Properties

Label 27.15.d.a.17.2
Level $27$
Weight $15$
Character 27.17
Analytic conductor $33.569$
Analytic rank $0$
Dimension $26$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,15,Mod(8,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.8"); S:= CuspForms(chi, 15); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 15, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 15 \)
Character orbit: \([\chi]\) \(=\) 27.d (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.5688214010\)
Analytic rank: \(0\)
Dimension: \(26\)
Relative dimension: \(13\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.2
Character \(\chi\) \(=\) 27.17
Dual form 27.15.d.a.8.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-195.306 + 112.760i) q^{2} +(17237.5 - 29856.3i) q^{4} +(-103308. - 59645.1i) q^{5} +(163246. + 282751. i) q^{7} +4.07989e6i q^{8} +2.69023e7 q^{10} +(2.55183e7 - 1.47330e7i) q^{11} +(-3.84596e7 + 6.66141e7i) q^{13} +(-6.37658e7 - 3.68152e7i) q^{14} +(-1.77628e8 - 3.07661e8i) q^{16} +3.47954e8i q^{17} +1.79868e7 q^{19} +(-3.56156e9 + 2.05627e9i) q^{20} +(-3.32258e9 + 5.75488e9i) q^{22} +(-1.21799e9 - 7.03208e8i) q^{23} +(4.06332e9 + 7.03788e9i) q^{25} -1.73468e10i q^{26} +1.12558e10 q^{28} +(-8.71076e9 + 5.02916e9i) q^{29} +(6.77264e9 - 1.17306e10i) q^{31} +(1.14941e10 + 6.63613e9i) q^{32} +(-3.92352e10 - 6.79574e10i) q^{34} -3.89473e10i q^{35} +4.16724e10 q^{37} +(-3.51292e9 + 2.02818e9i) q^{38} +(2.43346e11 - 4.21487e11i) q^{40} +(2.44149e11 + 1.40960e11i) q^{41} +(1.29317e9 + 2.23983e9i) q^{43} -1.01584e12i q^{44} +3.17174e11 q^{46} +(3.91113e11 - 2.25809e11i) q^{47} +(2.85813e11 - 4.95043e11i) q^{49} +(-1.58718e12 - 9.16358e11i) q^{50} +(1.32590e12 + 2.29653e12i) q^{52} +1.74490e12i q^{53} -3.51500e12 q^{55} +(-1.15359e12 + 6.66027e11i) q^{56} +(1.13417e12 - 1.96445e12i) q^{58} +(-3.57141e12 - 2.06195e12i) q^{59} +(-8.17270e11 - 1.41555e12i) q^{61} +3.05473e12i q^{62} +2.82736e12 q^{64} +(7.94640e12 - 4.58786e12i) q^{65} +(1.15275e12 - 1.99661e12i) q^{67} +(1.03886e13 + 5.99787e12i) q^{68} +(4.39169e12 + 7.60663e12i) q^{70} -8.75750e12i q^{71} -1.12442e13 q^{73} +(-8.13885e12 + 4.69897e12i) q^{74} +(3.10048e11 - 5.37019e11i) q^{76} +(8.33152e12 + 4.81021e12i) q^{77} +(-5.16374e11 - 8.94386e11i) q^{79} +4.23786e13i q^{80} -6.35783e13 q^{82} +(-8.74183e12 + 5.04710e12i) q^{83} +(2.07538e13 - 3.59466e13i) q^{85} +(-5.05125e11 - 2.91634e11i) q^{86} +(6.01091e13 + 1.04112e14i) q^{88} -5.62078e13i q^{89} -2.51135e13 q^{91} +(-4.19904e13 + 2.42432e13i) q^{92} +(-5.09245e13 + 8.82037e13i) q^{94} +(-1.85818e12 - 1.07282e12i) q^{95} +(-5.37337e13 - 9.30695e13i) q^{97} +1.28913e14i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 26 q + 3 q^{2} + 98303 q^{4} + 107994 q^{5} - 146330 q^{7} - 32772 q^{10} + 15978711 q^{11} - 23281436 q^{13} + 349442850 q^{14} - 671072257 q^{16} + 195706222 q^{19} - 2822935854 q^{20} - 204235521 q^{22}+ \cdots + 7621755375583 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −195.306 + 112.760i −1.52583 + 0.880936i −0.526295 + 0.850302i \(0.676419\pi\)
−0.999531 + 0.0306339i \(0.990247\pi\)
\(3\) 0 0
\(4\) 17237.5 29856.3i 1.05210 1.82228i
\(5\) −103308. 59645.1i −1.32235 0.763457i −0.338244 0.941058i \(-0.609833\pi\)
−0.984103 + 0.177601i \(0.943166\pi\)
\(6\) 0 0
\(7\) 163246. + 282751.i 0.198224 + 0.343334i 0.947953 0.318411i \(-0.103149\pi\)
−0.749729 + 0.661746i \(0.769816\pi\)
\(8\) 4.07989e6i 1.94545i
\(9\) 0 0
\(10\) 2.69023e7 2.69023
\(11\) 2.55183e7 1.47330e7i 1.30949 0.756036i 0.327481 0.944858i \(-0.393800\pi\)
0.982011 + 0.188822i \(0.0604670\pi\)
\(12\) 0 0
\(13\) −3.84596e7 + 6.66141e7i −0.612917 + 1.06160i 0.377829 + 0.925875i \(0.376671\pi\)
−0.990746 + 0.135728i \(0.956663\pi\)
\(14\) −6.37658e7 3.68152e7i −0.604911 0.349246i
\(15\) 0 0
\(16\) −1.77628e8 3.07661e8i −0.661716 1.14613i
\(17\) 3.47954e8i 0.847968i 0.905670 + 0.423984i \(0.139369\pi\)
−0.905670 + 0.423984i \(0.860631\pi\)
\(18\) 0 0
\(19\) 1.79868e7 0.0201223 0.0100612 0.999949i \(-0.496797\pi\)
0.0100612 + 0.999949i \(0.496797\pi\)
\(20\) −3.56156e9 + 2.05627e9i −2.78247 + 1.60646i
\(21\) 0 0
\(22\) −3.32258e9 + 5.75488e9i −1.33204 + 2.30716i
\(23\) −1.21799e9 7.03208e8i −0.357725 0.206533i 0.310357 0.950620i \(-0.399551\pi\)
−0.668082 + 0.744087i \(0.732885\pi\)
\(24\) 0 0
\(25\) 4.06332e9 + 7.03788e9i 0.665734 + 1.15309i
\(26\) 1.73468e10i 2.15976i
\(27\) 0 0
\(28\) 1.12558e10 0.834203
\(29\) −8.71076e9 + 5.02916e9i −0.504975 + 0.291548i −0.730766 0.682628i \(-0.760837\pi\)
0.225791 + 0.974176i \(0.427503\pi\)
\(30\) 0 0
\(31\) 6.77264e9 1.17306e10i 0.246165 0.426370i −0.716294 0.697799i \(-0.754163\pi\)
0.962459 + 0.271429i \(0.0874962\pi\)
\(32\) 1.14941e10 + 6.63613e9i 0.334523 + 0.193137i
\(33\) 0 0
\(34\) −3.92352e10 6.79574e10i −0.747006 1.29385i
\(35\) 3.89473e10i 0.605343i
\(36\) 0 0
\(37\) 4.16724e10 0.438971 0.219486 0.975616i \(-0.429562\pi\)
0.219486 + 0.975616i \(0.429562\pi\)
\(38\) −3.51292e9 + 2.02818e9i −0.0307032 + 0.0177265i
\(39\) 0 0
\(40\) 2.43346e11 4.21487e11i 1.48526 2.57255i
\(41\) 2.44149e11 + 1.40960e11i 1.25363 + 0.723782i 0.971828 0.235692i \(-0.0757357\pi\)
0.281799 + 0.959474i \(0.409069\pi\)
\(42\) 0 0
\(43\) 1.29317e9 + 2.23983e9i 0.00475746 + 0.00824016i 0.868394 0.495874i \(-0.165152\pi\)
−0.863637 + 0.504114i \(0.831819\pi\)
\(44\) 1.01584e12i 3.18169i
\(45\) 0 0
\(46\) 3.17174e11 0.727768
\(47\) 3.91113e11 2.25809e11i 0.772001 0.445715i −0.0615871 0.998102i \(-0.519616\pi\)
0.833588 + 0.552387i \(0.186283\pi\)
\(48\) 0 0
\(49\) 2.85813e11 4.95043e11i 0.421414 0.729911i
\(50\) −1.58718e12 9.16358e11i −2.03159 1.17294i
\(51\) 0 0
\(52\) 1.32590e12 + 2.29653e12i 1.28970 + 2.23382i
\(53\) 1.74490e12i 1.48538i 0.669633 + 0.742692i \(0.266451\pi\)
−0.669633 + 0.742692i \(0.733549\pi\)
\(54\) 0 0
\(55\) −3.51500e12 −2.30880
\(56\) −1.15359e12 + 6.66027e11i −0.667938 + 0.385634i
\(57\) 0 0
\(58\) 1.13417e12 1.96445e12i 0.513669 0.889702i
\(59\) −3.57141e12 2.06195e12i −1.43508 0.828542i −0.437575 0.899182i \(-0.644163\pi\)
−0.997502 + 0.0706396i \(0.977496\pi\)
\(60\) 0 0
\(61\) −8.17270e11 1.41555e12i −0.260050 0.450420i 0.706205 0.708007i \(-0.250406\pi\)
−0.966255 + 0.257588i \(0.917072\pi\)
\(62\) 3.05473e12i 0.867422i
