\) 4.82641e17 + 2.78653e17i 1.23339 + 0.712099i
\(327\) 0 0
\(328\) −1.69263e17 2.93171e17i −0.414423 0.717802i
\(329\) −1.49506e17 + 8.63171e16i −0.358333 + 0.206883i
\(330\) 0 0
\(331\) 4.50209e15 7.79784e15i 0.0103423 0.0179134i −0.860808 0.508930i \(-0.830041\pi\)
0.871150 + 0.491017i \(0.163375\pi\)
\(332\) 2.59955e16i 0.0584698i
\(333\) 0 0
\(334\) −4.03649e17 −0.870520
\(335\) −1.16461e17 6.72388e16i −0.245961 0.142006i
\(336\) 0 0
\(337\) −3.10938e16 5.38560e16i −0.0629889 0.109100i 0.832811 0.553557i \(-0.186730\pi\)
−0.895800 + 0.444457i \(0.853397\pi\)
\(338\) −1.95423e17 + 1.12827e17i −0.387756 + 0.223871i
\(339\) 0 0
\(340\) −1.77498e16 + 3.07435e16i −0.0337941 + 0.0585331i
\(341\) 9.96697e16i 0.185901i
\(342\) 0 0
\(343\) 3.88079e17 0.694803
\(344\) −1.89083e17 1.09167e17i −0.331699 0.191506i
\(345\) 0 0
\(346\) −1.78024e17 3.08346e17i −0.299878 0.519404i
\(347\) −8.66876e17 + 5.00491e17i −1.43104 + 0.826209i −0.997200 0.0747825i \(-0.976174\pi\)
−0.433836 + 0.900992i \(0.642840\pi\)
\(348\) 0 0
\(349\) 1.50217e17 2.60184e17i 0.238200 0.412574i −0.721998 0.691895i \(-0.756776\pi\)
0.960198 + 0.279321i \(0.0901093\pi\)
\(350\) 2.18178e17i 0.339106i
\(351\) 0 0
\(352\) 2.23805e17 0.334249
\(353\) −9.01012e17 5.20199e17i −1.31919 0.761635i −0.335592 0.942007i \(-0.608936\pi\)
−0.983598 + 0.180372i \(0.942270\pi\)
\(354\) 0 0
\(355\) −8.49965e16 1.47218e17i −0.119620 0.207187i
\(356\) 1.03073e17 5.95090e16i 0.142231 0.0821169i
\(357\) 0 0
\(358\) −7.27479e17 + 1.26003e18i −0.965249 + 1.67186i
\(359\) 8.63108e15i 0.0112306i 0.999984 + 0.00561531i \(0.00178742\pi\)
−0.999984 + 0.00561531i \(0.998213\pi\)
\(360\) 0 0
\(361\) 4.19060e17 0.524476
\(362\) 1.03010e18 + 5.94728e17i 1.26450 + 0.730059i
\(363\) 0 0
\(364\) 4.54184e16 + 7.86669e16i 0.0536441 + 0.0929143i
\(365\) 4.64505e17 2.68182e17i 0.538196 0.310727i
\(366\) 0 0
\(367\) −1.35662e17 + 2.34973e17i −0.151285 + 0.262033i −0.931700 0.363228i \(-0.881674\pi\)
0.780415 + 0.625262i \(0.215008\pi\)
\(368\) 2.15211e18i 2.35467i
\(369\) 0 0
\(370\) −8.05558e17 −0.848565
\(371\) −5.53281e17 3.19437e17i −0.571911 0.330193i
\(372\) 0 0
\(373\) 2.65636e17 + 4.60096e17i 0.264439 + 0.458022i 0.967417 0.253190i \(-0.0814799\pi\)
−0.702977 + 0.711212i \(0.748147\pi\)
\(374\) 1.93934e17 1.11968e17i 0.189475 0.109393i
\(375\) 0 0
\(376\) 4.36259e17 7.55623e17i 0.410610 0.711197i
\(377\) 3.32351e17i 0.307049i
\(378\) 0 0
\(379\) −8.22885e17 −0.732597 −0.366298 0.930497i \(-0.619375\pi\)
−0.366298 + 0.930497i \(0.619375\pi\)
\(380\) −2.11328e17 1.22010e17i −0.184702 0.106638i
\(381\) 0 0
\(382\) 5.01795e17 + 8.69135e17i 0.422749 + 0.732223i
\(383\) 1.14603e18 6.61659e17i 0.947989 0.547322i 0.0555336 0.998457i \(-0.482314\pi\)
0.892456 + 0.451135i \(0.148981\pi\)
\(384\) 0 0
\(385\) 5.28944e16 9.16158e16i 0.0421876 0.0730711i
\(386\) 2.16552e18i 1.69610i
\(387\) 0 0
\(388\) 1.06873e17 0.0807320
\(389\) −6.27576e17 3.62331e17i −0.465607 0.268818i 0.248792 0.968557i \(-0.419966\pi\)
−0.714399 + 0.699739i \(0.753300\pi\)
\(390\) 0 0
\(391\) −5.22421e17 9.04860e17i −0.373924 0.647655i
\(392\) −7.85653e17 + 4.53597e17i −0.552368 + 0.318910i
\(393\) 0 0
\(394\) 6.44523e17 1.11635e18i 0.437285 0.757400i
\(395\) 1.04300e18i 0.695193i
\(396\) 0 0
\(397\) −1.88478e18 −1.21262 −0.606312 0.795227i \(-0.707352\pi\)
−0.606312 + 0.795227i \(0.707352\pi\)
\(398\) 2.85256e17 + 1.64692e17i 0.180324 + 0.104110i
\(399\) 0 0
\(400\) 7.84183e17 + 1.35824e18i 0.478627 + 0.829007i
\(401\) −4.19505e17 + 2.42201e17i −0.251609 + 0.145267i −0.620501 0.784206i \(-0.713071\pi\)
0.368892 + 0.929472i \(0.379737\pi\)
\(402\) 0 0
\(403\) 2.63419e17 4.56255e17i 0.152585 0.264285i
\(404\) 8.07343e15i 0.00459609i
\(405\) 0 0
\(406\) 3.10245e17 0.170617
\(407\) 1.17862e18 + 6.80476e17i 0.637107 + 0.367834i
\(408\) 0 0
\(409\) −1.19864e17 2.07611e17i −0.0626076 0.108440i 0.833023 0.553239i \(-0.186608\pi\)
