Properties

Label 27.15.b.c.26.1
Level $27$
Weight $15$
Character 27.26
Analytic conductor $33.569$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,15,Mod(26,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.26"); S:= CuspForms(chi, 15); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 15, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 15 \)
Character orbit: \([\chi]\) \(=\) 27.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-22484] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.5688214010\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3196x^{2} + 2297460 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{9}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.1
Root \(45.8705i\) of defining polynomial
Character \(\chi\) \(=\) 27.26
Dual form 27.15.b.c.26.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-197.702i q^{2} -22702.1 q^{4} +67180.2i q^{5} +453839. q^{7} +1.24910e6i q^{8} +1.32817e7 q^{10} +2.02634e6i q^{11} +6.90269e7 q^{13} -8.97249e7i q^{14} -1.25001e8 q^{16} -6.66755e8i q^{17} -1.19944e9 q^{19} -1.52513e9i q^{20} +4.00612e8 q^{22} -2.10269e9i q^{23} +1.59034e9 q^{25} -1.36468e10i q^{26} -1.03031e10 q^{28} -2.11520e10i q^{29} +3.86410e10 q^{31} +4.51783e10i q^{32} -1.31819e11 q^{34} +3.04890e10i q^{35} -1.72521e11 q^{37} +2.37132e11i q^{38} -8.39148e10 q^{40} +3.23308e10i q^{41} +5.94792e10 q^{43} -4.60023e10i q^{44} -4.15706e11 q^{46} +1.00148e11i q^{47} -4.72253e11 q^{49} -3.14414e11i q^{50} -1.56706e12 q^{52} -2.31329e12i q^{53} -1.36130e11 q^{55} +5.66891e11i q^{56} -4.18179e12 q^{58} +2.97124e11i q^{59} +1.74353e12 q^{61} -7.63941e12i q^{62} +6.88382e12 q^{64} +4.63724e12i q^{65} +3.39564e12 q^{67} +1.51367e13i q^{68} +6.02773e12 q^{70} -1.02339e13i q^{71} -5.19755e12 q^{73} +3.41078e13i q^{74} +2.72298e13 q^{76} +9.19634e11i q^{77} -1.50233e13 q^{79} -8.39761e12i q^{80} +6.39186e12 q^{82} -3.76556e13i q^{83} +4.47927e13 q^{85} -1.17592e13i q^{86} -2.53111e12 q^{88} -6.45740e13i q^{89} +3.13271e13 q^{91} +4.77355e13i q^{92} +1.97996e13 q^{94} -8.05787e13i q^{95} -1.57646e13 q^{97} +9.33654e13i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 22484 q^{4} + 448868 q^{7} + 13088520 q^{10} + 66488396 q^{13} - 148681016 q^{16} - 1385373196 q^{19} - 695847240 q^{22} - 3049909820 q^{25} - 25864209028 q^{28} - 6310989544 q^{31} - 241760528280 q^{34}+ \cdots - 243547238121892 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/27\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 197.702i − 1.54455i −0.635290 0.772274i \(-0.719119\pi\)
0.635290 0.772274i \(-0.280881\pi\)
\(3\) 0 0
\(4\) −22702.1 −1.38563
\(5\) 67180.2i 0.859906i 0.902851 + 0.429953i \(0.141470\pi\)
−0.902851 + 0.429953i \(0.858530\pi\)
\(6\) 0 0
\(7\) 453839. 0.551081 0.275541 0.961289i \(-0.411143\pi\)
0.275541 + 0.961289i \(0.411143\pi\)
\(8\) 1.24910e6i 0.595618i
\(9\) 0 0
\(10\) 1.32817e7 1.32817
\(11\) 2.02634e6i 0.103983i 0.998648 + 0.0519917i \(0.0165569\pi\)
−0.998648 + 0.0519917i \(0.983443\pi\)
\(12\) 0 0
\(13\) 6.90269e7 1.10006 0.550028 0.835146i \(-0.314617\pi\)
0.550028 + 0.835146i \(0.314617\pi\)
\(14\) − 8.97249e7i − 0.851171i
\(15\) 0 0
\(16\) −1.25001e8 −0.465666
\(17\) − 6.66755e8i − 1.62489i −0.583038 0.812445i \(-0.698136\pi\)
0.583038 0.812445i \(-0.301864\pi\)
\(18\) 0 0
\(19\) −1.19944e9 −1.34185 −0.670925 0.741525i \(-0.734103\pi\)
−0.670925 + 0.741525i \(0.734103\pi\)
\(20\) − 1.52513e9i − 1.19151i
\(21\) 0 0
\(22\) 4.00612e8 0.160607
\(23\) − 2.10269e9i − 0.617562i −0.951133 0.308781i \(-0.900079\pi\)
0.951133 0.308781i \(-0.0999210\pi\)
\(24\) 0 0
\(25\) 1.59034e9 0.260562
\(26\) − 1.36468e10i − 1.69909i
\(27\) 0 0
\(28\) −1.03031e10 −0.763593
\(29\) − 2.11520e10i − 1.22621i −0.790001 0.613106i \(-0.789920\pi\)
0.790001 0.613106i \(-0.210080\pi\)
\(30\) 0 0
\(31\) 3.86410e10 1.40448 0.702242 0.711939i \(-0.252183\pi\)
0.702242 + 0.711939i \(0.252183\pi\)
\(32\) 4.51783e10i 1.31486i
\(33\) 0 0
\(34\) −1.31819e11 −2.50972
\(35\) 3.04890e10i 0.473878i
\(36\) 0 0
\(37\) −1.72521e11 −1.81732 −0.908659 0.417539i \(-0.862893\pi\)
−0.908659 + 0.417539i \(0.862893\pi\)
\(38\) 2.37132e11i 2.07255i
\(39\) 0 0
\(40\) −8.39148e10 −0.512176
\(41\) 3.23308e10i 0.166008i 0.996549 + 0.0830040i \(0.0264514\pi\)
−0.996549 + 0.0830040i \(0.973549\pi\)
\(42\) 0 0
\(43\) 5.94792e10 0.218820 0.109410 0.993997i \(-0.465104\pi\)
0.109410 + 0.993997i \(0.465104\pi\)
\(44\) − 4.60023e10i − 0.144082i