\(63\) 0 0
\(64\) 2.82736e12 0.642868
\(65\) 7.94640e12 4.58786e12i 1.62098 0.935872i
\(66\) 0 0
\(67\) 1.15275e12 1.99661e12i 0.190200 0.329436i −0.755117 0.655591i \(-0.772420\pi\)
0.945316 + 0.326155i \(0.105753\pi\)
\(68\) 1.03886e13 + 5.99787e12i 1.54524 + 0.892144i
\(69\) 0 0
\(70\) 4.39169e12 + 7.60663e12i 0.533268 + 0.923647i
\(71\) 8.75750e12i 0.962879i −0.876479 0.481440i \(-0.840114\pi\)
0.876479 0.481440i \(-0.159886\pi\)
\(72\) 0 0
\(73\) −1.12442e13 −1.01782 −0.508908 0.860821i \(-0.669951\pi\)
−0.508908 + 0.860821i \(0.669951\pi\)
\(74\) −8.13885e12 + 4.69897e12i −0.669794 + 0.386705i
\(75\) 0 0
\(76\) 3.10048e11 5.37019e11i 0.0211706 0.0366686i
\(77\) 8.33152e12 + 4.81021e12i 0.519146 + 0.299729i
\(78\) 0 0
\(79\) −5.16374e11 8.94386e11i −0.0268890 0.0465731i 0.852268 0.523106i \(-0.175227\pi\)
−0.879157 + 0.476533i \(0.841893\pi\)
\(80\) 4.23786e13i 2.02077i
\(81\) 0 0
\(82\) −6.35783e13 −2.55042
\(83\) −8.74183e12 + 5.04710e12i −0.322148 + 0.185992i −0.652350 0.757918i \(-0.726217\pi\)
0.330201 + 0.943910i \(0.392883\pi\)
\(84\) 0 0
\(85\) 2.07538e13 3.59466e13i 0.647388 1.12131i
\(86\) −5.05125e11 2.91634e11i −0.0145181 0.00838203i
\(87\) 0 0
\(88\) 6.01091e13 + 1.04112e14i 1.47083 + 2.54754i
\(89\) 5.62078e13i 1.27077i −0.772196 0.635384i \(-0.780842\pi\)
0.772196 0.635384i \(-0.219158\pi\)
\(90\) 0 0
\(91\) −2.51135e13 −0.485980
\(92\) −4.19904e13 + 2.42432e13i −0.752722 + 0.434585i
\(93\) 0 0
\(94\) −5.09245e13 + 8.82037e13i −0.785292 + 1.36017i
\(95\) −1.85818e12 1.07282e12i −0.0266087 0.0153625i
\(96\) 0 0
\(97\) −5.37337e13 9.30695e13i −0.665035 1.15187i −0.979276 0.202531i \(-0.935083\pi\)
0.314241 0.949343i \(-0.398250\pi\)
\(98\) 1.28913e14i 1.48496i
\(99\) 0 0
\(100\) 2.80167e14 2.80167
\(101\) 4.76606e13 2.75169e13i 0.444539 0.256655i −0.260982 0.965344i \(-0.584046\pi\)
0.705521 + 0.708689i \(0.250713\pi\)
\(102\) 0 0
\(103\) −7.88824e12 + 1.36628e13i −0.0641386 + 0.111091i −0.896312 0.443425i \(-0.853763\pi\)
0.832173 + 0.554516i \(0.187097\pi\)
\(104\) −2.71778e14 1.56911e14i −2.06529 1.19240i
\(105\) 0 0
\(106\) −1.96754e14 3.40788e14i −1.30853 2.26644i
\(107\) 1.14144e14i 0.710832i −0.934708 0.355416i \(-0.884339\pi\)
0.934708 0.355416i \(-0.115661\pi\)
\(108\) 0 0
\(109\) −9.59637e13 −0.524954 −0.262477 0.964938i \(-0.584539\pi\)
−0.262477 + 0.964938i \(0.584539\pi\)
\(110\) 6.86500e14 3.96351e14i 3.52283 2.03391i
\(111\) 0 0
\(112\) 5.79942e13 1.00449e14i 0.262336 0.454380i
\(113\) −1.83781e14 1.06106e14i −0.781179 0.451014i 0.0556691 0.998449i \(-0.482271\pi\)
−0.836848 + 0.547435i \(0.815604\pi\)
\(114\) 0 0
\(115\) 8.38858e13 + 1.45294e14i 0.315358 + 0.546216i
\(116\) 3.46761e14i 1.22694i
\(117\) 0 0
\(118\) 9.30021e14 2.91957
\(119\) −9.83842e13 + 5.68022e13i −0.291137 + 0.168088i
\(120\) 0 0
\(121\) 2.44247e14 4.23049e14i 0.643180 1.11402i
\(122\) 3.19235e14 + 1.84310e14i 0.793581 + 0.458174i
\(123\) 0 0
\(124\) −2.33487e14 4.04412e14i −0.517978 0.897165i
\(125\) 2.41339e14i 0.506124i
\(126\) 0 0
\(127\) −4.79615e14 −0.900050 −0.450025 0.893016i \(-0.648585\pi\)
−0.450025 + 0.893016i \(0.648585\pi\)
\(128\) −7.40520e14 + 4.27539e14i −1.31543 + 0.759462i
\(129\) 0 0
\(130\) −1.03465e15 + 1.79207e15i −1.64889 + 2.85596i
\(131\) −5.75621e14 3.32335e14i −0.869436 0.501969i −0.00227534 0.999997i \(-0.500724\pi\)
−0.867161 + 0.498028i \(0.834058\pi\)
\(132\) 0 0
\(133\) 2.93627e12 + 5.08577e12i 0.00398873 + 0.00690868i
\(134\) 5.19933e14i 0.670215i
\(135\) 0 0
\(136\) −1.41962e15 −1.64968
\(137\) −3.95132e13 + 2.28130e13i −0.0436213 + 0.0251848i −0.521652 0.853158i \(-0.674684\pi\)
0.478031 + 0.878343i \(0.341351\pi\)
\(138\) 0 0
\(139\) −2.16373e14 + 3.74770e14i −0.215824 + 0.373818i −0.953527 0.301307i \(-0.902577\pi\)
0.737703 + 0.675125i \(0.235910\pi\)
\(140\) −1.16282e15 6.71356e14i −1.10311 0.636879i
\(141\) 0 0
\(142\) 9.87494e14 + 1.71039e15i 0.848235 + 1.46919i
\(143\) 2.26650e15i 1.85355i
\(144\) 0 0
\(145\) 1.19986e15 0.890337
\(146\) 2.19606e15 1.26789e15i 1.55301 0.896630i
\(147\) 0 0
\(148\) 7.18329e14 1.24418e15i 0.461840 0.799930i
\(149\) 2.39632e15 + 1.38351e15i 1.46974 + 0.848555i 0.999424 0.0339428i \(-0.0108064\pi\)
0.470317 + 0.882498i \(0.344140\pi\)
\(150\) 0 0
\(151\) −5.90234e13 1.02232e14i −0.0329751 0.0571145i 0.849067 0.528285i \(-0.177165\pi\)
−0.882042 + 0.471171i \(0.843832\pi\)
\(152\) 7.33841e13i 0.0391469i
\(153\) 0 0
\(154\) −2.16959e15 −1.05617
\(155\) −1.39934e15 + 8.07910e14i −0.651031 + 0.375873i
\(156\) 0 0
\(157\) 1.45515e15 2.52039e15i 0.618884 1.07194i −0.370805 0.928711i \(-0.620918\pi\)
0.989690 0.143228i \(-0.0457483\pi\)
\(158\) 2.01701e14 + 1.16452e14i 0.0820558 + 0.0473750i
\(159\) 0 0
\(160\) −7.91625e14 1.37113e15i −0.294903 0.510788i
\(161\) 4.59184e14i 0.163759i
\(162\) 0 0
\(163\) −1.66748e15 −0.545441 −0.272720 0.962093i \(-0.587923\pi\)
−0.272720 + 0.962093i \(0.587923\pi\)
\(164\) 8.41706e15 4.85959e15i 2.63787 1.52298i
\(165\) 0 0
\(166\) 1.13822e15 1.97145e15i 0.327695 0.567584i
\(167\) −4.80709e15 2.77538e15i −1.32699 0.766137i −0.342155 0.939643i \(-0.611157\pi\)
−0.984833 + 0.173506i \(0.944490\pi\)
\(168\) 0 0
\(169\) −9.89600e14 1.71404e15i −0.251335 0.435325i
\(170\) 9.36076e15i 2.28123i
\(171\) 0 0
\(172\) 8.91640e13 0.0200212
\(173\) −6.42000e15 + 3.70659e15i −1.38424 + 0.799193i −0.992659 0.120949i \(-0.961406\pi\)
−0.391585 + 0.920142i \(0.628073\pi\)
\(174\) 0 0
\(175\) −1.32664e15 + 2.29781e15i −0.263929 + 0.457139i
\(176\) −9.06553e15 5.23399e15i −1.73302 1.00056i
\(177\) 0 0
\(178\) 6.33798e15 + 1.09777e16i 1.11947 + 1.93897i
\(179\) 6.42965e15i 1.09198i −0.837791 0.545992i \(-0.816153\pi\)
0.837791 0.545992i \(-0.183847\pi\)
\(180\) 0 0
\(181\) 2.89701e15 0.455198 0.227599 0.973755i \(-0.426912\pi\)
0.227599 + 0.973755i \(0.426912\pi\)
\(182\) 4.90482e15 2.83180e15i 0.741521 0.428117i
\(183\) 0 0
\(184\) 2.86901e15 4.96928e15i 0.401798 0.695935i
\(185\) −4.30510e15 2.48555e15i −0.580472 0.335136i
\(186\) 0 0
\(187\) 5.12641e15 + 8.87920e15i 0.641094 + 1.11041i
\(188\) 1.55696e16i 1.87574i
\(189\) 0 0
\(190\) 4.83885e14 0.0541336
\(191\) 1.13009e15 6.52459e14i 0.121865 0.0703589i −0.437828 0.899059i \(-0.644252\pi\)
0.559694 + 0.828700i \(0.310919\pi\)