−0.895630 + 0.444799i \(0.853275\pi\)
\(410\) −1.04090e18 + 6.00964e17i −0.534469 + 0.308576i
\(411\) 0 0
\(412\) 6.72106e17 1.16412e18i 0.333547 0.577721i
\(413\) 6.77763e17i 0.330695i
\(414\) 0 0
\(415\) 1.60026e17 0.0754839
\(416\) −1.02450e18 5.91498e17i −0.475182 0.274347i
\(417\) 0 0
\(418\) 7.69656e17 + 1.33308e18i 0.345193 + 0.597893i
\(419\) 1.28482e18 7.41793e17i 0.566689 0.327178i −0.189137 0.981951i \(-0.560569\pi\)
0.755826 + 0.654772i \(0.227236\pi\)
\(420\) 0 0
\(421\) 6.07915e17 1.05294e18i 0.259339 0.449189i −0.706726 0.707488i \(-0.749829\pi\)
0.966065 + 0.258299i \(0.0831619\pi\)
\(422\) 2.79826e18i 1.17409i
\(423\) 0 0
\(424\) 3.22896e18 1.31069
\(425\) 6.59422e17 + 3.80718e17i 0.263294 + 0.152013i
\(426\) 0 0
\(427\) −6.19276e17 1.07262e18i −0.239270 0.414429i
\(428\) 6.68610e17 3.86022e17i 0.254136 0.146726i
\(429\) 0 0
\(430\) −3.87597e17 + 6.71337e17i −0.142594 + 0.246980i
\(431\) 2.13220e18i 0.771770i 0.922547 + 0.385885i \(0.126104\pi\)
−0.922547 + 0.385885i \(0.873896\pi\)
\(432\) 0 0
\(433\) 1.46090e18 0.511925 0.255962 0.966687i \(-0.417608\pi\)
0.255962 + 0.966687i \(0.417608\pi\)
\(434\) 4.25907e17 + 2.45897e17i 0.146854 + 0.0847863i
\(435\) 0 0
\(436\) −7.52377e17 1.30316e18i −0.251206 0.435102i
\(437\) 6.21992e18 3.59107e18i 2.04369 1.17992i
\(438\) 0 0
\(439\) −9.07022e16 + 1.57101e17i −0.0288647 + 0.0499951i −0.880097 0.474794i \(-0.842523\pi\)
0.851232 + 0.524789i \(0.175856\pi\)
\(440\) 5.34672e17i 0.167463i
\(441\) 0 0
\(442\) −1.18369e18 −0.359154
\(443\) −2.55792e18 1.47681e18i −0.763942 0.441062i 0.0667673 0.997769i \(-0.478731\pi\)
−0.830709 + 0.556706i \(0.812065\pi\)
\(444\) 0 0
\(445\) 3.66332e17 + 6.34506e17i 0.106012 + 0.183618i
\(446\) 1.20236e18 6.94180e17i 0.342522 0.197755i
\(447\) 0 0
\(448\) −2.81038e17 + 4.86772e17i −0.0775923 + 0.134394i
\(449\) 6.59664e18i 1.79307i −0.442969 0.896537i \(-0.646075\pi\)
0.442969 0.896537i \(-0.353925\pi\)
\(450\) 0 0
\(451\) 2.03060e18 0.535043
\(452\) −1.37336e18 7.92912e17i −0.356301 0.205710i
\(453\) 0 0
\(454\) 8.92480e17 + 1.54582e18i 0.224496 + 0.388838i
\(455\) −4.84267e17 + 2.79592e17i −0.119951 + 0.0692539i
\(456\) 0 0
\(457\) −2.96363e18 + 5.13316e18i −0.711886 + 1.23302i 0.252262 + 0.967659i \(0.418826\pi\)
−0.964148 + 0.265364i \(0.914508\pi\)
\(458\) 2.50439e17i 0.0592438i
\(459\) 0 0
\(460\) −1.43883e18 −0.330146
\(461\) −8.24105e17 4.75797e17i −0.186241 0.107526i 0.403980 0.914768i \(-0.367626\pi\)
−0.590222 + 0.807241i \(0.700960\pi\)
\(462\) 0 0
\(463\) −9.26244e17 1.60430e18i −0.203076 0.351738i 0.746442 0.665450i \(-0.231760\pi\)
−0.949518 + 0.313713i \(0.898427\pi\)
\(464\) −1.93139e18 + 1.11509e18i −0.417105 + 0.240815i
\(465\) 0 0
\(466\) 6.08319e17 1.05364e18i 0.127476 0.220796i
\(467\) 7.47533e18i 1.54316i 0.636130 + 0.771582i \(0.280534\pi\)
−0.636130 + 0.771582i \(0.719466\pi\)
\(468\) 0 0
\(469\) 1.12103e18 0.224598
\(470\) −2.68283e18 1.54893e18i −0.529551 0.305736i
\(471\) 0 0
\(472\) −1.71276e18 2.96658e18i −0.328172 0.568410i
\(473\) 1.13419e18 6.54825e17i 0.214120 0.123623i
\(474\) 0 0
\(475\) −2.61702e18 + 4.53281e18i −0.479680 + 0.830830i
\(476\) 2.95931e17i 0.0534492i
\(477\) 0 0
\(478\) −4.02141e18 −0.705315
\(479\) −9.05226e18 5.22633e18i −1.56462 0.903333i −0.996779 0.0801943i \(-0.974446\pi\)
−0.567840 0.823139i \(-0.692221\pi\)
\(480\) 0 0
\(481\) −3.59689e18 6.22999e18i −0.603825 1.04586i
\(482\) −1.04241e19 + 6.01838e18i −1.72469 + 0.995750i
\(483\) 0 0
\(484\) 8.77440e17 1.51977e18i 0.141026 0.244265i
\(485\) 6.57901e17i 0.104224i
\(486\) 0 0
\(487\) −2.32289e18 −0.357540 −0.178770 0.983891i \(-0.557212\pi\)
−0.178770 + 0.983891i \(0.557212\pi\)
\(488\) 5.42116e18 + 3.12991e18i 0.822533 + 0.474890i
\(489\) 0 0
\(490\) 1.61049e18 + 2.78945e18i 0.237457 + 0.411288i
\(491\) −7.15665e17 + 4.13190e17i −0.104025 + 0.0600591i −0.551110 0.834433i \(-0.685796\pi\)