\(45\) 0 0
\(46\) −4.15706e11 −0.953853
\(47\) 1.00148e11i 0.197678i 0.995103 + 0.0988392i \(0.0315129\pi\)
−0.995103 + 0.0988392i \(0.968487\pi\)
\(48\) 0 0
\(49\) −4.72253e11 −0.696310
\(50\) − 3.14414e11i − 0.402450i
\(51\) 0 0
\(52\) −1.56706e12 −1.52427
\(53\) − 2.31329e12i − 1.96924i −0.174708 0.984620i \(-0.555898\pi\)
0.174708 0.984620i \(-0.444102\pi\)
\(54\) 0 0
\(55\) −1.36130e11 −0.0894160
\(56\) 5.66891e11i 0.328234i
\(57\) 0 0
\(58\) −4.18179e12 −1.89394
\(59\) 2.97124e11i 0.119391i 0.998217 + 0.0596957i \(0.0190130\pi\)
−0.998217 + 0.0596957i \(0.980987\pi\)
\(60\) 0 0
\(61\) 1.74353e12 0.554779 0.277390 0.960757i \(-0.410531\pi\)
0.277390 + 0.960757i \(0.410531\pi\)
\(62\) − 7.63941e12i − 2.16929i
\(63\) 0 0
\(64\) 6.88382e12 1.56520
\(65\) 4.63724e12i 0.945945i
\(66\) 0 0
\(67\) 3.39564e12 0.560271 0.280136 0.959960i \(-0.409621\pi\)
0.280136 + 0.959960i \(0.409621\pi\)
\(68\) 1.51367e13i 2.25149i
\(69\) 0 0
\(70\) 6.02773e12 0.731927
\(71\) − 1.02339e13i − 1.12521i −0.826727 0.562603i \(-0.809800\pi\)
0.826727 0.562603i \(-0.190200\pi\)
\(72\) 0 0
\(73\) −5.19755e12 −0.470477 −0.235239 0.971938i \(-0.575587\pi\)
−0.235239 + 0.971938i \(0.575587\pi\)
\(74\) 3.41078e13i 2.80693i
\(75\) 0 0
\(76\) 2.72298e13 1.85930
\(77\) 9.19634e11i 0.0573033i
\(78\) 0 0
\(79\) −1.50233e13 −0.782306 −0.391153 0.920326i \(-0.627924\pi\)
−0.391153 + 0.920326i \(0.627924\pi\)
\(80\) − 8.39761e12i − 0.400429i
\(81\) 0 0
\(82\) 6.39186e12 0.256407
\(83\) − 3.76556e13i − 1.38766i −0.720138 0.693831i \(-0.755922\pi\)
0.720138 0.693831i \(-0.244078\pi\)
\(84\) 0 0
\(85\) 4.47927e13 1.39725
\(86\) − 1.17592e13i − 0.337977i
\(87\) 0 0
\(88\) −2.53111e12 −0.0619344
\(89\) − 6.45740e13i − 1.45991i −0.683493 0.729957i \(-0.739540\pi\)
0.683493 0.729957i \(-0.260460\pi\)
\(90\) 0 0
\(91\) 3.13271e13 0.606220
\(92\) 4.77355e13i 0.855710i
\(93\) 0 0
\(94\) 1.97996e13 0.305324
\(95\) − 8.05787e13i − 1.15386i
\(96\) 0 0
\(97\) −1.57646e13 −0.195110 −0.0975550 0.995230i \(-0.531102\pi\)
−0.0975550 + 0.995230i \(0.531102\pi\)
\(98\) 9.33654e13i 1.07548i
\(99\) 0 0
\(100\) −3.61041e13 −0.361041
\(101\) − 1.30468e14i − 1.21690i −0.793594 0.608448i \(-0.791793\pi\)
0.793594 0.608448i \(-0.208207\pi\)
\(102\) 0 0
\(103\) −1.66672e14 −1.35520 −0.677598 0.735432i \(-0.736979\pi\)
−0.677598 + 0.735432i \(0.736979\pi\)
\(104\) 8.62216e13i 0.655214i
\(105\) 0 0
\(106\) −4.57342e14 −3.04159
\(107\) 1.56335e14i 0.973577i 0.873520 + 0.486788i \(0.161832\pi\)
−0.873520 + 0.486788i \(0.838168\pi\)
\(108\) 0 0
\(109\) 1.01214e14 0.553676 0.276838 0.960917i \(-0.410714\pi\)
0.276838 + 0.960917i \(0.410714\pi\)
\(110\) 2.69132e13i 0.138107i
\(111\) 0 0
\(112\) −5.67305e13 −0.256620
\(113\) 2.05587e14i 0.873867i 0.899494 + 0.436934i \(0.143936\pi\)
−0.899494 + 0.436934i \(0.856064\pi\)
\(114\) 0 0
\(115\) 1.41259e14 0.531045
\(116\) 4.80195e14i 1.69907i
\(117\) 0 0
\(118\) 5.87420e13 0.184406
\(119\) − 3.02600e14i − 0.895446i
\(120\) 0 0
\(121\) 3.75644e14 0.989187
\(122\) − 3.44699e14i − 0.856883i
\(123\) 0 0
\(124\) −8.77232e14 −1.94609
\(125\) 5.16875e14i 1.08396i
\(126\) 0 0
\(127\) −2.27500e14 −0.426930 −0.213465 0.976951i \(-0.568475\pi\)
−0.213465 + 0.976951i \(0.568475\pi\)
\(128\) − 6.20744e14i − 1.10266i
\(129\) 0 0
\(130\) 9.16792e14 1.46106
\(131\) − 1.01807e15i − 1.53772i −0.639418 0.768859i \(-0.720825\pi\)
0.639418 0.768859i \(-0.279175\pi\)
\(132\) 0 0
\(133\) −5.44354e14 −0.739468
\(134\) − 6.71325e14i − 0.865365i
\(135\) 0 0
\(136\) 8.32845e14 0.967814
\(137\) 4.00051e12i 0.00441643i 0.999998 + 0.00220822i \(0.000702898\pi\)
−0.999998 + 0.00220822i \(0.999297\pi\)
\(138\) 0 0
\(139\) 1.27619e15 1.27296 0.636478 0.771295i \(-0.280391\pi\)
0.636478 + 0.771295i \(0.280391\pi\)
\(140\) − 6.92164e14i − 0.656618i
\(141\) 0 0
\(142\) −2.02326e15 −1.73793
\(143\) 1.39872e14i 0.114388i
\(144\) 0 0
\(145\) 1.42100e15 1.05443
\(146\) 1.02757e15i 0.726674i
\(147\) 0 0
\(148\) 3.91660e15 2.51812
\(149\) 2.92608e15i 1.79466i 0.441359 + 0.897330i \(0.354496\pi\)
−0.441359 + 0.897330i \(0.645504\pi\)
\(150\) 0 0
\(151\) 1.58406e15 0.884981 0.442491 0.896773i \(-0.354095\pi\)
0.442491 + 0.896773i \(0.354095\pi\)
\(152\) − 1.49822e15i − 0.799230i
\(153\) 0 0
\(154\) 1.81813e14 0.0885077
\(155\) 2.59591e15i 1.20772i
\(156\) 0 0
\(157\) −3.38611e14 −0.144013 −0.0720067 0.997404i \(-0.522940\pi\)
−0.0720067 + 0.997404i \(0.522940\pi\)
\(158\) 2.97014e15i 1.20831i
\(159\) 0 0