\(192\) 0 0
\(193\) 2.74464e15 4.75385e15i 0.275159 0.476590i −0.695016 0.718994i \(-0.744603\pi\)
0.970175 + 0.242404i \(0.0779361\pi\)
\(194\) 2.09890e16 + 1.21180e16i 2.02945 + 1.17171i
\(195\) 0 0
\(196\) −9.85343e15 1.70666e16i −0.886737 1.53587i
\(197\) 6.69322e14i 0.0581261i 0.999578 + 0.0290631i \(0.00925236\pi\)
−0.999578 + 0.0290631i \(0.990748\pi\)
\(198\) 0 0
\(199\) −1.20978e16 −0.978893 −0.489447 0.872033i \(-0.662801\pi\)
−0.489447 + 0.872033i \(0.662801\pi\)
\(200\) −2.87138e16 + 1.65779e16i −2.24326 + 1.29515i
\(201\) 0 0
\(202\) −6.20559e15 + 1.07484e16i −0.452193 + 0.783221i
\(203\) −2.84400e15 1.64198e15i −0.200197 0.115584i
\(204\) 0 0
\(205\) −1.68151e16 2.91246e16i −1.10515 1.91418i
\(206\) 3.55790e15i 0.226008i
\(207\) 0 0
\(208\) 2.73261e16 1.62231
\(209\) 4.58992e14 2.64999e14i 0.0263500 0.0152132i
\(210\) 0 0
\(211\) 1.83193e16 3.17300e16i 0.983857 1.70409i 0.336948 0.941523i \(-0.390605\pi\)
0.646909 0.762567i \(-0.276061\pi\)
\(212\) 5.20962e16 + 3.00777e16i 2.70679 + 1.56277i
\(213\) 0 0
\(214\) 1.28709e16 + 2.22930e16i 0.626198 + 1.08461i
\(215\) 3.08524e14i 0.0145285i
\(216\) 0 0
\(217\) 4.42243e15 0.195183
\(218\) 1.87422e16 1.08208e16i 0.800988 0.462451i
\(219\) 0 0
\(220\) −6.05900e16 + 1.04945e17i −2.42908 + 4.20730i
\(221\) −2.31786e16 1.33822e16i −0.900206 0.519734i
\(222\) 0 0
\(223\) −1.16994e16 2.02639e16i −0.426608 0.738906i 0.569961 0.821671i \(-0.306958\pi\)
−0.996569 + 0.0827653i \(0.973625\pi\)
\(224\) 4.33329e15i 0.153137i
\(225\) 0 0
\(226\) 4.78579e16 1.58926
\(227\) 4.30758e16 2.48698e16i 1.38692 0.800740i 0.393955 0.919130i \(-0.371107\pi\)
0.992967 + 0.118390i \(0.0377733\pi\)
\(228\) 0 0
\(229\) −9.31885e15 + 1.61407e16i −0.282172 + 0.488736i −0.971919 0.235314i \(-0.924388\pi\)
0.689747 + 0.724050i \(0.257722\pi\)
\(230\) −3.27668e16 1.89179e16i −0.962362 0.555620i
\(231\) 0 0
\(232\) −2.05184e16 3.55390e16i −0.567190 0.982402i
\(233\) 1.10854e16i 0.297345i −0.988886 0.148672i \(-0.952500\pi\)
0.988886 0.148672i \(-0.0475000\pi\)
\(234\) 0 0
\(235\) −5.38737e16 −1.36114
\(236\) −1.23125e17 + 7.10860e16i −3.01968 + 1.74341i
\(237\) 0 0
\(238\) 1.28100e16 2.21876e16i 0.296149 0.512945i
\(239\) 1.63305e16 + 9.42841e15i 0.366618 + 0.211667i 0.671980 0.740569i \(-0.265444\pi\)
−0.305362 + 0.952236i \(0.598777\pi\)
\(240\) 0 0
\(241\) 3.48644e16 + 6.03870e16i 0.738352 + 1.27886i 0.953237 + 0.302224i \(0.0977290\pi\)
−0.214885 + 0.976639i \(0.568938\pi\)
\(242\) 1.10165e17i 2.26640i
\(243\) 0 0
\(244\) −5.63509e16 −1.09439
\(245\) −5.90537e16 + 3.40947e16i −1.11451 + 0.643464i
\(246\) 0 0
\(247\) −6.91765e14 + 1.19817e15i −0.0123333 + 0.0213619i
\(248\) 4.78594e16 + 2.76317e16i 0.829480 + 0.478901i
\(249\) 0 0
\(250\) 2.72133e16 + 4.71348e16i 0.445863 + 0.772257i
\(251\) 6.39458e16i 1.01882i −0.860525 0.509408i \(-0.829864\pi\)
0.860525 0.509408i \(-0.170136\pi\)
\(252\) 0 0
\(253\) −4.14414e16 −0.624584
\(254\) 9.36715e16 5.40813e16i 1.37332 0.792886i
\(255\) 0 0
\(256\) 7.32567e16 1.26884e17i 1.01664 1.76087i
\(257\) −1.93005e16 1.11431e16i −0.260637 0.150479i 0.363988 0.931404i \(-0.381415\pi\)
−0.624625 + 0.780925i \(0.714748\pi\)
\(258\) 0 0
\(259\) 6.80285e15 + 1.17829e16i 0.0870147 + 0.150714i
\(260\) 3.16334e17i 3.93851i
\(261\) 0 0
\(262\) 1.49896e17 1.76881
\(263\) 3.33508e16 1.92551e16i 0.383191 0.221236i −0.296015 0.955183i \(-0.595658\pi\)
0.679206 + 0.733948i \(0.262324\pi\)
\(264\) 0 0
\(265\) 1.04075e17 1.80262e17i 1.13403 1.96419i
\(266\) −1.14694e15 6.62187e14i −0.0121722 0.00702763i
\(267\) 0 0
\(268\) −3.97410e16 6.88334e16i −0.400217 0.693196i
\(269\) 7.62726e16i 0.748347i 0.927359 + 0.374173i \(0.122073\pi\)
−0.927359 + 0.374173i \(0.877927\pi\)
\(270\) 0 0
\(271\) −1.49067e17 −1.38866 −0.694330 0.719657i \(-0.744299\pi\)
−0.694330 + 0.719657i \(0.744299\pi\)
\(272\) 1.07052e17 6.18064e16i 0.971879 0.561114i
\(273\) 0 0
\(274\) 5.14477e15 8.91101e15i 0.0443723 0.0768551i
\(275\) 2.07378e17 + 1.19730e17i 1.74355 + 1.00664i
\(276\) 0 0
\(277\) 1.21604e17 + 2.10624e17i 0.971827 + 1.68325i 0.690031 + 0.723780i \(0.257597\pi\)
0.281796 + 0.959474i \(0.409070\pi\)
\(278\) 9.75928e16i 0.760509i
\(279\) 0 0
\(280\) 1.58901e17 1.17766
\(281\) −1.72947e17 + 9.98511e16i −1.25017 + 0.721786i −0.971143 0.238497i \(-0.923345\pi\)
−0.279027 + 0.960283i \(0.590012\pi\)
\(282\) 0 0
\(283\) −7.68288e15 + 1.33071e16i −0.0528469 + 0.0915335i −0.891239 0.453535i \(-0.850163\pi\)
0.838392 + 0.545068i \(0.183496\pi\)
\(284\) −2.61467e17 1.50958e17i −1.75464 1.01304i
\(285\) 0 0
\(286\) −2.55570e17 4.42661e17i −1.63286 2.82819i
\(287\) 9.20444e16i 0.573884i
\(288\) 0 0
\(289\) 4.73057e16 0.280950
\(290\) −2.34339e17 + 1.35296e17i −1.35850 + 0.784329i
\(291\) 0 0
\(292\) −1.93823e17 + 3.35710e17i −1.07084 + 1.85475i
\(293\) 6.23149e16 + 3.59775e16i 0.336139 + 0.194070i 0.658563 0.752525i \(-0.271165\pi\)
−0.322425 + 0.946595i \(0.604498\pi\)
\(294\) 0 0
\(295\) 2.45971e17 + 4.26034e17i 1.26511 + 2.19124i
\(296\) 1.70019e17i 0.853994i
\(297\) 0 0
\(298\) −6.24019e17 −2.99009
\(299\) 9.36871e16 5.40902e16i 0.438512 0.253175i
\(300\) 0 0
\(301\) −4.22208e14 + 7.31286e14i −0.00188609 + 0.00326680i
\(302\) 2.30552e16 + 1.33109e16i 0.100628 + 0.0580978i
\(303\) 0 0
\(304\) −3.19496e15 5.53383e15i −0.0133153 0.0230627i
\(305\) 1.94985e17i 0.794148i
\(306\) 0 0
\(307\) 4.06801e17 1.58275 0.791376 0.611329i \(-0.209365\pi\)
0.791376 + 0.611329i \(0.209365\pi\)
\(308\) 2.87230e17 1.65832e17i 1.09238 0.630687i
\(309\) 0 0
\(310\) 1.82200e17 3.15579e17i 0.662240 1.14703i
\(311\) −3.50740e17 2.02500e17i −1.24641 0.719618i −0.276022 0.961151i \(-0.589016\pi\)
−0.970393 + 0.241533i \(0.922350\pi\)
\(312\) 0 0
\(313\) 1.13584e17 + 1.96734e17i 0.385929 + 0.668449i 0.991898 0.127040i \(-0.0405476\pi\)
−0.605968 + 0.795489i \(0.707214\pi\)
\(314\) 6.56328e17i 2.18079i
\(315\) 0 0
\(316\) −3.56041e16 −0.113159
\(317\) 3.51492e17 2.02934e17i 1.09270 0.630869i 0.158404 0.987374i \(-0.449365\pi\)
0.934293 + 0.356505i \(0.116032\pi\)
\(318\) 0 0
\(319\) −1.48189e17 + 2.56671e17i −0.440841 + 0.763558i
\(320\) −2.92090e17 1.68638e17i −0.850095 0.490802i
\(321\) 0 0
\(322\) 5.17775e16 + 8.96812e16i 0.144261 + 0.249868i
\(323\) 6.25857e15i 0.0170631i
\(324\) 0 0
