Properties

Label 2-3e3-9.5-c14-0-2
Degree $2$
Conductor $27$
Sign $0.605 - 0.795i$
Analytic cond. $33.5688$
Root an. cond. $5.79386$
Motivic weight $14$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (164. − 94.7i)2-s + (9.78e3 − 1.69e4i)4-s + (−9.37e4 − 5.41e4i)5-s + (5.84e5 + 1.01e6i)7-s − 6.02e5i·8-s − 2.05e7·10-s + (−1.28e7 + 7.43e6i)11-s + (−3.40e7 + 5.89e7i)13-s + (1.91e8 + 1.10e8i)14-s + (1.03e8 + 1.78e8i)16-s − 1.87e8i·17-s + 1.20e9·19-s + (−1.83e9 + 1.05e9i)20-s + (−1.40e9 + 2.44e9i)22-s + (1.17e9 + 6.75e8i)23-s + ⋯
L(s)  = 1  + (1.28 − 0.740i)2-s + (0.597 − 1.03i)4-s + (−1.19 − 0.692i)5-s + (0.709 + 1.22i)7-s − 0.287i·8-s − 2.05·10-s + (−0.660 + 0.381i)11-s + (−0.542 + 0.939i)13-s + (1.82 + 1.05i)14-s + (0.384 + 0.665i)16-s − 0.457i·17-s + 1.34·19-s + (−1.43 + 0.827i)20-s + (−0.564 + 0.978i)22-s + (0.343 + 0.198i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(15-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 27 ^{s/2} \, \Gamma_{\C}(s+7) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(27\)    =    \(3^{3}\)
Sign: $0.605 - 0.795i$
Analytic conductor: \(33.5688\)
Root analytic conductor: \(5.79386\)
Motivic weight: \(14\)
Rational: no
Arithmetic: yes
Character: $\chi_{27} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 27,\ (\ :7),\ 0.605 - 0.795i)\)

Particular Values

\(L(\frac{15}{2})\) \(\approx\) \(2.371391483\)
\(L(\frac12)\) \(\approx\) \(2.371391483\)
\(L(8)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
good2 \( 1 + (-164. + 94.7i)T + (8.19e3 - 1.41e4i)T^{2} \)
5 \( 1 + (9.37e4 + 5.41e4i)T + (3.05e9 + 5.28e9i)T^{2} \)
7 \( 1 + (-5.84e5 - 1.01e6i)T + (-3.39e11 + 5.87e11i)T^{2} \)
11 \( 1 + (1.28e7 - 7.43e6i)T + (1.89e14 - 3.28e14i)T^{2} \)
13 \( 1 + (3.40e7 - 5.89e7i)T + (-1.96e15 - 3.40e15i)T^{2} \)
17 \( 1 + 1.87e8iT - 1.68e17T^{2} \)
19 \( 1 - 1.20e9T + 7.99e17T^{2} \)
23 \( 1 + (-1.17e9 - 6.75e8i)T + (5.79e18 + 1.00e19i)T^{2} \)
29 \( 1 + (1.46e10 - 8.43e9i)T + (1.48e20 - 2.57e20i)T^{2} \)
31 \( 1 + (1.75e10 - 3.04e10i)T + (-3.78e20 - 6.55e20i)T^{2} \)
37 \( 1 + 9.44e10T + 9.01e21T^{2} \)
41 \( 1 + (-1.71e11 - 9.90e10i)T + (1.89e22 + 3.28e22i)T^{2} \)
43 \( 1 + (-1.04e11 - 1.81e11i)T + (-3.69e22 + 6.39e22i)T^{2} \)
47 \( 1 + (2.57e11 - 1.48e11i)T + (1.28e23 - 2.22e23i)T^{2} \)
53 \( 1 - 3.41e11iT - 1.37e24T^{2} \)
59 \( 1 + (1.82e12 + 1.05e12i)T + (3.09e24 + 5.36e24i)T^{2} \)
61 \( 1 + (1.55e12 + 2.69e12i)T + (-4.93e24 + 8.55e24i)T^{2} \)
67 \( 1 + (3.94e12 - 6.82e12i)T + (-1.83e25 - 3.18e25i)T^{2} \)
71 \( 1 + 1.64e13iT - 8.27e25T^{2} \)
73 \( 1 + 4.02e12T + 1.22e26T^{2} \)
79 \( 1 + (6.19e12 + 1.07e13i)T + (-1.84e26 + 3.19e26i)T^{2} \)
83 \( 1 + (1.44e13 - 8.36e12i)T + (3.68e26 - 6.37e26i)T^{2} \)
89 \( 1 - 6.17e13iT - 1.95e27T^{2} \)
97 \( 1 + (-4.70e13 - 8.14e13i)T + (-3.26e27 + 5.65e27i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.18746140096851073205042849290, −12.64266025571280934003053013984, −11.97064270619381171367795340763, −11.23680203797933329412573011756, −9.061446565559245164131414559757, −7.64807162486585918747003916643, −5.29330020096428362733503942205, −4.63513503886894091904769607833, −3.10762980545561345524518926444, −1.69068415165790454812886460499, 0.46125089921589189815408323525, 3.21501078979456774548833224664, 4.17253157005125424168240610943, 5.49418910071904487582139691068, 7.36709371401306021235248150991, 7.67366232270210037769796825134, 10.45641530283182681927791392229, 11.57903293388425686228591501658, 13.00549282802076893470789927646, 14.10809064903192510374857185641

Graph of the $Z$-function along the critical line