\(160\) −3.03508e15 −1.13066
\(161\) − 9.54283e14i − 0.340327i
\(162\) 0 0
\(163\) 1.88393e15 0.616242 0.308121 0.951347i \(-0.400300\pi\)
0.308121 + 0.951347i \(0.400300\pi\)
\(164\) − 7.33976e14i − 0.230025i
\(165\) 0 0
\(166\) −7.44460e15 −2.14331
\(167\) 4.12106e14i 0.113761i 0.998381 + 0.0568806i \(0.0181154\pi\)
−0.998381 + 0.0568806i \(0.981885\pi\)
\(168\) 0 0
\(169\) 8.27339e14 0.210124
\(170\) − 8.85561e15i − 2.15812i
\(171\) 0 0
\(172\) −1.35030e15 −0.303202
\(173\) 7.55829e15i 1.62968i 0.579689 + 0.814838i \(0.303174\pi\)
−0.579689 + 0.814838i \(0.696826\pi\)
\(174\) 0 0
\(175\) 7.21759e14 0.143591
\(176\) − 2.53296e14i − 0.0484216i
\(177\) 0 0
\(178\) −1.27664e16 −2.25491
\(179\) − 7.30949e14i − 0.124141i −0.998072 0.0620706i \(-0.980230\pi\)
0.998072 0.0620706i \(-0.0197704\pi\)
\(180\) 0 0
\(181\) 5.53496e15 0.869689 0.434845 0.900505i \(-0.356803\pi\)
0.434845 + 0.900505i \(0.356803\pi\)
\(182\) − 6.19343e15i − 0.936336i
\(183\) 0 0
\(184\) 2.62647e15 0.367831
\(185\) − 1.15900e16i − 1.56272i
\(186\) 0 0
\(187\) 1.35108e15 0.168962
\(188\) − 2.27358e15i − 0.273908i
\(189\) 0 0
\(190\) −1.59306e16 −1.78220
\(191\) − 4.32337e15i − 0.466218i −0.972451 0.233109i \(-0.925110\pi\)
0.972451 0.233109i \(-0.0748899\pi\)
\(192\) 0 0
\(193\) 7.73145e15 0.775103 0.387552 0.921848i \(-0.373321\pi\)
0.387552 + 0.921848i \(0.373321\pi\)
\(194\) 3.11668e15i 0.301357i
\(195\) 0 0
\(196\) 1.07211e16 0.964825
\(197\) 1.17795e16i 1.02297i 0.859293 + 0.511484i \(0.170904\pi\)
−0.859293 + 0.511484i \(0.829096\pi\)
\(198\) 0 0
\(199\) −7.56801e15 −0.612365 −0.306182 0.951973i \(-0.599052\pi\)
−0.306182 + 0.951973i \(0.599052\pi\)
\(200\) 1.98650e15i 0.155195i
\(201\) 0 0
\(202\) −2.57937e16 −1.87955
\(203\) − 9.59961e15i − 0.675742i
\(204\) 0 0
\(205\) −2.17199e15 −0.142751
\(206\) 3.29514e16i 2.09317i
\(207\) 0 0
\(208\) −8.62845e15 −0.512259
\(209\) − 2.43048e15i − 0.139530i
\(210\) 0 0
\(211\) 3.16523e16 1.69992 0.849960 0.526848i \(-0.176626\pi\)
0.849960 + 0.526848i \(0.176626\pi\)
\(212\) 5.25165e16i 2.72863i
\(213\) 0 0
\(214\) 3.09078e16 1.50373
\(215\) 3.99583e15i 0.188164i
\(216\) 0 0
\(217\) 1.75368e16 0.773984
\(218\) − 2.00102e16i − 0.855178i
\(219\) 0 0
\(220\) 3.09044e15 0.123897
\(221\) − 4.60241e16i − 1.78747i
\(222\) 0 0
\(223\) 4.45689e16 1.62517 0.812583 0.582845i \(-0.198060\pi\)
0.812583 + 0.582845i \(0.198060\pi\)
\(224\) 2.05037e16i 0.724595i
\(225\) 0 0
\(226\) 4.06449e16 1.34973
\(227\) − 1.97590e16i − 0.636185i −0.948060 0.318093i \(-0.896958\pi\)
0.948060 0.318093i \(-0.103042\pi\)
\(228\) 0 0
\(229\) −4.39101e16 −1.32958 −0.664792 0.747028i \(-0.731480\pi\)
−0.664792 + 0.747028i \(0.731480\pi\)
\(230\) − 2.79272e16i − 0.820224i
\(231\) 0 0
\(232\) 2.64210e16 0.730354
\(233\) − 1.78519e14i − 0.00478843i −0.999997 0.00239422i \(-0.999238\pi\)
0.999997 0.00239422i \(-0.000762103\pi\)
\(234\) 0 0
\(235\) −6.72799e15 −0.169985
\(236\) − 6.74533e15i − 0.165432i
\(237\) 0 0
\(238\) −5.98246e16 −1.38306
\(239\) − 2.62125e16i − 0.588469i −0.955733 0.294235i \(-0.904935\pi\)
0.955733 0.294235i \(-0.0950647\pi\)
\(240\) 0 0
\(241\) 2.94818e16 0.624359 0.312180 0.950023i \(-0.398941\pi\)
0.312180 + 0.950023i \(0.398941\pi\)
\(242\) − 7.42655e16i − 1.52785i
\(243\) 0 0
\(244\) −3.95818e16 −0.768717
\(245\) − 3.17260e16i − 0.598761i
\(246\) 0 0
\(247\) −8.27938e16 −1.47611
\(248\) 4.82665e16i 0.836536i
\(249\) 0 0
\(250\) 1.02187e17 1.67423
\(251\) 9.25186e16i 1.47405i 0.675864 + 0.737026i \(0.263770\pi\)
−0.675864 + 0.737026i \(0.736230\pi\)
\(252\) 0 0
\(253\) 4.26077e15 0.0642162
\(254\) 4.49773e16i 0.659413i
\(255\) 0 0
\(256\) −9.93790e15 −0.137916
\(257\) − 3.15238e16i − 0.425702i −0.977085 0.212851i \(-0.931725\pi\)
0.977085 0.212851i \(-0.0682750\pi\)
\(258\) 0 0
\(259\) −7.82969e16 −1.00149
\(260\) − 1.05275e17i − 1.31073i
\(261\) 0 0
\(262\) −2.01274e17 −2.37508
\(263\) 1.43237e17i 1.64575i 0.568221 + 0.822876i \(0.307632\pi\)
−0.568221 + 0.822876i \(0.692368\pi\)
\(264\) 0 0
\(265\) 1.55407e17 1.69336
\(266\) 1.07620e17i 1.14214i
\(267\) 0 0
\(268\) −7.70882e16 −0.776326
\(269\) 9.50059e14i 0.00932147i 0.999989 + 0.00466074i \(0.00148356\pi\)
−0.999989 + 0.00466074i \(0.998516\pi\)
\(270\) 0 0
\(271\) 8.74638e16 0.814786 0.407393 0.913253i \(-0.366438\pi\)
0.407393 + 0.913253i \(0.366438\pi\)
\(272\) 8.33453e16i 0.756656i
\(273\) 0 0
\(274\) 7.90910e14 0.00682139
\(275\) 3.22258e15i 0.0270941i
\(276\) 0 0