\(325\) −6.25095e17 −1.63216
\(326\) 3.25668e17 1.88025e17i 0.832247 0.480498i
\(327\) 0 0
\(328\) −5.75100e17 + 9.96102e17i −1.40808 + 2.43886i
\(329\) 1.27695e17 + 7.37250e16i 0.306058 + 0.176703i
\(330\) 0 0
\(331\) −4.07010e17 7.04962e17i −0.934995 1.61946i −0.774643 0.632399i \(-0.782070\pi\)
−0.160352 0.987060i \(-0.551263\pi\)
\(332\) 3.47998e17i 0.782727i
\(333\) 0 0
\(334\) 1.25180e18 2.69967
\(335\) −2.38177e17 + 1.37511e17i −0.503020 + 0.290419i
\(336\) 0 0
\(337\) 1.41935e17 2.45839e17i 0.287529 0.498015i −0.685690 0.727893i \(-0.740500\pi\)
0.973219 + 0.229879i \(0.0738330\pi\)
\(338\) 3.86549e17 + 2.23174e17i 0.766987 + 0.442820i
\(339\) 0 0
\(340\) −7.15488e17 1.23926e18i −1.36223 2.35945i
\(341\) 3.99125e17i 0.744438i
\(342\) 0 0
\(343\) 4.08066e17 0.730586
\(344\) −9.13826e15 + 5.27598e15i −0.0160308 + 0.00925537i
\(345\) 0 0
\(346\) 8.35909e17 1.44784e18i 1.40808 2.43886i
\(347\) 6.01786e17 + 3.47441e17i 0.993426 + 0.573555i 0.906297 0.422642i \(-0.138897\pi\)
0.0871295 + 0.996197i \(0.472231\pi\)
\(348\) 0 0
\(349\) 6.07877e16 + 1.05287e17i 0.0963912 + 0.166955i 0.910188 0.414195i \(-0.135937\pi\)
−0.813797 + 0.581149i \(0.802603\pi\)
\(350\) 5.98368e17i 0.930019i
\(351\) 0 0
\(352\) 3.91080e17 0.584073
\(353\) 4.47436e17 2.58327e17i 0.655100 0.378222i −0.135307 0.990804i \(-0.543202\pi\)
0.790407 + 0.612581i \(0.209869\pi\)
\(354\) 0 0
\(355\) −5.22342e17 + 9.04723e17i −0.735117 + 1.27326i
\(356\) −1.67816e18 9.68884e17i −2.31570 1.33697i
\(357\) 0 0
\(358\) 7.25006e17 + 1.25575e18i 0.961967 + 1.66618i
\(359\) 5.70293e17i 0.742057i −0.928622 0.371028i \(-0.879005\pi\)
0.928622 0.371028i \(-0.120995\pi\)
\(360\) 0 0
\(361\) −7.98683e17 −0.999595
\(362\) −5.65803e17 + 3.26667e17i −0.694553 + 0.401001i
\(363\) 0 0
\(364\) −4.32896e17 + 7.49798e17i −0.511298 + 0.885593i
\(365\) 1.16162e18 + 6.70662e17i 1.34590 + 0.777058i
\(366\) 0 0
\(367\) −2.36841e17 4.10220e17i −0.264115 0.457461i 0.703216 0.710976i \(-0.251747\pi\)
−0.967331 + 0.253515i \(0.918413\pi\)
\(368\) 4.99638e17i 0.546664i
\(369\) 0 0
\(370\) 1.12108e18 1.18093
\(371\) −4.93371e17 + 2.84848e17i −0.509983 + 0.294439i
\(372\) 0 0
\(373\) 5.72914e17 9.92316e17i 0.570332 0.987843i −0.426200 0.904629i \(-0.640148\pi\)
0.996532 0.0832143i \(-0.0265186\pi\)
\(374\) −2.00243e18 1.15611e18i −1.95640 1.12953i
\(375\) 0 0
\(376\) 9.21279e17 + 1.59570e18i 0.867114 + 1.50189i
\(377\) 7.73679e17i 0.714778i
\(378\) 0 0
\(379\) −9.57846e16 −0.0852749 −0.0426374 0.999091i \(-0.513576\pi\)
−0.0426374 + 0.999091i \(0.513576\pi\)
\(380\) −6.40611e16 + 3.69857e16i −0.0559898 + 0.0323257i
\(381\) 0 0
\(382\) −1.47142e17 + 2.54858e17i −0.123963 + 0.214711i
\(383\) −7.70880e17 4.45068e17i −0.637669 0.368158i 0.146047 0.989278i \(-0.453345\pi\)
−0.783716 + 0.621119i \(0.786678\pi\)
\(384\) 0 0
\(385\) −5.73811e17 9.93869e17i −0.457661 0.792691i
\(386\) 1.23794e18i 0.969591i
\(387\) 0 0
\(388\) −3.70495e18 −2.79872
\(389\) −6.37685e17 + 3.68167e17i −0.473106 + 0.273148i −0.717539 0.696518i \(-0.754732\pi\)
0.244433 + 0.969666i \(0.421398\pi\)
\(390\) 0 0
\(391\) 2.44684e17 4.23805e17i 0.175133 0.303340i
\(392\) 2.01972e18 + 1.16609e18i 1.42000 + 0.819839i
\(393\) 0 0
\(394\) −7.54726e16 1.30722e17i −0.0512054 0.0886903i
\(395\) 1.23197e17i 0.0821144i
\(396\) 0 0
\(397\) 6.60321e17 0.424836 0.212418 0.977179i \(-0.431866\pi\)
0.212418 + 0.977179i \(0.431866\pi\)
\(398\) 2.36277e18 1.36415e18i 1.49362 0.862342i
\(399\) 0 0
\(400\) 1.44352e18 2.50025e18i 0.881054 1.52603i
\(401\) −8.78035e17 5.06934e17i −0.526625 0.304047i 0.213016 0.977049i \(-0.431671\pi\)
−0.739641 + 0.673002i \(0.765005\pi\)
\(402\) 0 0
\(403\) 5.20947e17 + 9.02306e17i 0.301758 + 0.522659i
\(404\) 1.89729e18i 1.08010i
\(405\) 0 0
\(406\) 7.40598e17 0.407287
\(407\) 1.06341e18 6.13959e17i 0.574829 0.331878i
\(408\) 0 0
\(409\) 3.56261e17 6.17062e17i 0.186082 0.322304i −0.757858 0.652419i \(-0.773754\pi\)
0.943941 + 0.330115i \(0.107088\pi\)
\(410\) 6.56817e18 + 3.79213e18i 3.37254 + 1.94714i
\(411\) 0 0
\(412\) 2.71948e17 + 4.71027e17i 0.134960 + 0.233757i
\(413\) 1.34642e18i 0.656948i
\(414\) 0 0
\(415\) 1.20414e18 0.567989
\(416\) −8.84119e17 + 5.10446e17i −0.410069 + 0.236754i
\(417\) 0 0
\(418\) −5.97625e16 + 1.03512e17i −0.0268037 + 0.0464254i
\(419\) −1.65428e18 9.55098e17i −0.729643 0.421260i 0.0886486 0.996063i \(-0.471745\pi\)
−0.818292 + 0.574803i \(0.805079\pi\)
\(420\) 0 0
\(421\) 1.81139e18 + 3.13741e18i 0.772745 + 1.33843i 0.936053 + 0.351858i \(0.114450\pi\)
−0.163308 + 0.986575i \(0.552217\pi\)
\(422\) 8.26273e18i 3.46686i
\(423\) 0 0
\(424\) −7.11900e18 −2.88973
\(425\) −2.44886e18 + 1.41385e18i −0.977780 + 0.564521i
\(426\) 0 0
\(427\) 2.66832e17 4.62167e17i 0.103096 0.178568i
\(428\) −3.40792e18 1.96756e18i −1.29534 0.747864i
\(429\) 0 0
\(430\) 3.47891e16 + 6.02565e16i 0.0127986 + 0.0221679i
\(431\) 3.56102e18i 1.28894i 0.764628 + 0.644472i \(0.222923\pi\)
−0.764628 + 0.644472i \(0.777077\pi\)
\(432\) 0 0
\(433\) −3.99698e18 −1.40061 −0.700304 0.713845i \(-0.746952\pi\)
−0.700304 + 0.713845i \(0.746952\pi\)
\(434\) −8.63726e17 + 4.98672e17i −0.297816 + 0.171944i
\(435\) 0 0
\(436\) −1.65418e18 + 2.86512e18i −0.552302 + 0.956615i
\(437\) −2.19077e16 1.26484e16i −0.00719826 0.00415592i
\(438\) 0 0
\(439\) −2.79452e18 4.84025e18i −0.889314 1.54034i −0.840687 0.541521i \(-0.817849\pi\)
−0.0486271 0.998817i \(-0.515485\pi\)
\(440\) 1.43408e19i 4.49165i
\(441\) 0 0
\(442\) 6.03589e18 1.83141
\(443\) −4.01235e18 + 2.31653e18i −1.19832 + 0.691850i −0.960180 0.279380i \(-0.909871\pi\)
−0.238140 + 0.971231i \(0.576538\pi\)
\(444\) 0 0
\(445\) −3.35252e18 + 5.80673e18i −0.970177 + 1.68040i
\(446\) 4.56991e18 + 2.63844e18i 1.30186 + 0.751628i
\(447\) 0 0
\(448\) 4.61556e17 + 7.99439e17i 0.127432 + 0.220719i
\(449\) 2.27057e18i 0.617177i −0.951196 0.308588i \(-0.900143\pi\)
0.951196 0.308588i \(-0.0998566\pi\)
\(450\) 0 0
\(451\) 8.30703e18 2.18882
\(452\) −6.33585e18 + 3.65800e18i −1.64375 + 0.949020i
\(453\) 0 0
\(454\) −5.60863e18 + 9.71443e18i −1.41080 + 2.44358i
\(455\) 2.59444e18 + 1.49790e18i 0.642634 + 0.371025i
\(456\) 0 0
\(457\) −1.85245e18 3.20854e18i −0.444973 0.770716i 0.553078 0.833130i \(-0.313453\pi\)
−0.998050 + 0.0624143i \(0.980120\pi\)