0.447085 + 0.894492i \(0.352462\pi\)
\(492\) 0 0
\(493\) −5.41372e17 + 9.37684e17i −0.0764834 + 0.132473i
\(494\) 8.13656e18i 1.13332i
\(495\) 0 0
\(496\) −3.53525e18 −0.478683
\(497\) 1.22724e18 + 7.08545e17i 0.163845 + 0.0945960i
\(498\) 0 0
\(499\) −1.87636e18 3.24996e18i −0.243564 0.421865i 0.718163 0.695875i \(-0.244983\pi\)
−0.961727 + 0.274010i \(0.911650\pi\)
\(500\) 2.07678e18 1.19903e18i 0.265827 0.153476i
\(501\) 0 0
\(502\) −2.27288e18 + 3.93674e18i −0.282911 + 0.490016i
\(503\) 7.53136e18i 0.924480i −0.886755 0.462240i \(-0.847046\pi\)
0.886755 0.462240i \(-0.152954\pi\)
\(504\) 0 0
\(505\) −4.96993e16 −0.00593350
\(506\) 7.86032e18 + 4.53816e18i 0.925522 + 0.534351i
\(507\) 0 0
\(508\) 1.15170e18 + 1.99481e18i 0.131915 + 0.228483i
\(509\) 4.04899e17 2.33769e17i 0.0457428 0.0264096i −0.476954 0.878928i \(-0.658259\pi\)
0.522697 + 0.852519i \(0.324926\pi\)
\(510\) 0 0
\(511\) −2.23561e18 + 3.87219e18i −0.245725 + 0.425609i
\(512\) 4.83866e17i 0.0524608i
\(513\) 0 0
\(514\) 4.66379e18 0.492037
\(515\) 7.16623e18 + 4.13743e18i 0.745831 + 0.430606i
\(516\) 0 0
\(517\) 2.61684e18 + 4.53251e18i 0.265060 + 0.459097i
\(518\) 5.81560e18 3.35764e18i 0.581147 0.335525i
\(519\) 0 0
\(520\) 1.41310e18 2.44755e18i 0.137451 0.238072i
\(521\) 1.30139e19i 1.24894i 0.781048 + 0.624471i \(0.214685\pi\)
−0.781048 + 0.624471i \(0.785315\pi\)
\(522\) 0 0
\(523\) 1.02060e19 0.953549 0.476775 0.879026i \(-0.341806\pi\)
0.476775 + 0.879026i \(0.341806\pi\)
\(524\) 4.19457e18 + 2.42174e18i 0.386695 + 0.223259i
\(525\) 0 0
\(526\) 6.05182e18 + 1.04821e19i 0.543233 + 0.940906i
\(527\) −1.48640e18 + 8.58174e17i −0.131662 + 0.0760153i
\(528\) 0 0
\(529\) 1.53778e19 2.66352e19i 1.32649 2.29755i
\(530\) 1.14644e19i 0.975931i
\(531\) 0 0
\(532\) 2.03420e18 0.168660
\(533\) −9.29542e18 5.36671e18i −0.760639 0.439155i
\(534\) 0 0
\(535\) 2.37632e18 + 4.11590e18i 0.189421 + 0.328087i
\(536\) −4.90675e18 + 2.83292e18i −0.386047 + 0.222885i
\(537\) 0 0
\(538\) 8.34743e18 1.44582e19i 0.639848 1.10825i
\(539\) 5.44169e18i 0.411730i
\(540\) 0 0
\(541\) 9.12458e18 0.672717 0.336358 0.941734i \(-0.390805\pi\)
0.336358 + 0.941734i \(0.390805\pi\)
\(542\) 2.63211e19 + 1.51965e19i 1.91562 + 1.10598i
\(543\) 0 0
\(544\) 1.92700e18 + 3.33766e18i 0.136675 + 0.236728i
\(545\) 8.02211e18 4.63157e18i 0.561712 0.324304i
\(546\) 0 0
\(547\) −7.61351e18 + 1.31870e19i −0.519605 + 0.899983i 0.480135 + 0.877195i \(0.340588\pi\)
−0.999740 + 0.0227881i \(0.992746\pi\)
\(548\) 5.13916e18i 0.346281i
\(549\) 0 0
\(550\) −6.61443e18 −0.434464
\(551\) −6.44556e18 3.72134e18i −0.418022 0.241345i
\(552\) 0 0
\(553\) −4.34732e18 7.52978e18i −0.274882 0.476109i
\(554\) −1.26938e19 + 7.32876e18i −0.792543 + 0.457575i
\(555\) 0 0
\(556\) −2.82625e18 + 4.89521e18i −0.172063 + 0.298021i
\(557\) 1.48868e19i 0.894986i 0.894287 + 0.447493i \(0.147683\pi\)
−0.894287 + 0.447493i \(0.852317\pi\)
\(558\) 0 0
\(559\) −6.92261e18 −0.405870
\(560\) 3.24958e18 + 1.87615e18i 0.188153 + 0.108630i
\(561\) 0 0
\(562\) −4.40431e18 7.62848e18i −0.248727 0.430808i
\(563\) −2.24592e19 + 1.29669e19i −1.25267 + 0.723229i −0.971639 0.236470i \(-0.924009\pi\)
−0.281030 + 0.959699i \(0.590676\pi\)
\(564\) 0 0
\(565\) 4.88110e18 8.45431e18i 0.265570 0.459980i
\(566\) 3.91030e19i 2.10133i
\(567\) 0 0
\(568\) −7.16217e18 −0.375497
\(569\) 2.14534e19 + 1.23861e19i 1.11099 + 0.641430i 0.939085 0.343684i \(-0.111675\pi\)
0.171904 + 0.985114i \(0.445008\pi\)
\(570\) 0 0
\(571\) 9.73630e18 + 1.68638e19i 0.491973 + 0.852122i 0.999957 0.00924399i \(-0.00294250\pi\)
−0.507984 + 0.861366i \(0.669609\pi\)
\(572\) 2.38492e18 1.37693e18i 0.119042 0.0687290i
\(573\) 0 0
\(574\) 5.00974e18 8.67712e18i 0.244024 0.422661i
\(575\) 3.08617e19i 1.48506i
\(576\) 0 0
\(577\) −3.59726e19 −1.68943 −0.844716 0.535215i \(-0.820231\pi\)
−0.844716 + 0.535215i \(0.820231\pi\)
\(578\) −1.84735e19 1.06657e19i −0.857144 0.494872i