\(277\) −9.43259e16 −0.753829 −0.376914 0.926248i \(-0.623015\pi\)
−0.376914 + 0.926248i \(0.623015\pi\)
\(278\) − 2.52306e17i − 1.96614i
\(279\) 0 0
\(280\) −3.80838e16 −0.282250
\(281\) 1.74796e17i 1.26354i 0.775157 + 0.631769i \(0.217671\pi\)
−0.775157 + 0.631769i \(0.782329\pi\)
\(282\) 0 0
\(283\) −1.92970e17 −1.32735 −0.663673 0.748023i \(-0.731003\pi\)
−0.663673 + 0.748023i \(0.731003\pi\)
\(284\) 2.32331e17i 1.55911i
\(285\) 0 0
\(286\) 2.76530e16 0.176677
\(287\) 1.46730e16i 0.0914838i
\(288\) 0 0
\(289\) −2.76185e17 −1.64027
\(290\) − 2.80934e17i − 1.62861i
\(291\) 0 0
\(292\) 1.17995e17 0.651906
\(293\) − 3.46578e16i − 0.186951i −0.995622 0.0934755i \(-0.970202\pi\)
0.995622 0.0934755i \(-0.0297977\pi\)
\(294\) 0 0
\(295\) −1.99608e16 −0.102665
\(296\) − 2.15497e17i − 1.08243i
\(297\) 0 0
\(298\) 5.78492e17 2.77194
\(299\) − 1.45142e17i − 0.679353i
\(300\) 0 0
\(301\) 2.69940e16 0.120587
\(302\) − 3.13173e17i − 1.36690i
\(303\) 0 0
\(304\) 1.49932e17 0.624854
\(305\) 1.17131e17i 0.477058i
\(306\) 0 0
\(307\) 1.21136e17 0.471308 0.235654 0.971837i \(-0.424277\pi\)
0.235654 + 0.971837i \(0.424277\pi\)
\(308\) − 2.08776e16i − 0.0794010i
\(309\) 0 0
\(310\) 5.13217e17 1.86539
\(311\) − 4.18108e17i − 1.48582i −0.669393 0.742908i \(-0.733446\pi\)
0.669393 0.742908i \(-0.266554\pi\)
\(312\) 0 0
\(313\) −2.69808e17 −0.916737 −0.458369 0.888762i \(-0.651566\pi\)
−0.458369 + 0.888762i \(0.651566\pi\)
\(314\) 6.69440e16i 0.222436i
\(315\) 0 0
\(316\) 3.41061e17 1.08398
\(317\) 1.04365e17i 0.324443i 0.986754 + 0.162221i \(0.0518659\pi\)
−0.986754 + 0.162221i \(0.948134\pi\)
\(318\) 0 0
\(319\) 4.28612e16 0.127506
\(320\) 4.62456e17i 1.34592i
\(321\) 0 0
\(322\) −1.88664e17 −0.525651
\(323\) 7.99734e17i 2.18036i
\(324\) 0 0
\(325\) 1.09776e17 0.286632
\(326\) − 3.72457e17i − 0.951815i
\(327\) 0 0
\(328\) −4.03844e16 −0.0988773
\(329\) 4.54513e16i 0.108937i
\(330\) 0 0
\(331\) 2.08577e17 0.479149 0.239574 0.970878i \(-0.422992\pi\)
0.239574 + 0.970878i \(0.422992\pi\)
\(332\) 8.54862e17i 1.92278i
\(333\) 0 0
\(334\) 8.14743e16 0.175710
\(335\) 2.28120e17i 0.481781i
\(336\) 0 0
\(337\) −5.96843e17 −1.20907 −0.604535 0.796579i \(-0.706641\pi\)
−0.604535 + 0.796579i \(0.706641\pi\)
\(338\) − 1.63567e17i − 0.324547i
\(339\) 0 0
\(340\) −1.01689e18 −1.93607
\(341\) 7.82999e16i 0.146043i
\(342\) 0 0
\(343\) −5.22131e17 −0.934804
\(344\) 7.42956e16i 0.130333i
\(345\) 0 0
\(346\) 1.49429e18 2.51711
\(347\) − 9.73563e17i − 1.60716i −0.595200 0.803578i \(-0.702927\pi\)
0.595200 0.803578i \(-0.297073\pi\)
\(348\) 0 0
\(349\) −5.44958e17 −0.864142 −0.432071 0.901840i \(-0.642217\pi\)
−0.432071 + 0.901840i \(0.642217\pi\)
\(350\) − 1.42693e17i − 0.221782i
\(351\) 0 0
\(352\) −9.15467e16 −0.136724
\(353\) − 3.14243e17i − 0.460090i −0.973180 0.230045i \(-0.926113\pi\)
0.973180 0.230045i \(-0.0738873\pi\)
\(354\) 0 0
\(355\) 6.87514e17 0.967571
\(356\) 1.46597e18i 2.02290i
\(357\) 0 0
\(358\) −1.44510e17 −0.191742
\(359\) − 6.48311e17i − 0.843572i −0.906695 0.421786i \(-0.861403\pi\)
0.906695 0.421786i \(-0.138597\pi\)
\(360\) 0 0
\(361\) 6.39654e17 0.800562
\(362\) − 1.09427e18i − 1.34328i
\(363\) 0 0
\(364\) −7.11191e17 −0.839995
\(365\) − 3.49172e17i − 0.404566i
\(366\) 0 0
\(367\) −1.10367e18 −1.23077 −0.615387 0.788225i \(-0.711000\pi\)
−0.615387 + 0.788225i \(0.711000\pi\)
\(368\) 2.62839e17i 0.287578i
\(369\) 0 0
\(370\) −2.29137e18 −2.41370
\(371\) − 1.04986e18i − 1.08521i
\(372\) 0 0
\(373\) −5.04833e16 −0.0502557 −0.0251279 0.999684i \(-0.507999\pi\)
−0.0251279 + 0.999684i \(0.507999\pi\)
\(374\) − 2.67110e17i − 0.260969i
\(375\) 0 0
\(376\) −1.25096e17 −0.117741
\(377\) − 1.46006e18i − 1.34890i
\(378\) 0 0
\(379\) 2.97698e17 0.265034 0.132517 0.991181i \(-0.457694\pi\)
0.132517 + 0.991181i \(0.457694\pi\)
\(380\) 1.82931e18i 1.59883i
\(381\) 0 0
\(382\) −8.54739e17 −0.720095
\(383\) 2.20912e17i 0.182738i 0.995817 + 0.0913689i \(0.0291242\pi\)
−0.995817 + 0.0913689i \(0.970876\pi\)
\(384\) 0 0
\(385\) −6.17811e16 −0.0492755
\(386\) − 1.52852e18i − 1.19718i
\(387\) 0 0
\(388\) 3.57888e17 0.270350
\(389\) 2.07624e18i 1.54039i 0.637810 + 0.770194i \(0.279841\pi\)
−0.637810 + 0.770194i \(0.720159\pi\)
\(390\) 0 0
\(391\) −1.40198e18 −1.00347
\(392\) − 5.89892e17i − 0.414735i
\(393\) 0 0
\(394\) 2.32882e18 1.58002
\(395\) − 1.00927e18i − 0.672710i
\(396\) 0 0
\(397\) 2.18678e18 1.40693 0.703465 0.710730i \(-0.251635\pi\)
0.703465 + 0.710730i \(0.251635\pi\)