\(458\) 4.20317e18i 0.994302i
\(459\) 0 0
\(460\) 5.78394e18 1.32715
\(461\) −3.22510e18 + 1.86201e18i −0.728848 + 0.420801i −0.818001 0.575217i \(-0.804917\pi\)
0.0891526 + 0.996018i \(0.471584\pi\)
\(462\) 0 0
\(463\) 3.25940e18 5.64545e18i 0.714614 1.23775i −0.248495 0.968633i \(-0.579936\pi\)
0.963108 0.269114i \(-0.0867308\pi\)
\(464\) 3.09455e18 + 1.78664e18i 0.668301 + 0.385844i
\(465\) 0 0
\(466\) 1.24999e18 + 2.16504e18i 0.261942 + 0.453697i
\(467\) 4.68367e18i 0.966869i −0.875380 0.483435i \(-0.839389\pi\)
0.875380 0.483435i \(-0.160611\pi\)
\(468\) 0 0
\(469\) 7.52725e17 0.150809
\(470\) 1.05218e19 6.07479e18i 2.07686 1.19907i
\(471\) 0 0
\(472\) 8.41255e18 1.45710e19i 1.61188 2.79186i
\(473\) 6.59987e16 + 3.81044e16i 0.0124597 + 0.00719361i
\(474\) 0 0
\(475\) 7.30860e16 + 1.26589e17i 0.0133961 + 0.0232028i
\(476\) 3.91652e18i 0.707378i
\(477\) 0 0
\(478\) −4.25258e18 −0.745860
\(479\) 2.56355e18 1.48007e18i 0.443092 0.255819i −0.261817 0.965118i \(-0.584322\pi\)
0.704908 + 0.709299i \(0.250988\pi\)
\(480\) 0 0
\(481\) −1.60270e18 + 2.77596e18i −0.269053 + 0.466013i
\(482\) −1.36184e19 7.86262e18i −2.25319 1.30088i
\(483\) 0 0
\(484\) −8.42045e18 1.45846e19i −1.35337 2.34411i
\(485\) 1.28198e19i 2.03090i
\(486\) 0 0
\(487\) 6.20013e18 0.954330 0.477165 0.878814i \(-0.341664\pi\)
0.477165 + 0.878814i \(0.341664\pi\)
\(488\) 5.77530e18 3.33437e18i 0.876266 0.505913i
\(489\) 0 0
\(490\) 7.68902e18 1.33178e19i 1.13370 1.96363i
\(491\) 6.04995e18 + 3.49294e18i 0.879389 + 0.507716i 0.870457 0.492244i \(-0.163823\pi\)
0.00893228 + 0.999960i \(0.497157\pi\)
\(492\) 0 0
\(493\) −1.74992e18 3.03095e18i −0.247223 0.428203i
\(494\) 3.12013e17i 0.0434594i
\(495\) 0 0
\(496\) −4.81205e18 −0.651566
\(497\) 2.47619e18 1.42963e18i 0.330589 0.190866i
\(498\) 0 0
\(499\) −6.57061e18 + 1.13806e19i −0.852907 + 1.47728i 0.0256658 + 0.999671i \(0.491829\pi\)
−0.878573 + 0.477608i \(0.841504\pi\)
\(500\) −7.20548e18 4.16009e18i −0.922302 0.532491i
\(501\) 0 0
\(502\) 7.21051e18 + 1.24890e19i 0.897512 + 1.55454i
\(503\) 1.30311e19i 1.59958i −0.600279 0.799791i \(-0.704944\pi\)
0.600279 0.799791i \(-0.295056\pi\)
\(504\) 0 0
\(505\) −6.56499e18 −0.783780
\(506\) 8.09375e18 4.67293e18i 0.953007 0.550219i
\(507\) 0 0
\(508\) −8.26738e18 + 1.43195e19i −0.946939 + 1.64015i
\(509\) −3.96383e18 2.28852e18i −0.447807 0.258541i 0.259097 0.965851i \(-0.416575\pi\)
−0.706903 + 0.707310i \(0.749908\pi\)
\(510\) 0 0
\(511\) −1.83557e18 3.17931e18i −0.201756 0.349451i
\(512\) 1.90320e19i 2.06346i
\(513\) 0 0
\(514\) 5.02599e18 0.530249
\(515\) 1.62984e18 9.40990e17i 0.169627 0.0979342i
\(516\) 0 0
\(517\) 6.65370e18 1.15245e19i 0.673953 1.16732i
\(518\) −2.65727e18 1.53418e18i −0.265539 0.153309i
\(519\) 0 0
\(520\) 1.87180e19 + 3.24205e19i 1.82069 + 3.15352i
\(521\) 1.78294e19i 1.71109i −0.517728 0.855545i \(-0.673222\pi\)
0.517728 0.855545i \(-0.326778\pi\)
\(522\) 0 0
\(523\) −1.62151e18 −0.151498 −0.0757492 0.997127i \(-0.524135\pi\)
−0.0757492 + 0.997127i \(0.524135\pi\)
\(524\) −1.98446e19 + 1.14573e19i −1.82946 + 1.05624i
\(525\) 0 0
\(526\) −4.34240e18 + 7.52125e18i −0.389789 + 0.675134i
\(527\) 4.08170e18 + 2.35657e18i 0.361548 + 0.208740i
\(528\) 0 0
\(529\) −4.80742e18 8.32669e18i −0.414688 0.718262i
\(530\) 4.69417e19i 3.99602i
\(531\) 0 0
\(532\) 2.02456e17 0.0167861
\(533\) −1.87798e19 + 1.08425e19i −1.53674 + 0.887236i
\(534\) 0 0
\(535\) −6.80814e18 + 1.17920e19i −0.542690 + 0.939967i
\(536\) 8.14597e18 + 4.70308e18i 0.640899 + 0.370023i
\(537\) 0 0
\(538\) −8.60049e18 1.48965e19i −0.659245 1.14185i
\(539\) 1.68435e19i 1.27442i
\(540\) 0 0
\(541\) −3.01853e18 −0.222543 −0.111272 0.993790i \(-0.535492\pi\)
−0.111272 + 0.993790i \(0.535492\pi\)
\(542\) 2.91136e19 1.68087e19i 2.11885 1.22332i
\(543\) 0 0
\(544\) −2.30907e18 + 3.99942e18i −0.163774 + 0.283665i
\(545\) 9.91385e18 + 5.72376e18i 0.694171 + 0.400780i
\(546\) 0 0
\(547\) −5.68792e18 9.85176e18i −0.388188 0.672361i 0.604018 0.796971i \(-0.293566\pi\)
−0.992206 + 0.124609i \(0.960232\pi\)
\(548\) 1.57296e18i 0.105987i
\(549\) 0 0
\(550\) −5.40028e19 −3.54713
\(551\) −1.56678e17 + 9.04584e16i −0.0101613 + 0.00586661i
\(552\) 0 0
\(553\) 1.68592e17 2.92010e17i 0.0106601 0.0184638i
\(554\) −4.74999e19 2.74241e19i −2.96568 1.71223i
\(555\) 0 0
\(556\) 7.45949e18 + 1.29202e19i 0.454136 + 0.786586i
\(557\) 2.05977e19i 1.23832i 0.785265 + 0.619160i \(0.212527\pi\)
−0.785265 + 0.619160i \(0.787473\pi\)
\(558\) 0 0
\(559\) −1.98939e17 −0.0116637
\(560\) −1.19826e19 + 6.91814e18i −0.693799 + 0.400565i
\(561\) 0 0
\(562\) 2.25184e19 3.90030e19i 1.27169 2.20264i
\(563\) 1.44839e19 + 8.36228e18i 0.807842 + 0.466408i 0.846206 0.532856i \(-0.178881\pi\)
−0.0383639 + 0.999264i \(0.512215\pi\)
\(564\) 0 0
\(565\) 1.26574e19 + 2.19232e19i 0.688660 + 1.19279i
\(566\) 3.46528e18i 0.186219i
\(567\) 0 0
\(568\) 3.57297e19 1.87323
\(569\) 2.80623e19 1.62018e19i 1.45324 0.839028i 0.454575 0.890708i \(-0.349791\pi\)
0.998664 + 0.0516804i \(0.0164577\pi\)
\(570\) 0 0
\(571\) 3.58807e18 6.21472e18i 0.181304 0.314028i −0.761021 0.648728i \(-0.775301\pi\)
0.942325 + 0.334699i \(0.108635\pi\)
\(572\) 6.76694e19 + 3.90689e19i 3.37769 + 1.95011i
\(573\) 0 0
\(574\) −1.03789e19 1.79768e19i −0.505555 0.875647i
\(575\) 1.14294e19i 0.549984i
\(576\) 0 0
\(577\) 1.53662e19 0.721667 0.360834 0.932630i \(-0.382492\pi\)
0.360834 + 0.932630i \(0.382492\pi\)
\(578\) −9.23908e18 + 5.33418e18i −0.428681 + 0.247499i
\(579\) 0 0
\(580\) 2.06826e19 3.58233e19i 0.936720 1.62245i
\(581\) −2.85414e18 1.64784e18i −0.127715 0.0737364i
\(582\) 0 0
\(583\) 2.57076e19 + 4.45268e19i 1.12300 + 1.94510i
\(584\) 4.58752e19i 1.98010i
\(585\) 0 0
\(586\) −1.62273e19 −0.683852
\(587\) 8.23102e18 4.75218e18i 0.342757 0.197891i −0.318733 0.947844i \(-0.603257\pi\)
0.661491 + 0.749953i \(0.269924\pi\)
\(588\) 0 0
\(589\) 1.21818e17 2.10995e17i 0.00495341 0.00857956i
\(590\) −9.60790e19 5.54712e19i −3.86068 2.22897i
\(591\) 0 0
\(592\) −7.40218e18 1.28210e19i −0.290474 0.503116i
\(593\) 4.81259e17i 0.0186636i −0.999956 0.00933182i \(-0.997030\pi\)
0.999956 0.00933182i \(-0.00297045\pi\)
\(594\) 0 0
\(595\) 1.35519e19 0.513311
\(596\) 8.26133e19 4.76968e19i 3.09262 1.78552i
