Newspace parameters
| Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 15 \) |
| Character orbit: | \([\chi]\) | \(=\) | 27.d (of order \(6\), degree \(2\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(33.5688214010\) |
| Analytic rank: | \(0\) |
| Dimension: | \(26\) |
| Relative dimension: | \(13\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | no (minimal twist has level 9) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 8.1 | −209.734 | − | 121.090i | 0 | 21133.6 | + | 36604.4i | 69749.9 | − | 40270.1i | 0 | −376400. | + | 651944.i | − | 6.26837e6i | 0 | −1.95052e7 | |||||||||
| 8.2 | −195.306 | − | 112.760i | 0 | 17237.5 | + | 29856.3i | −103308. | + | 59645.1i | 0 | 163246. | − | 282751.i | − | 4.07989e6i | 0 | 2.69023e7 | |||||||||
| 8.3 | −129.548 | − | 74.7948i | 0 | 2996.54 | + | 5190.15i | −31950.1 | + | 18446.4i | 0 | 153772. | − | 266342.i | 1.55438e6i | 0 | 5.51879e6 | ||||||||||
| 8.4 | −104.562 | − | 60.3690i | 0 | −903.169 | − | 1564.33i | 116056. | − | 67005.0i | 0 | −391422. | + | 677963.i | 2.19626e6i | 0 | −1.61801e7 | ||||||||||
| 8.5 | −104.538 | − | 60.3552i | 0 | −906.505 | − | 1570.11i | 10010.1 | − | 5779.31i | 0 | 308433. | − | 534222.i | 2.19657e6i | 0 | −1.39525e6 | ||||||||||
| 8.6 | −25.4810 | − | 14.7114i | 0 | −7759.15 | − | 13439.2i | −68095.1 | + | 39314.7i | 0 | −576494. | + | 998517.i | 938657.i | 0 | 2.31351e6 | ||||||||||
| 8.7 | 36.6279 | + | 21.1471i | 0 | −7297.60 | − | 12639.8i | −53737.7 | + | 31025.5i | 0 | −26704.6 | + | 46253.7i | − | 1.31024e6i | 0 | −2.62440e6 | |||||||||
| 8.8 | 40.5755 | + | 23.4263i | 0 | −7094.42 | − | 12287.9i | 113204. | − | 65358.5i | 0 | 742609. | − | 1.28624e6i | − | 1.43242e6i | 0 | 6.12443e6 | |||||||||
| 8.9 | 47.7787 | + | 27.5850i | 0 | −6670.13 | − | 11553.0i | −20922.0 | + | 12079.3i | 0 | 105744. | − | 183153.i | − | 1.63989e6i | 0 | −1.33284e6 | |||||||||
| 8.10 | 122.622 | + | 70.7960i | 0 | 1832.14 | + | 3173.36i | 101737. | − | 58738.1i | 0 | −525106. | + | 909510.i | − | 1.80101e6i | 0 | 1.66337e7 | |||||||||
| 8.11 | 164.198 | + | 94.7998i | 0 | 9782.02 | + | 16943.0i | −93735.9 | + | 54118.4i | 0 | 584546. | − | 1.01246e6i | 602934.i | 0 | −2.05217e7 | ||||||||||
| 8.12 | 165.573 | + | 95.5937i | 0 | 10084.3 | + | 17466.5i | −5072.07 | + | 2928.36i | 0 | −596946. | + | 1.03394e6i | 723570.i | 0 | −1.11973e6 | ||||||||||
| 8.13 | 193.294 | + | 111.598i | 0 | 16716.4 | + | 28953.6i | 20060.8 | − | 11582.1i | 0 | 361557. | − | 626235.i | 3.80522e6i | 0 | 5.17016e6 | ||||||||||
| 17.1 | −209.734 | + | 121.090i | 0 | 21133.6 | − | 36604.4i | 69749.9 | + | 40270.1i | 0 | −376400. | − | 651944.i | 6.26837e6i | 0 | −1.95052e7 | ||||||||||
| 17.2 | −195.306 | + | 112.760i | 0 | 17237.5 | − | 29856.3i | −103308. | − | 59645.1i | 0 | 163246. | + | 282751.i | 4.07989e6i | 0 | 2.69023e7 | ||||||||||
| 17.3 | −129.548 | + | 74.7948i | 0 | 2996.54 | − | 5190.15i | −31950.1 | − | 18446.4i | 0 | 153772. | + | 266342.i | − | 1.55438e6i | 0 | 5.51879e6 | |||||||||
| 17.4 | −104.562 | + | 60.3690i | 0 | −903.169 | + | 1564.33i | 116056. | + | 67005.0i | 0 | −391422. | − | 677963.i | − | 2.19626e6i | 0 | −1.61801e7 | |||||||||
| 17.5 | −104.538 | + | 60.3552i | 0 | −906.505 | + | 1570.11i | 10010.1 | + | 5779.31i | 0 | 308433. | + | 534222.i | − | 2.19657e6i | 0 | −1.39525e6 | |||||||||
| 17.6 | −25.4810 | + | 14.7114i | 0 | −7759.15 | + | 13439.2i | −68095.1 | − | 39314.7i | 0 | −576494. | − | 998517.i | − | 938657.i | 0 | 2.31351e6 | |||||||||
| 17.7 | 36.6279 | − | 21.1471i | 0 | −7297.60 | + | 12639.8i | −53737.7 | − | 31025.5i | 0 | −26704.6 | − | 46253.7i | 1.31024e6i | 0 | −2.62440e6 | ||||||||||
| See all 26 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 9.d | odd | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 27.15.d.a | 26 | |
| 3.b | odd | 2 | 1 | 9.15.d.a | ✓ | 26 | |
| 9.c | even | 3 | 1 | 9.15.d.a | ✓ | 26 | |
| 9.c | even | 3 | 1 | 81.15.b.a | 26 | ||
| 9.d | odd | 6 | 1 | inner | 27.15.d.a | 26 | |
| 9.d | odd | 6 | 1 | 81.15.b.a | 26 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 9.15.d.a | ✓ | 26 | 3.b | odd | 2 | 1 | |
| 9.15.d.a | ✓ | 26 | 9.c | even | 3 | 1 | |
| 27.15.d.a | 26 | 1.a | even | 1 | 1 | trivial | |
| 27.15.d.a | 26 | 9.d | odd | 6 | 1 | inner | |
| 81.15.b.a | 26 | 9.c | even | 3 | 1 | ||
| 81.15.b.a | 26 | 9.d | odd | 6 | 1 | ||
Hecke kernels
This newform subspace is the entire newspace \(S_{15}^{\mathrm{new}}(27, [\chi])\).