\(398\) 1.49621e18i 0.945826i
\(399\) 0 0
\(400\) −1.98795e17 −0.121335
\(401\) 8.31779e17i 0.498882i 0.968390 + 0.249441i \(0.0802468\pi\)
−0.968390 + 0.249441i \(0.919753\pi\)
\(402\) 0 0
\(403\) 2.66727e18 1.54501
\(404\) 2.96189e18i 1.68616i
\(405\) 0 0
\(406\) −1.89786e18 −1.04372
\(407\) − 3.49588e17i − 0.188971i
\(408\) 0 0
\(409\) −4.87049e17 −0.254395 −0.127198 0.991877i \(-0.540598\pi\)
−0.127198 + 0.991877i \(0.540598\pi\)
\(410\) 4.29406e17i 0.220486i
\(411\) 0 0
\(412\) 3.78381e18 1.87780
\(413\) 1.34846e17i 0.0657944i
\(414\) 0 0
\(415\) 2.52971e18 1.19326
\(416\) 3.11852e18i 1.44642i
\(417\) 0 0
\(418\) −4.80511e17 −0.215511
\(419\) 4.36743e18i 1.92632i 0.268935 + 0.963158i \(0.413328\pi\)
−0.268935 + 0.963158i \(0.586672\pi\)
\(420\) 0 0
\(421\) −1.27692e18 −0.544738 −0.272369 0.962193i \(-0.587807\pi\)
−0.272369 + 0.962193i \(0.587807\pi\)
\(422\) − 6.25773e18i − 2.62561i
\(423\) 0 0
\(424\) 2.88953e18 1.17292
\(425\) − 1.06037e18i − 0.423384i
\(426\) 0 0
\(427\) 7.91282e17 0.305728
\(428\) − 3.54914e18i − 1.34901i
\(429\) 0 0
\(430\) 7.89983e17 0.290629
\(431\) 3.20431e18i 1.15983i 0.814678 + 0.579914i \(0.196914\pi\)
−0.814678 + 0.579914i \(0.803086\pi\)
\(432\) 0 0
\(433\) −1.26415e18 −0.442980 −0.221490 0.975163i \(-0.571092\pi\)
−0.221490 + 0.975163i \(0.571092\pi\)
\(434\) − 3.46706e18i − 1.19546i
\(435\) 0 0
\(436\) −2.29777e18 −0.767188
\(437\) 2.52205e18i 0.828675i
\(438\) 0 0
\(439\) 6.29832e17 0.200435 0.100217 0.994966i \(-0.468046\pi\)
0.100217 + 0.994966i \(0.468046\pi\)
\(440\) − 1.70040e17i − 0.0532578i
\(441\) 0 0
\(442\) −9.09905e18 −2.76083
\(443\) − 2.55161e18i − 0.762057i −0.924563 0.381028i \(-0.875570\pi\)
0.924563 0.381028i \(-0.124430\pi\)
\(444\) 0 0
\(445\) 4.33809e18 1.25539
\(446\) − 8.81136e18i − 2.51015i
\(447\) 0 0
\(448\) 3.12415e18 0.862552
\(449\) − 4.08069e18i − 1.10920i −0.832117 0.554600i \(-0.812871\pi\)
0.832117 0.554600i \(-0.187129\pi\)
\(450\) 0 0
\(451\) −6.55132e16 −0.0172621
\(452\) − 4.66725e18i − 1.21085i
\(453\) 0 0
\(454\) −3.90639e18 −0.982618
\(455\) 2.10456e18i 0.521293i
\(456\) 0 0
\(457\) 3.24038e18 0.778363 0.389182 0.921161i \(-0.372758\pi\)
0.389182 + 0.921161i \(0.372758\pi\)
\(458\) 8.68111e18i 2.05361i
\(459\) 0 0
\(460\) −3.20688e18 −0.735830
\(461\) 4.07880e17i 0.0921778i 0.998937 + 0.0460889i \(0.0146758\pi\)
−0.998937 + 0.0460889i \(0.985324\pi\)
\(462\) 0 0
\(463\) 2.20295e18 0.482989 0.241494 0.970402i \(-0.422362\pi\)
0.241494 + 0.970402i \(0.422362\pi\)
\(464\) 2.64403e18i 0.571005i
\(465\) 0 0
\(466\) −3.52936e16 −0.00739596
\(467\) 3.98643e18i 0.822936i 0.911424 + 0.411468i \(0.134984\pi\)
−0.911424 + 0.411468i \(0.865016\pi\)
\(468\) 0 0
\(469\) 1.54107e18 0.308755
\(470\) 1.33014e18i 0.262550i
\(471\) 0 0
\(472\) −3.71138e17 −0.0711117
\(473\) 1.20525e17i 0.0227536i
\(474\) 0 0
\(475\) −1.90752e18 −0.349635
\(476\) 6.86965e18i 1.24075i
\(477\) 0 0
\(478\) −5.18227e18 −0.908919
\(479\) 1.34856e18i 0.233089i 0.993185 + 0.116545i \(0.0371818\pi\)
−0.993185 + 0.116545i \(0.962818\pi\)
\(480\) 0 0
\(481\) −1.19086e19 −1.99915
\(482\) − 5.82861e18i − 0.964353i
\(483\) 0 0
\(484\) −8.52790e18 −1.37064
\(485\) − 1.05907e18i − 0.167776i
\(486\) 0 0
\(487\) 1.06624e19 1.64117 0.820586 0.571523i \(-0.193647\pi\)
0.820586 + 0.571523i \(0.193647\pi\)
\(488\) 2.17784e18i 0.330437i
\(489\) 0 0
\(490\) −6.27230e18 −0.924814
\(491\) 4.01847e18i 0.584104i 0.956402 + 0.292052i \(0.0943380\pi\)
−0.956402 + 0.292052i \(0.905662\pi\)
\(492\) 0 0
\(493\) −1.41032e19 −1.99246
\(494\) 1.63685e19i 2.27992i
\(495\) 0 0
\(496\) −4.83017e18 −0.654020
\(497\) − 4.64454e18i − 0.620080i
\(498\) 0 0
\(499\) 3.09132e18 0.401273 0.200637 0.979666i \(-0.435699\pi\)
0.200637 + 0.979666i \(0.435699\pi\)
\(500\) − 1.17341e19i − 1.50197i
\(501\) 0 0
\(502\) 1.82911e19 2.27674
\(503\) − 3.42227e18i − 0.420087i −0.977692 0.210043i \(-0.932640\pi\)
0.977692 0.210043i \(-0.0673605\pi\)
\(504\) 0 0
\(505\) 8.76484e18 1.04642
\(506\) − 8.42364e17i − 0.0991850i
\(507\) 0 0
\(508\) 5.16474e18 0.591565
\(509\) 1.21195e19i 1.36918i 0.728929 + 0.684589i \(0.240018\pi\)
−0.728929 + 0.684589i \(0.759982\pi\)
\(510\) 0 0
\(511\) −2.35885e18 −0.259271
\(512\) − 8.20553e18i − 0.889645i
\(513\) 0 0
\(514\) −6.23231e18 −0.657518
\(515\) − 1.11971e19i − 1.16534i
\(516\) 0 0
\(517\) −2.02935e17 −0.0205553
\(518\) 1.54795e19i 1.54685i
\(519\) 0 0
\(520\) −5.79238e18 −0.563422