\(597\) 0 0
\(598\) −1.21984e19 + 2.11283e19i −0.446062 + 0.772602i
\(599\) −4.07021e17 2.34994e17i −0.0147106 0.00849315i 0.492627 0.870241i \(-0.336037\pi\)
−0.507337 + 0.861748i \(0.669370\pi\)
\(600\) 0 0
\(601\) −1.96883e19 3.41012e19i −0.695164 1.20406i −0.970125 0.242604i \(-0.921998\pi\)
0.274961 0.961455i \(-0.411335\pi\)
\(602\) 1.90433e17i 0.00664608i
\(603\) 0 0
\(604\) −4.06967e18 −0.138772
\(605\) −5.04656e19 + 2.91363e19i −1.70101 + 0.982081i
\(606\) 0 0
\(607\) −1.77833e19 + 3.08016e19i −0.585722 + 1.01450i 0.409063 + 0.912506i \(0.365856\pi\)
−0.994785 + 0.101994i \(0.967478\pi\)
\(608\) 2.06742e17 + 1.19363e17i 0.00673137 + 0.00388636i
\(609\) 0 0
\(610\) −2.19864e19 3.80816e19i −0.699593 1.21173i
\(611\) 3.47382e19i 1.09275i
\(612\) 0 0
\(613\) −1.21958e19 −0.374962 −0.187481 0.982268i \(-0.560032\pi\)
−0.187481 + 0.982268i \(0.560032\pi\)
\(614\) −7.94505e19 + 4.58708e19i −2.41501 + 1.39430i
\(615\) 0 0
\(616\) −1.96251e19 + 3.39917e19i −0.583106 + 1.00997i
\(617\) 4.58698e18 + 2.64829e18i 0.134751 + 0.0777983i 0.565860 0.824501i \(-0.308544\pi\)
−0.431109 + 0.902300i \(0.641878\pi\)
\(618\) 0 0
\(619\) 1.50766e19 + 2.61134e19i 0.432980 + 0.749944i 0.997128 0.0757298i \(-0.0241286\pi\)
−0.564148 + 0.825674i \(0.690795\pi\)
\(620\) 5.57055e19i 1.58182i
\(621\) 0 0
\(622\) 9.13354e19 2.53575
\(623\) 1.58928e19 9.17570e18i 0.436298 0.251897i
\(624\) 0 0
\(625\) 1.04059e19 1.80235e19i 0.279330 0.483814i
\(626\) −4.43673e19 2.56155e19i −1.17772 0.679958i
\(627\) 0 0
\(628\) −5.01663e19 8.68906e19i −1.30225 2.25557i
\(629\) 1.45001e19i 0.372234i
\(630\) 0 0
\(631\) 4.08708e18 0.102614 0.0513071 0.998683i \(-0.483661\pi\)
0.0513071 + 0.998683i \(0.483661\pi\)
\(632\) 3.64900e18 2.10675e18i 0.0906054 0.0523111i
\(633\) 0 0
\(634\) −4.57655e19 + 7.92682e19i −1.11151 + 1.92519i
\(635\) 4.95482e19 + 2.86067e19i 1.19018 + 0.687150i
\(636\) 0 0
\(637\) 2.19845e19 + 3.80783e19i 0.516584 + 0.894750i
\(638\) 6.68391e19i 1.55341i
\(639\) 0 0
\(640\) 1.02003e20 2.31927
\(641\) −5.21564e19 + 3.01125e19i −1.17301 + 0.677237i −0.954387 0.298573i \(-0.903490\pi\)
−0.218622 + 0.975810i \(0.570156\pi\)
\(642\) 0 0
\(643\) 1.27078e19 2.20105e19i 0.279636 0.484344i −0.691658 0.722225i \(-0.743119\pi\)
0.971294 + 0.237881i \(0.0764528\pi\)
\(644\) −1.37095e19 7.91520e18i −0.298416 0.172290i
\(645\) 0 0
\(646\) −7.05715e17 1.22233e18i −0.0150315 0.0260353i
\(647\) 4.01993e19i 0.847010i −0.905894 0.423505i \(-0.860800\pi\)
0.905894 0.423505i \(-0.139200\pi\)
\(648\) 0 0
\(649\) −1.21515e20 −2.50563
\(650\) 1.22085e20 7.04856e19i 2.49039 1.43783i
\(651\) 0 0
\(652\) −2.87433e19 + 4.97848e19i −0.573856 + 0.993948i
\(653\) 7.34748e19 + 4.24207e19i 1.45126 + 0.837887i 0.998553 0.0537713i \(-0.0171242\pi\)
0.452709 + 0.891658i \(0.350458\pi\)
\(654\) 0 0
\(655\) 3.96443e19 + 6.86660e19i 0.766464 + 1.32755i
\(656\) 1.00154e20i 1.91575i
\(657\) 0 0
\(658\) −3.32529e19 −0.622656
\(659\) 2.98496e19 1.72337e19i 0.553020 0.319286i −0.197319 0.980339i \(-0.563224\pi\)
0.750339 + 0.661053i \(0.229890\pi\)
\(660\) 0 0
\(661\) 3.66421e19 6.34659e19i 0.664614 1.15115i −0.314775 0.949166i \(-0.601929\pi\)
0.979390 0.201980i \(-0.0647375\pi\)
\(662\) 1.58983e20 + 9.17888e19i 2.85328 + 1.64734i
\(663\) 0 0
\(664\) −2.05916e19 3.56657e19i −0.361838 0.626722i
\(665\) 7.00537e17i 0.0121809i
\(666\) 0 0
\(667\) 1.41462e19 0.240856
\(668\) −1.65725e20 + 9.56813e19i −2.79224 + 1.61210i
\(669\) 0 0
\(670\) 3.10115e19 5.37135e19i 0.511681 0.886257i
\(671\) −4.17107e19 2.40817e19i −0.681066 0.393214i
\(672\) 0 0
\(673\) −3.55039e19 6.14945e19i −0.567767 0.983402i −0.996786 0.0801066i \(-0.974474\pi\)
0.429019 0.903296i \(-0.358859\pi\)
\(674\) 6.40184e19i 1.01318i
\(675\) 0 0
\(676\) −6.82331e19 −1.05771
\(677\) −7.21965e19 + 4.16826e19i −1.10763 + 0.639491i −0.938215 0.346053i \(-0.887522\pi\)
−0.169416 + 0.985545i \(0.554188\pi\)
\(678\) 0 0
\(679\) 1.75436e19 3.03865e19i 0.263652 0.456659i
\(680\) 1.46658e20 + 8.46732e19i 2.18144 + 1.25946i
\(681\) 0 0
\(682\) 4.50053e19 + 7.79514e19i 0.655802 + 1.13588i
\(683\) 1.24590e20i 1.79696i −0.439016 0.898479i \(-0.644673\pi\)
0.439016 0.898479i \(-0.355327\pi\)
\(684\) 0 0
\(685\) 5.44273e18 0.0769100
\(686\) −7.96976e19 + 4.60134e19i −1.11475 + 0.643600i
\(687\) 0 0
\(688\) 4.59405e17 7.95713e17i 0.00629617 0.0109053i
\(689\) −1.16235e20 6.71081e19i −1.57689 0.910418i
\(690\) 0 0
\(691\) −3.10500e19 5.37802e19i −0.412777 0.714950i 0.582416 0.812891i \(-0.302108\pi\)
−0.995192 + 0.0979410i \(0.968774\pi\)
\(692\) 2.55570e20i 3.36331i
\(693\) 0 0
\(694\) −1.56710e20 −2.02106
\(695\) 4.47063e19 2.58112e19i 0.570789 0.329545i
\(696\) 0 0
\(697\) −4.90475e19 + 8.49527e19i −0.613744 + 1.06304i
\(698\) −2.37444e19 1.37088e19i −0.294152 0.169829i
\(699\) 0 0
\(700\) 4.57361e19 + 7.92172e19i 0.555358 + 0.961908i
\(701\) 5.95665e19i 0.716103i 0.933702 + 0.358052i \(0.116559\pi\)
−0.933702 + 0.358052i \(0.883441\pi\)
\(702\) 0 0
\(703\) 7.49551e17 0.00883312
\(704\) 7.21495e19 4.16555e19i 0.841831 0.486031i
\(705\) 0 0
\(706\) −5.82578e19 + 1.00905e20i −0.666379 + 1.15420i
\(707\) 1.55608e19 + 8.98404e18i 0.176237 + 0.101750i
\(708\) 0 0
\(709\) 4.42928e19 + 7.67173e19i 0.491823 + 0.851863i 0.999956 0.00941592i \(-0.00299723\pi\)
−0.508132 + 0.861279i \(0.669664\pi\)
\(710\) 2.35597e20i 2.59036i
\(711\) 0 0
\(712\) 2.29322e20 2.47221
\(713\) −1.64980e19 + 9.52515e18i −0.176119 + 0.101682i
\(714\) 0 0
\(715\) 1.35186e20 2.34149e20i 1.41511 2.45103i
\(716\) −1.91965e20 1.10831e20i −1.98990 1.14887i
\(717\) 0 0
\(718\) 6.43062e19 + 1.11382e20i 0.653704 + 1.13225i
\(719\) 1.59134e19i 0.160199i 0.996787 + 0.0800994i \(0.0255238\pi\)
−0.996787 + 0.0800994i \(0.974476\pi\)
\(720\) 0 0
\(721\) −5.15090e18 −0.0508553
\(722\) 1.55987e20 9.00593e19i 1.52521 0.880579i
\(723\) 0 0
\(724\) 4.99374e19 8.64941e19i 0.478912 0.829501i
\(725\) −7.07892e19 4.08702e19i −0.672359 0.388186i
\(726\) 0 0
\(727\) 2.49392e19 + 4.31960e19i 0.232350 + 0.402441i 0.958499 0.285095i \(-0.0920253\pi\)
−0.726149 + 0.687537i \(0.758692\pi\)
\(728\) 1.02461e20i 0.945447i
\(729\) 0 0
\(730\) −3.02495e20 −2.73815
\(731\) −7.79357e17 + 4.49962e17i −0.00698739 + 0.00403417i
\(732\) 0 0