\(579\) 0 0
\(580\) 7.45514e17 + 1.29127e18i 0.0337645 + 0.0584818i
\(581\) −1.15528e18 + 6.67003e17i −0.0516958 + 0.0298466i
\(582\) 0 0
\(583\) −9.68425e18 + 1.67736e19i −0.423045 + 0.732735i
\(584\) 2.25982e19i 0.975402i
\(585\) 0 0
\(586\) −8.15895e18 −0.343836
\(587\) −1.86467e19 1.07657e19i −0.776487 0.448305i 0.0586968 0.998276i \(-0.481305\pi\)
−0.835184 + 0.549971i \(0.814639\pi\)
\(588\) 0 0
\(589\) −5.89901e18 1.02174e19i −0.239868 0.415463i
\(590\) −1.05328e19 + 6.08111e18i −0.423233 + 0.244354i
\(591\) 0 0
\(592\) −2.41362e19 + 4.18052e19i −0.947147 + 1.64051i
\(593\) 3.06383e18i 0.118818i −0.998234 0.0594090i \(-0.981078\pi\)
0.998234 0.0594090i \(-0.0189216\pi\)
\(594\) 0 0
\(595\) 1.82172e18 0.0690023
\(596\) −7.58990e18 4.38203e18i −0.284127 0.164041i
\(597\) 0 0
\(598\) −2.39880e19 4.15484e19i −0.877174 1.51931i
\(599\) 3.56687e19 2.05933e19i 1.28914 0.744284i 0.310638 0.950528i \(-0.399457\pi\)
0.978501 + 0.206244i \(0.0661241\pi\)
\(600\) 0 0
\(601\) 4.81655e17 8.34251e17i 0.0170065 0.0294561i −0.857397 0.514656i \(-0.827920\pi\)
0.874403 + 0.485200i \(0.161253\pi\)
\(602\) 6.46214e18i 0.225528i
\(603\) 0 0
\(604\) 2.61189e18 0.0890629
\(605\) 9.35558e18 + 5.40144e18i 0.315343 + 0.182063i
\(606\) 0 0
\(607\) 2.72777e19 + 4.72464e19i 0.898435 + 1.55614i 0.829495 + 0.558515i \(0.188629\pi\)
0.0689407 + 0.997621i \(0.478038\pi\)
\(608\) −2.29428e19 + 1.32460e19i −0.747000 + 0.431281i
\(609\) 0 0
\(610\) 1.11127e19 1.92477e19i 0.353599 0.612451i
\(611\) 2.76644e19i 0.870229i
\(612\) 0 0
\(613\) 5.06895e19 1.55846 0.779228 0.626741i \(-0.215611\pi\)
0.779228 + 0.626741i \(0.215611\pi\)
\(614\) −3.48978e19 2.01482e19i −1.06077 0.612433i
\(615\) 0 0
\(616\) −2.22856e18 3.85997e18i −0.0662154 0.114688i
\(617\) −4.13254e18 + 2.38592e18i −0.121401 + 0.0700907i −0.559471 0.828850i \(-0.688996\pi\)
0.438070 + 0.898941i \(0.355662\pi\)
\(618\) 0 0
\(619\) 3.09682e18 5.36384e18i 0.0889367 0.154043i −0.818125 0.575040i \(-0.804986\pi\)
0.907062 + 0.420997i \(0.138320\pi\)
\(620\) 2.36355e18i 0.0671156i
\(621\) 0 0
\(622\) 1.99216e19 0.553084
\(623\) −5.28935e18 3.05381e18i −0.145206 0.0838350i
\(624\) 0 0
\(625\) −7.09165e18 1.22831e19i −0.190365 0.329722i
\(626\) 2.72390e19 1.57265e19i 0.723055 0.417456i
\(627\) 0 0
\(628\) −1.43242e18 + 2.48102e18i −0.0371836 + 0.0644039i
\(629\) 2.34361e19i 0.601631i
\(630\) 0 0
\(631\) 1.51766e19 0.381038 0.190519 0.981684i \(-0.438983\pi\)
0.190519 + 0.981684i \(0.438983\pi\)
\(632\) 3.80566e19 + 2.19720e19i 0.944953 + 0.545569i
\(633\) 0 0
\(634\) −2.97295e19 5.14930e19i −0.722042 1.25061i
\(635\) −1.22798e19 + 7.08977e18i −0.294969 + 0.170301i
\(636\) 0 0
\(637\) −1.43820e19 + 2.49103e19i −0.337942 + 0.585332i
\(638\) 9.40557e18i 0.218595i
\(639\) 0 0
\(640\) −2.45954e19 −0.559234
\(641\) −2.33683e19 1.34917e19i −0.525559 0.303431i 0.213647 0.976911i \(-0.431466\pi\)
−0.739206 + 0.673479i \(0.764799\pi\)
\(642\) 0 0
\(643\) 2.51225e19 + 4.35134e19i 0.552823 + 0.957517i 0.998069 + 0.0621091i \(0.0197827\pi\)
−0.445247 + 0.895408i \(0.646884\pi\)
\(644\) 1.03874e19 5.99718e18i 0.226103 0.130541i
\(645\) 0 0
\(646\) −1.32538e19 + 2.29562e19i −0.282300 + 0.488958i
\(647\) 5.18661e19i 1.09283i 0.837514 + 0.546416i \(0.184008\pi\)
−0.837514 + 0.546416i \(0.815992\pi\)
\(648\) 0 0
\(649\) 2.05475e19 0.423688
\(650\) 3.02787e19 + 1.74814e19i 0.617652 + 0.356601i
\(651\) 0 0
\(652\) −1.11638e19 1.93363e19i −0.222884 0.386046i
\(653\) 7.72909e19 4.46239e19i 1.52664 0.881405i 0.527139 0.849779i \(-0.323265\pi\)
0.999500 0.0316266i \(-0.0100687\pi\)
\(654\) 0 0
\(655\) −1.49080e19 + 2.58214e19i −0.288224 + 0.499219i
\(656\) 7.20246e19i 1.37770i
\(657\) 0 0
\(658\) 2.58243e19 0.483557
\(659\) −7.75359e19 4.47654e19i −1.43650 0.829362i −0.438893 0.898539i \(-0.644629\pi\)
−0.997604 + 0.0691771i \(0.977963\pi\)
\(660\) 0 0
\(661\) −2.12752e19 3.68497e19i −0.385890 0.668381i 0.606002 0.795463i \(-0.292772\pi\)