\(521\) − 1.50118e19i − 1.44068i −0.693620 0.720341i \(-0.743985\pi\)
0.693620 0.720341i \(-0.256015\pi\)
\(522\) 0 0
\(523\) 1.79043e19 1.67281 0.836405 0.548113i \(-0.184653\pi\)
0.836405 + 0.548113i \(0.184653\pi\)
\(524\) 2.31122e19i 2.13070i
\(525\) 0 0
\(526\) 2.83182e19 2.54194
\(527\) − 2.57641e19i − 2.28213i
\(528\) 0 0
\(529\) 7.17153e18 0.618617
\(530\) − 3.07243e19i − 2.61548i
\(531\) 0 0
\(532\) 1.23580e19 1.02463
\(533\) 2.23169e18i 0.182618i
\(534\) 0 0
\(535\) −1.05026e19 −0.837184
\(536\) 4.24150e18i 0.333708i
\(537\) 0 0
\(538\) 1.87829e17 0.0143975
\(539\) − 9.56947e17i − 0.0724047i
\(540\) 0 0
\(541\) −1.88493e19 −1.38968 −0.694841 0.719163i \(-0.744525\pi\)
−0.694841 + 0.719163i \(0.744525\pi\)
\(542\) − 1.72918e19i − 1.25848i
\(543\) 0 0
\(544\) 3.01229e19 2.13651
\(545\) 6.79958e18i 0.476109i
\(546\) 0 0
\(547\) −2.26178e19 −1.54361 −0.771807 0.635857i \(-0.780647\pi\)
−0.771807 + 0.635857i \(0.780647\pi\)
\(548\) − 9.08201e16i − 0.00611953i
\(549\) 0 0
\(550\) 6.37110e17 0.0418481
\(551\) 2.53706e19i 1.64539i
\(552\) 0 0
\(553\) −6.81818e18 −0.431114
\(554\) 1.86484e19i 1.16432i
\(555\) 0 0
\(556\) −2.89723e19 −1.76384
\(557\) − 2.27079e19i − 1.36518i −0.730801 0.682591i \(-0.760853\pi\)
0.730801 0.682591i \(-0.239147\pi\)
\(558\) 0 0
\(559\) 4.10567e18 0.240714
\(560\) − 3.81116e18i − 0.220669i
\(561\) 0 0
\(562\) 3.45576e19 1.95159
\(563\) 1.32823e19i 0.740822i 0.928868 + 0.370411i \(0.120783\pi\)
−0.928868 + 0.370411i \(0.879217\pi\)
\(564\) 0 0
\(565\) −1.38113e19 −0.751444
\(566\) 3.81505e19i 2.05015i
\(567\) 0 0
\(568\) 1.27832e19 0.670193
\(569\) 1.38392e19i 0.716681i 0.933591 + 0.358340i \(0.116657\pi\)
−0.933591 + 0.358340i \(0.883343\pi\)
\(570\) 0 0
\(571\) 2.92184e19 1.47640 0.738200 0.674582i \(-0.235676\pi\)
0.738200 + 0.674582i \(0.235676\pi\)
\(572\) − 3.17539e18i − 0.158499i
\(573\) 0 0
\(574\) 2.90087e18 0.141301
\(575\) − 3.34400e18i − 0.160913i
\(576\) 0 0
\(577\) −1.13599e19 −0.533513 −0.266756 0.963764i \(-0.585952\pi\)
−0.266756 + 0.963764i \(0.585952\pi\)
\(578\) 5.46023e19i 2.53347i
\(579\) 0 0
\(580\) −3.22596e19 −1.46104
\(581\) − 1.70896e19i − 0.764714i
\(582\) 0 0
\(583\) 4.68752e18 0.204768
\(584\) − 6.49227e18i − 0.280225i
\(585\) 0 0
\(586\) −6.85192e18 −0.288755
\(587\) − 3.38911e19i − 1.41130i −0.708561 0.705650i \(-0.750655\pi\)
0.708561 0.705650i \(-0.249345\pi\)
\(588\) 0 0
\(589\) −4.63476e19 −1.88461
\(590\) 3.94630e18i 0.158572i
\(591\) 0 0
\(592\) 2.15654e19 0.846263
\(593\) 3.77796e19i 1.46512i 0.680700 + 0.732562i \(0.261676\pi\)
−0.680700 + 0.732562i \(0.738324\pi\)
\(594\) 0 0
\(595\) 2.03287e19 0.770000
\(596\) − 6.64282e19i − 2.48673i
\(597\) 0 0
\(598\) −2.86949e19 −1.04929
\(599\) 6.93841e18i 0.250768i 0.992108 + 0.125384i \(0.0400163\pi\)
−0.992108 + 0.125384i \(0.959984\pi\)
\(600\) 0 0
\(601\) −3.16963e19 −1.11915 −0.559573 0.828781i \(-0.689035\pi\)
−0.559573 + 0.828781i \(0.689035\pi\)
\(602\) − 5.33677e18i − 0.186253i
\(603\) 0 0
\(604\) −3.59616e19 −1.22625
\(605\) 2.52358e19i 0.850608i
\(606\) 0 0
\(607\) −2.01374e19 −0.663258 −0.331629 0.943410i \(-0.607598\pi\)
−0.331629 + 0.943410i \(0.607598\pi\)
\(608\) − 5.41887e19i − 1.76435i
\(609\) 0 0
\(610\) 2.31570e19 0.736839
\(611\) 6.91294e18i 0.217457i
\(612\) 0 0
\(613\) 3.59550e19 1.10544 0.552721 0.833366i \(-0.313589\pi\)
0.552721 + 0.833366i \(0.313589\pi\)
\(614\) − 2.39488e19i − 0.727957i
\(615\) 0 0
\(616\) −1.14872e18 −0.0341309
\(617\) − 4.71457e19i − 1.38499i −0.721424 0.692494i \(-0.756512\pi\)
0.721424 0.692494i \(-0.243488\pi\)
\(618\) 0 0
\(619\) −1.84230e19 −0.529084 −0.264542 0.964374i \(-0.585221\pi\)
−0.264542 + 0.964374i \(0.585221\pi\)
\(620\) − 5.89326e19i − 1.67345i
\(621\) 0 0
\(622\) −8.26607e19 −2.29491
\(623\) − 2.93062e19i − 0.804532i
\(624\) 0 0
\(625\) −2.50170e19 −0.671546
\(626\) 5.33416e19i 1.41594i
\(627\) 0 0
\(628\) 7.68717e18 0.199549
\(629\) 1.15030e20i 2.95294i
\(630\) 0 0
\(631\) 3.09862e19 0.777970 0.388985 0.921244i \(-0.372826\pi\)
0.388985 + 0.921244i \(0.372826\pi\)
\(632\) − 1.87657e19i − 0.465956i
\(633\) 0 0
\(634\) 2.06331e19 0.501117
\(635\) − 1.52835e19i − 0.367119i
\(636\) 0 0
\(637\) −3.25982e19 −0.765980
\(638\) − 8.47375e18i − 0.196939i
\(639\) 0 0
\(640\) 4.17017e19 0.948187
\(641\) − 3.11130e19i − 0.699738i −0.936799 0.349869i \(-0.886226\pi\)
0.936799 0.349869i \(-0.113774\pi\)
\(642\) 0 0
\(643\) 3.73080e19 0.820965 0.410483 0.911868i \(-0.365360\pi\)