\(733\) −9.33104e19 + 1.61618e20i −0.820733 + 1.42155i 0.0844038 + 0.996432i \(0.473101\pi\)
−0.905137 + 0.425120i \(0.860232\pi\)
\(734\) 9.25126e19 + 5.34122e19i 0.805988 + 0.465337i
\(735\) 0 0
\(736\) −9.33315e18 1.61655e19i −0.0797781 0.138180i
\(737\) 6.79336e19i 0.575191i
\(738\) 0 0
\(739\) 2.24865e18 0.0186815 0.00934073 0.999956i \(-0.497027\pi\)
0.00934073 + 0.999956i \(0.497027\pi\)
\(740\) −1.48419e20 + 8.56896e19i −1.22143 + 0.705190i
\(741\) 0 0
\(742\) 6.42387e19 1.11265e20i 0.518764 0.898525i
\(743\) −5.27339e19 3.04459e19i −0.421860 0.243561i 0.274013 0.961726i \(-0.411649\pi\)
−0.695873 + 0.718165i \(0.744982\pi\)
\(744\) 0 0
\(745\) −1.65040e20 2.85857e20i −1.29567 2.24417i
\(746\) 2.58407e20i 2.00970i
\(747\) 0 0
\(748\) 3.53467e20 2.69797
\(749\) 3.22743e19 1.86336e19i 0.244053 0.140904i
\(750\) 0 0
\(751\) 9.22296e19 1.59746e20i 0.684527 1.18564i −0.289058 0.957312i \(-0.593342\pi\)
0.973585 0.228324i \(-0.0733245\pi\)
\(752\) −1.38945e20 8.02202e19i −1.02169 0.589874i
\(753\) 0 0
\(754\) 8.72399e19 + 1.51104e20i 0.629674 + 1.09063i
\(755\) 1.40818e19i 0.100700i
\(756\) 0 0
\(757\) −1.79301e20 −1.25867 −0.629336 0.777133i \(-0.716673\pi\)
−0.629336 + 0.777133i \(0.716673\pi\)
\(758\) 1.87073e19 1.08006e19i 0.130115 0.0751217i
\(759\) 0 0
\(760\) 4.37700e18 7.58119e18i 0.0298870 0.0517657i
\(761\) 3.15134e19 + 1.81943e19i 0.213208 + 0.123096i 0.602801 0.797891i \(-0.294051\pi\)
−0.389594 + 0.920987i \(0.627384\pi\)
\(762\) 0 0
\(763\) −1.56657e19 2.71338e19i −0.104059 0.180235i
\(764\) 4.49871e19i 0.296098i
\(765\) 0 0
\(766\) 2.00743e20 1.29730
\(767\) 2.74710e20 1.58604e20i 1.75917 1.01566i
\(768\) 0 0
\(769\) −5.77176e19 + 9.99698e19i −0.362931 + 0.628614i −0.988442 0.151601i \(-0.951557\pi\)
0.625511 + 0.780215i \(0.284891\pi\)
\(770\) 2.24137e20 + 1.29406e20i 1.39662 + 0.806339i
\(771\) 0 0
\(772\) −9.46217e19 1.63890e20i −0.578988 1.00284i
\(773\) 6.97639e19i 0.423033i −0.977374 0.211516i \(-0.932160\pi\)
0.977374 0.211516i \(-0.0678402\pi\)
\(774\) 0 0
\(775\) 1.10078e20 0.655522
\(776\) 3.79714e20 2.19228e20i 2.24091 1.29379i
\(777\) 0 0
\(778\) 8.30290e19 1.43810e20i 0.481252 0.833553i
\(779\) 4.39145e18 + 2.53541e18i 0.0252259 + 0.0145642i
\(780\) 0 0
\(781\) −1.29024e20 2.23476e20i −0.727971 1.26088i
\(782\) 1.10362e20i 0.617124i
\(783\) 0 0
\(784\) −2.03074e20 −1.11543
\(785\) −3.00658e20 + 1.73585e20i −1.63676 + 0.944983i
\(786\) 0 0
\(787\) −9.28671e19 + 1.60851e20i −0.496637 + 0.860200i −0.999992 0.00387937i \(-0.998765\pi\)
0.503356 + 0.864079i \(0.332098\pi\)
\(788\) 1.99835e19 + 1.15375e19i 0.105922 + 0.0611543i
\(789\) 0 0
\(790\) −1.38916e19 2.40610e19i −0.0723375 0.125292i
\(791\) 6.92854e19i 0.357607i
\(792\) 0 0
\(793\) 1.25728e20 0.637556
\(794\) −1.28964e20 + 7.44577e19i −0.648226 + 0.374253i
\(795\) 0 0
\(796\) −2.08537e20 + 3.61196e20i −1.02989 + 1.78382i
\(797\) −3.90330e19 2.25357e19i −0.191084 0.110322i 0.401406 0.915900i \(-0.368522\pi\)
−0.592490 + 0.805578i \(0.701855\pi\)
\(798\) 0 0
\(799\) 7.85713e19 + 1.36090e20i 0.377952 + 0.654632i
\(800\) 1.07859e20i 0.514311i
\(801\) 0 0
\(802\) 2.28647e20 1.07138
\(803\) −2.86933e20 + 1.65661e20i −1.33282 + 0.769505i
\(804\) 0 0
\(805\) −2.73881e19 + 4.74375e19i −0.125023 + 0.216546i
\(806\) −2.03488e20 1.17484e20i −0.920859 0.531658i
\(807\) 0 0
\(808\) 1.12266e20 + 1.94450e20i 0.499308 + 0.864827i
\(809\) 1.85225e20i 0.816695i 0.912827 + 0.408347i \(0.133895\pi\)
−0.912827 + 0.408347i \(0.866105\pi\)
\(810\) 0 0
\(811\) 2.56899e20 1.11331 0.556656 0.830743i \(-0.312084\pi\)
0.556656 + 0.830743i \(0.312084\pi\)
\(812\) −9.80470e19 + 5.66074e19i −0.421252 + 0.243210i
\(813\) 0 0
\(814\) −1.38460e20 + 2.39819e20i −0.584726 + 1.01278i
\(815\) 1.72265e20 + 9.94570e19i 0.721262 + 0.416421i
\(816\) 0 0
\(817\) 2.32599e16 + 4.02873e16i 9.57311e−5 + 0.000165811i
\(818\) 1.60688e20i 0.655707i
\(819\) 0 0
\(820\) −1.15940e21 −4.65091
\(821\) 9.58723e19 5.53519e19i 0.381321 0.220156i −0.297072 0.954855i \(-0.596010\pi\)
0.678393 + 0.734699i \(0.262677\pi\)
\(822\) 0 0
\(823\) −6.70496e19 + 1.16133e20i −0.262179 + 0.454107i −0.966821 0.255456i \(-0.917774\pi\)
0.704642 + 0.709563i \(0.251108\pi\)
\(824\) −5.57429e19 3.21832e19i −0.216122 0.124778i
\(825\) 0 0
\(826\) 1.51822e20 + 2.62964e20i 0.578729 + 1.00239i
\(827\) 9.74201e19i 0.368222i 0.982905 + 0.184111i \(0.0589406\pi\)
−0.982905 + 0.184111i \(0.941059\pi\)
\(828\) 0 0
\(829\) −2.13764e20 −0.794426 −0.397213 0.917726i \(-0.630023\pi\)
−0.397213 + 0.917726i \(0.630023\pi\)
\(830\) −2.35175e20 + 1.35778e20i −0.866652 + 0.500362i
\(831\) 0 0
\(832\) −1.08739e20 + 1.88342e20i −0.394025 + 0.682471i
\(833\) 1.72252e20 + 9.94498e19i 0.618941 + 0.357346i
\(834\) 0 0
\(835\) 3.31075e20 + 5.73439e20i 1.16983 + 2.02620i
\(836\) 1.82717e19i 0.0640230i
\(837\) 0 0
\(838\) 4.30787e20 1.48441
\(839\) 5.36477e19 3.09735e19i 0.183323 0.105842i −0.405530 0.914082i \(-0.632913\pi\)
0.588853 + 0.808240i \(0.299580\pi\)
\(840\) 0 0
\(841\) −9.81942e19 + 1.70077e20i −0.330000 + 0.571577i
\(842\) −7.07548e20 4.08503e20i −2.35815 1.36148i
\(843\) 0 0
\(844\) −6.31560e20 1.09389e21i −2.07022 3.58573i
\(845\) 2.36099e20i 0.767534i
\(846\) 0 0
\(847\) 1.59490e20 0.509975
\(848\) 5.36837e20 3.09943e20i 1.70244 0.982903i
\(849\) 0 0
\(850\) 3.18851e20 5.52265e20i 0.994614 1.72272i
\(851\) −5.07566e19 2.93043e19i −0.157031 0.0906619i
\(852\) 0 0
\(853\) −1.15430e20 1.99930e20i −0.351297 0.608464i 0.635180 0.772364i \(-0.280926\pi\)
−0.986477 + 0.163900i \(0.947593\pi\)
\(854\) 1.20352e20i 0.363285i
\(855\) 0 0
\(856\) 4.65696e20 1.38288
\(857\) 4.98714e20 2.87933e20i 1.46888 0.848058i 0.469488 0.882939i \(-0.344439\pi\)
0.999391 + 0.0348813i \(0.0111053\pi\)
\(858\) 0 0
\(859\) 1.49999e20 2.59806e20i 0.434646 0.752829i −0.562621 0.826715i \(-0.690207\pi\)
0.997267 + 0.0738862i \(0.0235401\pi\)
\(860\) −9.21138e18 5.31819e18i −0.0264750 0.0152853i
\(861\) 0 0
\(862\) −4.01540e20 6.95488e20i −1.13548 1.96670i
\(863\) 9.77909e19i 0.274298i 0.990550 + 0.137149i \(0.0437939\pi\)
−0.990550 + 0.137149i \(0.956206\pi\)
\(864\) 0 0
\(865\) 8.84320e20 2.44060
\(866\) 7.80633e20 4.50698e20i 2.13708 1.23385i
\(867\) 0 0
\(868\) 7.62318e19 1.32037e20i 0.205352 0.355680i
\(869\) −2.63540e19 1.52155e19i −0.0704219 0.0406581i