−0.991892 + 0.127082i \(0.959439\pi\)
\(662\) −1.16648e18 + 6.73466e17i −0.0209349 + 0.0120867i
\(663\) 0 0
\(664\) 3.37113e18 5.83896e18i 0.0592377 0.102603i
\(665\) 1.25224e19i 0.217738i
\(666\) 0 0
\(667\) −4.38847e19 −0.747192
\(668\) 1.40050e19 + 8.08578e18i 0.235965 + 0.136234i
\(669\) 0 0
\(670\) 1.00582e19 + 1.74214e19i 0.165958 + 0.287447i
\(671\) −3.25181e19 + 1.87744e19i −0.530968 + 0.306554i
\(672\) 0 0
\(673\) 5.79961e19 1.00452e20i 0.927456 1.60640i 0.139894 0.990167i \(-0.455324\pi\)
0.787563 0.616235i \(-0.211343\pi\)
\(674\) 9.30261e18i 0.147226i
\(675\) 0 0
\(676\) 9.04050e18 0.140141
\(677\) 8.24552e19 + 4.76055e19i 1.26502 + 0.730360i 0.974041 0.226370i \(-0.0726858\pi\)
0.290979 + 0.956730i \(0.406019\pi\)
\(678\) 0 0
\(679\) −2.74219e18 4.74961e18i −0.0412106 0.0713788i
\(680\) −7.97371e18 + 4.60362e18i −0.118604 + 0.0684758i
\(681\) 0 0
\(682\) 7.45478e18 1.29121e19i 0.108629 0.188150i
\(683\) 1.09770e20i 1.58321i 0.611034 + 0.791604i \(0.290754\pi\)
−0.611034 + 0.791604i \(0.709246\pi\)
\(684\) 0 0
\(685\) −3.16362e19 −0.447045
\(686\) −5.02751e19 2.90263e19i −0.703208 0.405997i
\(687\) 0 0
\(688\) 2.32264e19 + 4.02293e19i 0.318319 + 0.551345i
\(689\) 8.86627e19 5.11894e19i 1.20284 0.694457i
\(690\) 0 0
\(691\) 2.89603e19 5.01608e19i 0.384997 0.666834i −0.606772 0.794876i \(-0.707536\pi\)
0.991769 + 0.128042i \(0.0408692\pi\)
\(692\) 1.42645e19i 0.187721i
\(693\) 0 0
\(694\) 1.49737e20 1.93113
\(695\) −3.01345e19 1.73981e19i −0.384742 0.222131i
\(696\) 0 0
\(697\) 1.74838e19 + 3.02829e19i 0.218780 + 0.378938i
\(698\) −3.89208e19 + 2.24709e19i −0.482163 + 0.278377i
\(699\) 0 0
\(700\) −4.37048e18 + 7.56990e18i −0.0530693 + 0.0919187i
\(701\) 1.25085e20i 1.50376i −0.659300 0.751880i \(-0.729147\pi\)
0.659300 0.751880i \(-0.270853\pi\)
\(702\) 0 0
\(703\) −1.61098e20 −1.89846
\(704\) 1.47573e19 + 8.52011e18i 0.172186 + 0.0994115i
\(705\) 0 0
\(706\) 7.78165e19 + 1.34782e20i 0.890099 + 1.54170i
\(707\) 3.58796e17 2.07151e17i 0.00406361 0.00234612i
\(708\) 0 0
\(709\) 3.32061e19 5.75147e19i 0.368718 0.638638i −0.620647 0.784090i \(-0.713130\pi\)
0.989365 + 0.145451i \(0.0464634\pi\)
\(710\) 2.54292e19i 0.279592i
\(711\) 0 0
\(712\) 3.08687e19 0.332781
\(713\) −6.02453e19 3.47826e19i −0.643127 0.371309i
\(714\) 0 0
\(715\) 8.47627e18 + 1.46813e19i 0.0887284 + 0.153682i
\(716\) 5.04811e19 2.91453e19i 0.523284 0.302118i
\(717\) 0 0
\(718\) 6.45560e17 1.11814e18i 0.00656244 0.0113665i
\(719\) 1.18331e20i 1.19123i −0.803269 0.595616i \(-0.796908\pi\)
0.803269 0.595616i \(-0.203092\pi\)
\(720\) 0 0
\(721\) −6.89806e19 −0.681052
\(722\) −5.42886e19 3.13435e19i −0.530821 0.306470i
\(723\) 0 0
\(724\) −2.38268e19 4.12693e19i −0.228505 0.395783i
\(725\) 2.76966e19 1.59906e19i 0.263063 0.151880i
\(726\) 0 0
\(727\) −4.80326e19 + 8.31949e19i −0.447502 + 0.775097i −0.998223 0.0595931i \(-0.981020\pi\)
0.550721 + 0.834690i \(0.314353\pi\)
\(728\) 2.35596e19i 0.217394i
\(729\) 0 0
\(730\) −8.02345e19 −0.726275
\(731\) 1.95312e19 + 1.12763e19i 0.175108 + 0.101099i
\(732\) 0 0
\(733\) −8.00772e19 1.38698e20i −0.704338 1.21995i −0.966930 0.255042i \(-0.917911\pi\)
0.262592 0.964907i \(-0.415423\pi\)
\(734\) 3.51496e19 2.02936e19i 0.306230 0.176802i
\(735\) 0 0
\(736\) −7.81031e19 + 1.35279e20i −0.667611 + 1.15634i
\(737\) 3.39858e19i 0.287756i
\(738\) 0 0
\(739\) −1.28317e19 −0.106604 −0.0533021 0.998578i \(-0.516975\pi\)
−0.0533021 + 0.998578i \(0.516975\pi\)
\(740\) 2.79496e19 + 1.61367e19i 0.230014 + 0.132798i
\(741\) 0 0
\(742\) 4.77845e19 + 8.27651e19i 0.385886 + 0.668375i
\(743\) −1.35176e20 + 7.80438e19i −1.08138 + 0.624333i −0.931268 0.364336i \(-0.881296\pi\)
−0.150110 + 0.988669i \(0.547963\pi\)
\(744\) 0 0
\(745\) 2.69754e19 4.67228e19i 0.211775 0.366805i
\(746\) 7.94729e19i 0.618084i
\(747\) 0 0
\(748\) −8.97161e18 −0.0684793
\(749\) −3.43109e19 1.98094e19i −0.259453 0.149795i