0.410483 + 0.911868i \(0.365360\pi\)
\(644\) 2.16642e19i 0.471566i
\(645\) 0 0
\(646\) 1.58109e20 3.36767
\(647\) 3.71262e19i 0.782258i 0.920336 + 0.391129i \(0.127915\pi\)
−0.920336 + 0.391129i \(0.872085\pi\)
\(648\) 0 0
\(649\) −6.02075e17 −0.0124147
\(650\) − 2.17030e19i − 0.442717i
\(651\) 0 0
\(652\) −4.27691e19 −0.853881
\(653\) 6.17557e19i 1.21979i 0.792482 + 0.609895i \(0.208788\pi\)
−0.792482 + 0.609895i \(0.791212\pi\)
\(654\) 0 0
\(655\) 6.83938e19 1.32229
\(656\) − 4.04139e18i − 0.0773043i
\(657\) 0 0
\(658\) 8.98581e18 0.168258
\(659\) 9.21580e19i 1.70740i 0.520766 + 0.853699i \(0.325646\pi\)
−0.520766 + 0.853699i \(0.674354\pi\)
\(660\) 0 0
\(661\) 1.57623e19 0.285897 0.142949 0.989730i \(-0.454342\pi\)
0.142949 + 0.989730i \(0.454342\pi\)
\(662\) − 4.12361e19i − 0.740068i
\(663\) 0 0
\(664\) 4.70357e19 0.826516
\(665\) − 3.65698e19i − 0.635873i
\(666\) 0 0
\(667\) −4.44761e19 −0.757262
\(668\) − 9.35568e18i − 0.157630i
\(669\) 0 0
\(670\) 4.50997e19 0.744133
\(671\) 3.53299e18i 0.0576879i
\(672\) 0 0
\(673\) −8.29579e19 −1.32664 −0.663318 0.748337i \(-0.730852\pi\)
−0.663318 + 0.748337i \(0.730852\pi\)
\(674\) 1.17997e20i 1.86746i
\(675\) 0 0
\(676\) −1.87823e19 −0.291154
\(677\) − 1.51438e19i − 0.232335i −0.993230 0.116167i \(-0.962939\pi\)
0.993230 0.116167i \(-0.0370609\pi\)
\(678\) 0 0
\(679\) −7.15457e18 −0.107521
\(680\) 5.59507e19i 0.832229i
\(681\) 0 0
\(682\) 1.54801e19 0.225570
\(683\) 2.00907e18i 0.0289767i 0.999895 + 0.0144884i \(0.00461195\pi\)
−0.999895 + 0.0144884i \(0.995388\pi\)
\(684\) 0 0
\(685\) −2.68755e17 −0.00379772
\(686\) 1.03226e20i 1.44385i
\(687\) 0 0
\(688\) −7.43498e18 −0.101897
\(689\) − 1.59679e20i − 2.16628i
\(690\) 0 0
\(691\) 1.17613e20 1.56354 0.781768 0.623570i \(-0.214318\pi\)
0.781768 + 0.623570i \(0.214318\pi\)
\(692\) − 1.71589e20i − 2.25812i
\(693\) 0 0
\(694\) −1.92475e20 −2.48233
\(695\) 8.57350e19i 1.09462i
\(696\) 0 0
\(697\) 2.15567e19 0.269745
\(698\) 1.07739e20i 1.33471i
\(699\) 0 0
\(700\) −1.63854e19 −0.198963
\(701\) − 5.26394e19i − 0.632826i −0.948622 0.316413i \(-0.897521\pi\)
0.948622 0.316413i \(-0.102479\pi\)
\(702\) 0 0
\(703\) 2.06929e20 2.43857
\(704\) 1.39490e19i 0.162755i
\(705\) 0 0
\(706\) −6.21265e19 −0.710630
\(707\) − 5.92113e19i − 0.670608i
\(708\) 0 0
\(709\) 5.88960e19 0.653977 0.326988 0.945028i \(-0.393966\pi\)
0.326988 + 0.945028i \(0.393966\pi\)
\(710\) − 1.35923e20i − 1.49446i
\(711\) 0 0
\(712\) 8.06595e19 0.869552
\(713\) − 8.12501e19i − 0.867355i
\(714\) 0 0
\(715\) −9.39664e18 −0.0983627
\(716\) 1.65941e19i 0.172013i
\(717\) 0 0
\(718\) −1.28172e20 −1.30294
\(719\) − 1.75393e20i − 1.76567i −0.469685 0.882834i \(-0.655633\pi\)
0.469685 0.882834i \(-0.344367\pi\)
\(720\) 0 0
\(721\) −7.56423e19 −0.746823
\(722\) − 1.26461e20i − 1.23651i
\(723\) 0 0
\(724\) −1.25655e20 −1.20506
\(725\) − 3.36389e19i − 0.319504i
\(726\) 0 0
\(727\) 7.10115e19 0.661589 0.330794 0.943703i \(-0.392683\pi\)
0.330794 + 0.943703i \(0.392683\pi\)
\(728\) 3.91307e19i 0.361076i
\(729\) 0 0
\(730\) −6.90321e19 −0.624872
\(731\) − 3.96581e19i − 0.355558i
\(732\) 0 0
\(733\) −1.70600e20 −1.50055 −0.750274 0.661127i \(-0.770078\pi\)
−0.750274 + 0.661127i \(0.770078\pi\)
\(734\) 2.18199e20i 1.90099i
\(735\) 0 0
\(736\) 9.49959e19 0.812008
\(737\) 6.88074e18i 0.0582589i
\(738\) 0 0
\(739\) 8.06727e19 0.670217 0.335108 0.942180i \(-0.391227\pi\)
0.335108 + 0.942180i \(0.391227\pi\)
\(740\) 2.63118e20i 2.16535i
\(741\) 0 0
\(742\) −2.07560e20 −1.67616
\(743\) − 1.59131e19i − 0.127302i −0.997972 0.0636509i \(-0.979726\pi\)
0.997972 0.0636509i \(-0.0202744\pi\)
\(744\) 0 0
\(745\) −1.96575e20 −1.54324
\(746\) 9.98065e18i 0.0776224i
\(747\) 0 0
\(748\) −3.06722e19 −0.234118
\(749\) 7.09510e19i 0.536520i
\(750\) 0 0
\(751\) 1.99887e20 1.48356 0.741780 0.670643i \(-0.233982\pi\)
0.741780 + 0.670643i \(0.233982\pi\)
\(752\) − 1.25187e19i − 0.0920521i
\(753\) 0 0
\(754\) −2.88656e20 −2.08344
\(755\) 1.06418e20i 0.761001i
\(756\) 0 0
\(757\) −1.30575e20 −0.916617 −0.458308 0.888793i \(-0.651544\pi\)
−0.458308 + 0.888793i \(0.651544\pi\)
\(758\) − 5.88556e19i − 0.409358i
\(759\) 0 0
\(760\) 1.00651e20 0.687263
\(761\) 1.33468e20i 0.902994i 0.892273 + 0.451497i \(0.149110\pi\)
−0.892273 + 0.451497i \(0.850890\pi\)
\(762\) 0 0
\(763\) 4.59349e19 0.305120
\(764\) 9.81496e19i 0.646004i
\(765\) 0 0
\(766\) 4.36748e19 0.282247
\(767\) 2.05095e19i 0.131337i
\(768\) 0 0