\(870\) 0 0
\(871\) 8.86684e19 + 1.53578e20i 0.233153 + 0.403833i
\(872\) 3.91522e20i 1.02127i
\(873\) 0 0
\(874\) 5.70494e18 0.0146444
\(875\) 6.82387e19 3.93976e19i 0.173770 0.100326i
\(876\) 0 0
\(877\) 6.00678e19 1.04041e20i 0.150538 0.260739i −0.780888 0.624671i \(-0.785233\pi\)
0.931425 + 0.363933i \(0.118566\pi\)
\(878\) 1.09157e21 + 6.30219e20i 2.71388 + 1.56686i
\(879\) 0 0
\(880\) 6.24364e20 + 1.08143e21i 1.52777 + 2.64618i
\(881\) 7.52553e20i 1.82686i 0.406993 + 0.913431i \(0.366577\pi\)
−0.406993 + 0.913431i \(0.633423\pi\)
\(882\) 0 0
\(883\) −4.53963e20 −1.08466 −0.542332 0.840164i \(-0.682459\pi\)
−0.542332 + 0.840164i \(0.682459\pi\)
\(884\) −7.99086e20 + 4.61352e20i −1.89421 + 1.09362i
\(885\) 0 0
\(886\) 5.22423e20 9.04864e20i 1.21895 2.11129i
\(887\) −6.11609e20 3.53113e20i −1.41582 0.817425i −0.419893 0.907573i \(-0.637933\pi\)
−0.995928 + 0.0901484i \(0.971266\pi\)
\(888\) 0 0
\(889\) −7.82953e19 1.35611e20i −0.178412 0.309018i
\(890\) 1.51212e21i 3.41866i
\(891\) 0 0
\(892\) −8.06674e20 −1.79533
\(893\) 7.03487e18 4.06158e18i 0.0155344 0.00896882i
\(894\) 0 0
\(895\) −3.83497e20 + 6.64236e20i −0.833682 + 1.44398i
\(896\) −2.41774e20 1.39588e20i −0.521499 0.301088i
\(897\) 0 0
\(898\) 2.56028e20 + 4.43454e20i 0.543693 + 0.941704i
\(899\) 1.36243e20i 0.287075i
\(900\) 0 0
\(901\) −6.07144e20 −1.25956
\(902\) −1.62241e21 + 9.36698e20i −3.33976 + 1.92821i
\(903\) 0 0
\(904\) 4.32900e20 7.49805e20i 0.877423 1.51974i
\(905\) −2.99286e20 1.72793e20i −0.601930 0.347525i
\(906\) 0 0
\(907\) −1.15570e20 2.00174e20i −0.228873 0.396420i 0.728601 0.684938i \(-0.240171\pi\)
−0.957474 + 0.288518i \(0.906837\pi\)
\(908\) 1.71478e21i 3.36982i
\(909\) 0 0
\(910\) −6.75612e20 −1.30740
\(911\) 5.84807e20 3.37639e20i 1.12301 0.648371i 0.180844 0.983512i \(-0.442117\pi\)
0.942168 + 0.335141i \(0.108784\pi\)
\(912\) 0 0
\(913\) −1.48718e20 + 2.57587e20i −0.281234 + 0.487111i
\(914\) 7.23589e20 + 4.17764e20i 1.35790 + 0.783985i
\(915\) 0 0
\(916\) 3.21268e20 + 5.56453e20i 0.593744 + 1.02840i
\(917\) 2.17010e20i 0.398010i
\(918\) 0 0
\(919\) 7.49953e20 1.35464 0.677322 0.735687i \(-0.263140\pi\)
0.677322 + 0.735687i \(0.263140\pi\)
\(920\) −5.92786e20 + 3.42245e20i −1.06263 + 0.613511i
\(921\) 0 0
\(922\) 4.19920e20 7.27324e20i 0.741397 1.28414i
\(923\) 5.83373e20 + 3.36810e20i 1.02220 + 0.590165i
\(924\) 0 0
\(925\) 1.69328e20 + 2.93285e20i 0.292238 + 0.506171i
\(926\) 1.47012e21i 2.51812i
\(927\) 0 0
\(928\) −1.33497e20 −0.225234
\(929\) −3.51076e20 + 2.02694e20i −0.587884 + 0.339415i −0.764260 0.644908i \(-0.776896\pi\)
0.176377 + 0.984323i \(0.443562\pi\)
\(930\) 0 0
\(931\) 5.14085e18 8.90422e18i 0.00847984 0.0146875i
\(932\) −3.30969e20 1.91085e20i −0.541847 0.312835i
\(933\) 0 0
\(934\) 5.28129e20 + 9.14747e20i 0.851750 + 1.47527i
\(935\) 1.22306e21i 1.95779i
\(936\) 0 0
\(937\) −5.19955e20 −0.819952 −0.409976 0.912096i \(-0.634463\pi\)
−0.409976 + 0.912096i \(0.634463\pi\)
\(938\) −1.47011e20 + 8.48771e19i −0.230108 + 0.132853i
\(939\) 0 0
\(940\) −9.28650e20 + 1.60847e21i −1.43205 + 2.48038i
\(941\) 1.69522e20 + 9.78738e19i 0.259477 + 0.149809i 0.624096 0.781348i \(-0.285467\pi\)
−0.364619 + 0.931157i \(0.618801\pi\)
\(942\) 0 0
\(943\) −1.98248e20 3.43375e20i −0.298969 0.517830i
\(944\) 1.46504e21i 2.19304i
\(945\) 0 0
\(946\) −1.71866e19 −0.0253484
\(947\) 4.18348e20 2.41533e20i 0.612474 0.353612i −0.161459 0.986879i \(-0.551620\pi\)
0.773933 + 0.633268i \(0.218287\pi\)
\(948\) 0 0
\(949\) 4.32448e20 7.49022e20i 0.623836 1.08052i
\(950\) −2.85482e19 1.64823e19i −0.0408803 0.0236022i
\(951\) 0 0
\(952\) −2.31747e20 4.01397e20i −0.327006 0.566390i
\(953\) 5.49731e20i 0.770016i −0.922913 0.385008i \(-0.874199\pi\)
0.922913 0.385008i \(-0.125801\pi\)
\(954\) 0 0
\(955\) −1.55664e20 −0.214864
\(956\) 5.62995e20 3.25045e20i 0.771434 0.445388i
\(957\) 0 0
\(958\) −3.33784e20 + 5.78131e20i −0.450720 + 0.780671i
\(959\) −1.29008e19 7.44826e18i −0.0172936 0.00998446i
\(960\) 0 0
\(961\) 2.86735e20 + 4.96639e20i 0.378806 + 0.656111i
\(962\) 7.22882e20i 0.948074i
\(963\) 0 0
\(964\) 2.40391e21 3.10727
\(965\) −5.67088e20 + 3.27409e20i −0.727712 + 0.420145i
\(966\) 0 0
\(967\) −4.30134e20 + 7.45014e20i −0.544025 + 0.942278i 0.454643 + 0.890674i \(0.349767\pi\)
−0.998668 + 0.0516046i \(0.983566\pi\)
\(968\) 1.72599e21 + 9.96503e20i 2.16726 + 1.25127i
\(969\) 0 0
\(970\) −1.44556e21 2.50378e21i −1.78910 3.09880i
\(971\) 9.81266e20i 1.20574i 0.797841 + 0.602868i \(0.205975\pi\)
−0.797841 + 0.602868i \(0.794025\pi\)
\(972\) 0 0
\(973\) −1.41288e20 −0.171126
\(974\) −1.21092e21 + 6.99126e20i −1.45614 + 0.840703i
\(975\) 0 0
\(976\) −2.90340e20 + 5.02884e20i −0.344158 + 0.596100i
\(977\) −6.49778e20 3.75150e20i −0.764721 0.441512i 0.0662671 0.997802i \(-0.478891\pi\)
−0.830988 + 0.556290i \(0.812224\pi\)
\(978\) 0 0
\(979\) −8.28109e20 1.43433e21i −0.960746 1.66406i
\(980\) 2.35083e21i 2.70794i
\(981\) 0 0
\(982\) −1.57545e21 −1.78906
\(983\) 1.41689e21 8.18042e20i 1.59758 0.922361i 0.605623 0.795752i \(-0.292924\pi\)
0.991953 0.126609i \(-0.0404094\pi\)
\(984\) 0 0
\(985\) 3.99218e19 6.91465e19i 0.0443768 0.0768629i
\(986\) 6.83537e20 + 3.94641e20i 0.754439 + 0.435575i
\(987\) 0 0
\(988\) 2.38487e19 + 4.13071e19i 0.0259517 + 0.0449496i
\(989\) 3.63746e18i 0.00393028i
\(990\) 0 0
\(991\) 5.66881e20 0.603916 0.301958 0.953321i \(-0.402360\pi\)
0.301958 + 0.953321i \(0.402360\pi\)
\(992\) 1.55691e20 8.98883e19i 0.164696 0.0950870i
\(993\) 0 0
\(994\) −3.22409e20 + 5.58429e20i −0.336281 + 0.582456i
\(995\) 1.24980e21 + 7.21575e20i 1.29444 + 0.747343i
\(996\) 0 0
\(997\) −4.39881e20 7.61896e20i −0.449230 0.778090i 0.549106 0.835753i \(-0.314968\pi\)
−0.998336 + 0.0576630i \(0.981635\pi\)
\(998\) 2.96360e21i 3.00543i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.15.d.a.17.2 26
3.2 odd 2 9.15.d.a.5.12 yes 26
9.2 odd 6 inner 27.15.d.a.8.2 26
9.4 even 3 81.15.b.a.80.2 26
9.5 odd 6 81.15.b.a.80.25 26
9.7 even 3 9.15.d.a.2.12 26
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
9.15.d.a.2.12 26 9.7 even 3
9.15.d.a.5.12 yes 26 3.2 odd 2
27.15.d.a.8.2 26 9.2 odd 6 inner
27.15.d.a.17.2 26 1.1 even 1 trivial
81.15.b.a.80.2 26 9.4 even 3
81.15.b.a.80.25 26 9.5 odd 6