\(750\) 0 0
\(751\) −3.43695e19 5.95297e19i −0.255090 0.441829i 0.709830 0.704373i \(-0.248772\pi\)
−0.964920 + 0.262544i \(0.915438\pi\)
\(752\) −1.60766e20 + 9.28185e19i −1.18214 + 0.682511i
\(753\) 0 0
\(754\) −2.48582e19 + 4.30556e19i −0.179420 + 0.310764i
\(755\) 1.60786e19i 0.114979i
\(756\) 0 0
\(757\) −1.73606e19 −0.121869 −0.0609347 0.998142i \(-0.519408\pi\)
−0.0609347 + 0.998142i \(0.519408\pi\)
\(758\) 1.06604e20 + 6.15476e19i 0.741459 + 0.428082i
\(759\) 0 0
\(760\) −3.16449e19 5.48106e19i −0.216077 0.374256i
\(761\) 2.81760e19 1.62674e19i 0.190628 0.110059i −0.401648 0.915794i \(-0.631563\pi\)
0.592277 + 0.805735i \(0.298229\pi\)
\(762\) 0 0
\(763\) −3.86096e19 + 6.68737e19i −0.256462 + 0.444205i
\(764\) 4.02072e19i 0.264637i
\(765\) 0 0
\(766\) −1.97955e20 −1.27928
\(767\) −9.40597e19 5.43054e19i −0.602332 0.347756i
\(768\) 0 0
\(769\) −4.90393e18 8.49386e18i −0.0308361 0.0534098i 0.850196 0.526467i \(-0.176484\pi\)
−0.881032 + 0.473057i \(0.843150\pi\)
\(770\) −1.37048e19 + 7.91246e18i −0.0853959 + 0.0493034i
\(771\) 0 0
\(772\) 4.33790e19 7.51347e19i 0.265435 0.459748i
\(773\) 3.51963e19i 0.213422i −0.994290 0.106711i \(-0.965968\pi\)
0.994290 0.106711i \(-0.0340320\pi\)
\(774\) 0 0
\(775\) 5.06961e19 0.301900
\(776\) 2.40052e19 + 1.38594e19i 0.141668 + 0.0817923i
\(777\) 0 0
\(778\) 5.42010e19 + 9.38790e19i 0.314160 + 0.544141i
\(779\) −2.08162e20 + 1.20182e20i −1.19575 + 0.690364i
\(780\) 0 0
\(781\) 2.14807e19 3.72056e19i 0.121197 0.209919i
\(782\) 1.56298e20i 0.873987i
\(783\) 0 0
\(784\) 1.93015e20 1.06018
\(785\) −1.52729e19 8.81783e18i −0.0831447 0.0480036i
\(786\) 0 0
\(787\) −6.45585e19 1.11819e20i −0.345248 0.597986i 0.640151 0.768249i \(-0.278872\pi\)
−0.985399 + 0.170263i \(0.945538\pi\)
\(788\) −4.47247e19 + 2.58218e19i −0.237063 + 0.136868i
\(789\) 0 0
\(790\) 7.80112e19 1.35119e20i 0.406226 0.703603i
\(791\) 8.13793e19i 0.420028i
\(792\) 0 0
\(793\) 1.98477e20 1.00646
\(794\) 2.44170e20 + 1.40972e20i 1.22729 + 0.708578i
\(795\) 0 0
\(796\) −6.59814e18 1.14283e19i −0.0325859 0.0564405i
\(797\) 2.14420e20 1.23795e20i 1.04968 0.606032i 0.127119 0.991887i \(-0.459427\pi\)
0.922559 + 0.385855i \(0.126094\pi\)
\(798\) 0 0
\(799\) −4.50630e19 + 7.80514e19i −0.216767 + 0.375451i
\(800\) 1.13836e20i 0.542814i
\(801\) 0 0
\(802\) 7.24616e19 0.339537
\(803\) 1.17392e20 + 6.77762e19i 0.545291 + 0.314824i
\(804\) 0 0
\(805\) 3.69181e19 + 6.39440e19i 0.168527 + 0.291897i
\(806\) −6.82511e19 + 3.94048e19i −0.308862 + 0.178321i
\(807\) 0 0
\(808\) −1.04697e18 + 1.81341e18i −0.00465645 + 0.00806520i
\(809\) 2.39808e20i 1.05736i −0.848821 0.528681i \(-0.822687\pi\)
0.848821 0.528681i \(-0.177313\pi\)
\(810\) 0 0
\(811\) 3.42865e20 1.48586 0.742928 0.669371i \(-0.233436\pi\)
0.742928 + 0.669371i \(0.233436\pi\)
\(812\) −1.07642e19 6.21473e18i −0.0462478 0.0267012i
\(813\) 0 0
\(814\) −1.01792e20 1.76309e20i −0.429876 0.744568i
\(815\) 1.19032e20 6.87233e19i 0.498381 0.287740i
\(816\) 0 0
\(817\) −7.75125e19 + 1.34256e20i −0.319020 + 0.552558i
\(818\) 3.58610e19i 0.146335i
\(819\) 0 0
\(820\) 4.81534e19 0.193166
\(821\) 4.15721e20 + 2.40017e20i 1.65348 + 0.954639i 0.975624 + 0.219448i \(0.0704256\pi\)
0.677860 + 0.735191i \(0.262908\pi\)
\(822\) 0 0
\(823\) 1.74191e20 + 3.01708e20i 0.681126 + 1.17974i 0.974638 + 0.223789i \(0.0718427\pi\)
−0.293512 + 0.955955i \(0.594824\pi\)
\(824\) 3.01929e20 1.74319e20i 1.17062 0.675855i
\(825\) 0 0
\(826\) 5.06932e19 8.78032e19i 0.193237 0.334695i
\(827\) 1.57173e20i 0.594073i −0.954866 0.297036i \(-0.904002\pi\)
0.954866 0.297036i \(-0.0959983\pi\)
\(828\) 0 0
\(829\) 1.90105e20 0.706498 0.353249 0.935529i \(-0.385077\pi\)
0.353249 + 0.935529i \(0.385077\pi\)
\(830\) −2.07311e19 1.19691e19i −0.0763971 0.0441079i
\(831\) 0 0
\(832\) −4.50360e19 7.80046e19i −0.163191 0.282655i
\(833\) 8.11534e19 4.68539e19i 0.291603 0.168357i
\(834\) 0 0
\(835\) −4.97754e19 + 8.62135e19i −0.175877 + 0.304628i
\(836\) 6.16701e19i 0.216088i
\(837\) 0 0
\(838\) −2.21929e20 −0.764727
\(839\) 2.96222e20 + 1.71024e20i 1.01224 + 0.584418i 0.911847 0.410530i \(-0.134656\pi\)
0.100394 + 0.994948i \(0.467990\pi\)
\(840\) 0 0
\(841\) −1.26041e20 2.18309e20i −0.423584 0.733668i
\(842\) −1.57509e20 + 9.09378e19i −0.524953 + 0.303082i
\(843\) 0 0
\(844\) 5.60538e19 9.70881e19i 0.183742 0.318250i
\(845\) 5.56525e19i 0.180921i
\(846\) 0 0
\(847\) −9.00547e19 −0.287954
\(848\) −5.94954e20 3.43497e20i −1.88674 1.08931i
\(849\) 0 0
\(850\) −5.69514e19 9.86428e19i −0.177653 0.307704i
\(851\) −8.22627e20 + 4.74944e20i −2.54505 + 1.46938i
\(852\) 0 0
\(853\) −8.44903e19 + 1.46341e20i −0.257136 + 0.445373i −0.965474 0.260501i \(-0.916112\pi\)
0.708337 + 0.705874i \(0.249446\pi\)
\(854\) 1.85275e20i 0.559256i
\(855\) 0 0
\(856\) 2.00239e20 0.594610
\(857\) 1.22693e20 + 7.08368e19i 0.361372 + 0.208638i 0.669682 0.742648i \(-0.266430\pi\)
−0.308311 + 0.951286i \(0.599764\pi\)
\(858\) 0 0
\(859\) 6.81490e19 + 1.18038e20i 0.197473 + 0.342033i 0.947708 0.319138i \(-0.103393\pi\)
−0.750236 + 0.661171i \(0.770060\pi\)
\(860\) 2.68960e19 1.55284e19i 0.0773035 0.0446312i
\(861\) 0 0
\(862\) 1.59478e20 2.76224e20i 0.450972 0.781106i
\(863\) 1.58254e20i 0.443894i 0.975059 + 0.221947i \(0.0712411\pi\)
−0.975059 + 0.221947i \(0.928759\pi\)
\(864\) 0 0
\(865\) −8.78108e19 −0.242346
\(866\) −1.89258e20 1.09268e20i −0.518117 0.299135i
\(867\) 0 0
\(868\) −9.85149e18 1.70633e19i −0.0265377 0.0459647i
\(869\) −2.28278e20 + 1.31796e20i −0.609993 + 0.352180i
\(870\) 0 0
\(871\) −8.98217e19 + 1.55576e20i −0.236186 + 0.409086i
\(872\) 3.90276e20i 1.01802i
\(873\) 0 0
\(874\) −1.07438e21 −2.75788
\(875\) −1.06573e20 6.15302e19i −0.271389 0.156687i
\(876\) 0 0
\(877\) −5.70271e19 9.87739e19i −0.142917 0.247540i 0.785677 0.618637i \(-0.212315\pi\)
−0.928594 + 0.371097i \(0.878982\pi\)
\(878\) 2.35007e19 1.35681e19i 0.0584277 0.0337332i
\(879\) 0 0
\(880\) 5.68784e19 9.85163e19i 0.139177 0.241062i
\(881\) 3.33760e20i 0.810219i 0.914268 + 0.405109i \(0.132767\pi\)
−0.914268 + 0.405109i \(0.867233\pi\)
\(882\) 0 0
\(883\) −1.77256e20 −0.423522 −0.211761 0.977322i \(-0.567920\pi\)
−0.211761 + 0.977322i \(0.567920\pi\)
\(884\) 4.10691e19 + 2.37113e19i 0.0973530 + 0.0562068i
\(885\) 0 0
\(886\) 2.20916e20 + 3.82638e20i 0.515456 + 0.892796i
\(887\) 4.30804e20 2.48725e20i 0.997274 0.575777i 0.0898337 0.995957i \(-0.471366\pi\)
0.907441 + 0.420180i \(0.138033\pi\)
\(888\) 0 0
\(889\) 5.91016e19 1.02367e20i 0.134675 0.233264i
\(890\) 1.09599e20i 0.247786i
\(891\) 0 0
\(892\) −5.56225e19 −0.123793
\(893\) −5.36518e20 3.09759e20i −1.18474 0.684012i
\(894\) 0 0
\(895\) 1.79416e20 + 3.10757e20i 0.390031 + 0.675554i
\(896\) 1.77562e20 1.02516e20i 0.382996 0.221123i
\(897\) 0 0
\(898\) −4.93394e20 + 8.54584e20i −1.04776 + 1.81477i
\(899\) 7.20888e19i 0.151897i
\(900\) 0 0
\(901\) −3.33533e20 −0.691934
\(902\) −2.63061e20 1.51878e20i −0.541515 0.312644i
\(903\) 0 0
\(904\) −2.05651e20 3.56199e20i −0.416824 0.721960i
\(905\) 2.54050e20 1.46676e20i 0.510951 0.294998i
\(906\) 0 0
\(907\) 2.38047e20 4.12310e20i 0.471425 0.816532i −0.528041 0.849219i \(-0.677073\pi\)
0.999466 + 0.0326871i \(0.0104065\pi\)
\(908\) 7.15116e19i 0.140532i
\(909\) 0 0
\(910\) 8.36480e19 0.161870
\(911\) −1.04981e20 6.06106e19i −0.201595 0.116391i 0.395804 0.918335i \(-0.370466\pi\)
−0.597399 + 0.801944i \(0.703799\pi\)
\(912\) 0 0
\(913\) 2.02213e19 + 3.50243e19i 0.0382396 + 0.0662329i
\(914\) 7.67868e20 4.43329e20i 1.44100 0.831960i
\(915\) 0 0
\(916\) 5.01671e18 8.68920e18i 0.00927152 0.0160587i
\(917\) 2.48551e20i 0.455859i
\(918\) 0 0
\(919\) −5.15778e19 −0.0931653 −0.0465826 0.998914i \(-0.514833\pi\)
−0.0465826 + 0.998914i \(0.514833\pi\)
\(920\) −3.23182e20 1.86589e20i −0.579339 0.334481i
\(921\) 0 0
\(922\) 7.11743e19 + 1.23278e20i 0.125663 + 0.217654i
\(923\) −1.96663e20 + 1.13544e20i −0.344597 + 0.198953i
\(924\) 0 0
\(925\) 3.46118e20 5.99495e20i 0.597355 1.03465i
\(926\) 2.77113e20i 0.474657i
\(927\) 0 0
\(928\) 1.61873e20 0.273110
\(929\) 8.76394e20 + 5.05986e20i 1.46754 + 0.847283i 0.999339 0.0363405i \(-0.0115701\pi\)
0.468198 + 0.883624i \(0.344903\pi\)
\(930\) 0 0
\(931\) 3.22070e20 + 5.57841e20i 0.531254 + 0.920159i
\(932\) −4.22124e19 + 2.43713e19i −0.0691081 + 0.0398996i
\(933\) 0 0
\(934\) 5.59116e20 9.68417e20i 0.901724 1.56183i
\(935\) 5.52285e19i 0.0884060i
\(936\) 0 0
\(937\) 8.95113e20 1.41156 0.705782 0.708429i \(-0.250596\pi\)
0.705782 + 0.708429i \(0.250596\pi\)
\(938\) −1.45227e20 8.38471e19i −0.227315 0.131241i
\(939\) 0 0
\(940\) 6.20555e19 + 1.07483e20i 0.0956941 + 0.165747i
\(941\) −3.26128e20 + 1.88290e20i −0.499184 + 0.288204i −0.728377 0.685177i \(-0.759725\pi\)
0.229192 + 0.973381i \(0.426391\pi\)
\(942\) 0 0
\(943\) −7.08637e20 + 1.22740e21i −1.06867 + 1.85098i
\(944\) 7.28812e20i 1.09097i
\(945\) 0 0
\(946\) −1.95910e20 −0.288948
\(947\) −8.26331e20 4.77082e20i −1.20977 0.698463i −0.247064 0.968999i \(-0.579466\pi\)
−0.962710 + 0.270536i \(0.912799\pi\)
\(948\) 0 0
\(949\) −3.58254e20 6.20514e20i −0.516806 0.895134i
\(950\) 6.78062e20 3.91479e20i 0.970966 0.560587i
\(951\) 0 0
\(952\) 3.83766e19 6.64702e19i 0.0541511 0.0937925i
\(953\) 6.86670e19i 0.0961829i −0.998843 0.0480915i \(-0.984686\pi\)
0.998843 0.0480915i \(-0.0153139\pi\)
\(954\) 0 0
\(955\) 2.47512e20 0.341644
\(956\) 1.39527e20 + 8.05557e19i 0.191184 + 0.110380i
\(957\) 0 0
\(958\) 7.81805e20 + 1.35413e21i 1.05570 + 1.82852i
\(959\) 2.28393e20 1.31863e20i 0.306162 0.176763i
\(960\) 0 0
\(961\) 3.21335e20 5.56569e20i 0.424516 0.735284i
\(962\) 1.07611e21i 1.41134i
\(963\) 0 0
\(964\) 4.82233e20 0.623330
\(965\) 4.62523e20 + 2.67038e20i 0.593529 + 0.342674i
\(966\) 0 0
\(967\) −6.39879e20 1.10830e21i −0.809305 1.40176i −0.913346 0.407185i \(-0.866510\pi\)
0.104040 0.994573i \(-0.466823\pi\)
\(968\) 3.94171e20 2.27575e20i 0.494945 0.285757i
\(969\) 0 0
\(970\) 4.92076e19 8.52300e19i 0.0609018 0.105485i
\(971\) 4.07978e20i 0.501306i 0.968077 + 0.250653i \(0.0806453\pi\)
−0.968077 + 0.250653i \(0.919355\pi\)
\(972\) 0 0
\(973\) 2.90068e20 0.351325
\(974\) 3.00926e20 + 1.73740e20i 0.361866 + 0.208923i
\(975\) 0 0
\(976\) −6.65919e20 1.15341e21i −0.789356 1.36720i
\(977\) −1.01319e21 + 5.84967e20i −1.19242 + 0.688446i −0.958855 0.283895i \(-0.908373\pi\)
−0.233568 + 0.972341i \(0.575040\pi\)
\(978\) 0 0
\(979\) −9.25811e19 + 1.60355e20i −0.107410 + 0.186039i
\(980\) 1.29043e20i 0.148646i
\(981\) 0 0
\(982\) 1.23618e20 0.140378
\(983\) −7.26339e19 4.19352e19i −0.0818964 0.0472829i 0.458493 0.888698i \(-0.348390\pi\)
−0.540389 + 0.841415i \(0.681723\pi\)
\(984\) 0 0
\(985\) −1.58957e20 2.75321e20i −0.176695 0.306045i
\(986\) 1.40268e20 8.09837e19i 0.154817 0.0893838i
\(987\) 0 0
\(988\) −1.62989e20 + 2.82305e20i −0.177362 + 0.307200i
\(989\) 9.14082e20i 0.987668i
\(990\) 0 0
\(991\) −2.99221e20 −0.318769 −0.159385 0.987217i \(-0.550951\pi\)
−0.159385 + 0.987217i \(0.550951\pi\)
\(992\) 2.22220e20 + 1.28299e20i 0.235073 + 0.135719i
\(993\) 0 0
\(994\) −1.05991e20 1.83582e20i −0.110551 0.191481i
\(995\) 7.03517e19 4.06176e19i 0.0728640 0.0420681i
\(996\) 0 0
\(997\) −1.61651e19 + 2.79988e19i −0.0165087 + 0.0285939i −0.874162 0.485635i \(-0.838588\pi\)
0.857653 + 0.514229i \(0.171922\pi\)
\(998\) 5.61369e20i 0.569292i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.15.d.a.8.3 26
3.2 odd 2 9.15.d.a.2.11 26
9.2 odd 6 81.15.b.a.80.6 26
9.4 even 3 9.15.d.a.5.11 yes 26
9.5 odd 6 inner 27.15.d.a.17.3 26
9.7 even 3 81.15.b.a.80.21 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.15.d.a.2.11 26 3.2 odd 2
9.15.d.a.5.11 yes 26 9.4 even 3
27.15.d.a.8.3 26 1.1 even 1 trivial
27.15.d.a.17.3 26 9.5 odd 6 inner
81.15.b.a.80.6 26 9.2 odd 6
81.15.b.a.80.21 26 9.7 even 3