\(769\) 9.53309e18 0.0599445 0.0299723 0.999551i \(-0.490458\pi\)
0.0299723 + 0.999551i \(0.490458\pi\)
\(770\) 1.22143e19i 0.0761083i
\(771\) 0 0
\(772\) −1.75520e20 −1.07400
\(773\) 2.24597e18i 0.0136191i 0.999977 + 0.00680953i \(0.00216756\pi\)
−0.999977 + 0.00680953i \(0.997832\pi\)
\(774\) 0 0
\(775\) 6.14524e19 0.365954
\(776\) − 1.96915e19i − 0.116211i
\(777\) 0 0
\(778\) 4.10477e20 2.37920
\(779\) − 3.87789e19i − 0.222758i
\(780\) 0 0
\(781\) 2.07374e19 0.117003
\(782\) 2.77174e20i 1.54991i
\(783\) 0 0
\(784\) 5.90323e19 0.324248
\(785\) − 2.27479e19i − 0.123838i
\(786\) 0 0
\(787\) 3.02969e20 1.62022 0.810112 0.586276i \(-0.199406\pi\)
0.810112 + 0.586276i \(0.199406\pi\)
\(788\) − 2.67418e20i − 1.41745i
\(789\) 0 0
\(790\) −1.99535e20 −1.03903
\(791\) 9.33032e19i 0.481572i
\(792\) 0 0
\(793\) 1.20350e20 0.610289
\(794\) − 4.32332e20i − 2.17307i
\(795\) 0 0
\(796\) 1.71810e20 0.848508
\(797\) − 3.30838e19i − 0.161960i −0.996716 0.0809798i \(-0.974195\pi\)
0.996716 0.0809798i \(-0.0258049\pi\)
\(798\) 0 0
\(799\) 6.67745e19 0.321206
\(800\) 7.18489e19i 0.342602i
\(801\) 0 0
\(802\) 1.64444e20 0.770546
\(803\) − 1.05320e19i − 0.0489219i
\(804\) 0 0
\(805\) 6.41089e19 0.292649
\(806\) − 5.27325e20i − 2.38634i
\(807\) 0 0
\(808\) 1.62967e20 0.724805
\(809\) 1.41945e20i 0.625863i 0.949776 + 0.312931i \(0.101311\pi\)
−0.949776 + 0.312931i \(0.898689\pi\)
\(810\) 0 0
\(811\) −2.86161e20 −1.24012 −0.620061 0.784553i \(-0.712892\pi\)
−0.620061 + 0.784553i \(0.712892\pi\)
\(812\) 2.17931e20i 0.936326i
\(813\) 0 0
\(814\) −6.91142e19 −0.291875
\(815\) 1.26563e20i 0.529910i
\(816\) 0 0
\(817\) −7.13419e19 −0.293623
\(818\) 9.62906e19i 0.392926i
\(819\) 0 0
\(820\) 4.93086e19 0.197800
\(821\) − 2.09615e20i − 0.833718i −0.908971 0.416859i \(-0.863131\pi\)
0.908971 0.416859i \(-0.136869\pi\)
\(822\) 0 0
\(823\) −1.94893e20 −0.762075 −0.381037 0.924560i \(-0.624433\pi\)
−0.381037 + 0.924560i \(0.624433\pi\)
\(824\) − 2.08190e20i − 0.807180i
\(825\) 0 0
\(826\) 2.66594e19 0.101623
\(827\) − 2.18496e20i − 0.825858i −0.910763 0.412929i \(-0.864506\pi\)
0.910763 0.412929i \(-0.135494\pi\)
\(828\) 0 0
\(829\) −1.33885e20 −0.497565 −0.248782 0.968559i \(-0.580030\pi\)
−0.248782 + 0.968559i \(0.580030\pi\)
\(830\) − 5.00129e20i − 1.84304i
\(831\) 0 0
\(832\) 4.75169e20 1.72181
\(833\) 3.14877e20i 1.13143i
\(834\) 0 0
\(835\) −2.76854e19 −0.0978239
\(836\) 5.51770e19i 0.193337i
\(837\) 0 0
\(838\) 8.63450e20 2.97529
\(839\) − 1.25271e20i − 0.428073i −0.976826 0.214037i \(-0.931339\pi\)
0.976826 0.214037i \(-0.0686612\pi\)
\(840\) 0 0
\(841\) −1.49849e20 −0.503596
\(842\) 2.52449e20i 0.841374i
\(843\) 0 0
\(844\) −7.18574e20 −2.35545
\(845\) 5.55808e19i 0.180687i
\(846\) 0 0
\(847\) 1.70482e20 0.545123
\(848\) 2.89164e20i 0.917009i
\(849\) 0 0
\(850\) −2.09637e20 −0.653937
\(851\) 3.62759e20i 1.12231i
\(852\) 0 0
\(853\) −9.53531e18 −0.0290196 −0.0145098 0.999895i \(-0.504619\pi\)
−0.0145098 + 0.999895i \(0.504619\pi\)
\(854\) − 1.56438e20i − 0.472212i
\(855\) 0 0
\(856\) −1.95278e20 −0.579880
\(857\) 2.60229e20i 0.766459i 0.923653 + 0.383230i \(0.125188\pi\)
−0.923653 + 0.383230i \(0.874812\pi\)
\(858\) 0 0
\(859\) −1.41075e20 −0.408787 −0.204393 0.978889i \(-0.565522\pi\)
−0.204393 + 0.978889i \(0.565522\pi\)
\(860\) − 9.07136e19i − 0.260725i
\(861\) 0 0
\(862\) 6.33498e20 1.79141
\(863\) − 2.15337e20i − 0.604008i −0.953307 0.302004i \(-0.902344\pi\)
0.953307 0.302004i \(-0.0976556\pi\)
\(864\) 0 0
\(865\) −5.07767e20 −1.40137
\(866\) 2.49925e20i 0.684203i
\(867\) 0 0
\(868\) −3.98122e20 −1.07245
\(869\) − 3.04424e19i − 0.0813469i
\(870\) 0 0
\(871\) 2.34391e20 0.616330
\(872\) 1.26427e20i 0.329779i
\(873\) 0 0
\(874\) 4.98615e20 1.27993
\(875\) 2.34578e20i 0.597352i
\(876\) 0 0
\(877\) −7.00803e19 −0.175630 −0.0878150 0.996137i \(-0.527988\pi\)
−0.0878150 + 0.996137i \(0.527988\pi\)
\(878\) − 1.24519e20i − 0.309581i
\(879\) 0 0
\(880\) 1.70164e19 0.0416380
\(881\) 3.00963e20i 0.730604i 0.930889 + 0.365302i \(0.119034\pi\)
−0.930889 + 0.365302i \(0.880966\pi\)
\(882\) 0 0
\(883\) 3.38331e20 0.808382 0.404191 0.914675i \(-0.367553\pi\)
0.404191 + 0.914675i \(0.367553\pi\)
\(884\) 1.04484e21i 2.47677i
\(885\) 0 0
\(886\) −5.04458e20 −1.17703
\(887\) 7.88391e20i 1.82506i 0.409013 + 0.912529i \(0.365873\pi\)
−0.409013 + 0.912529i \(0.634127\pi\)
\(888\) 0 0
\(889\) −1.03249e20 −0.235273
\(890\) − 8.57649e20i − 1.93901i
\(891\) 0 0
\(892\) −1.01181e21 −2.25187
\(893\) − 1.20122e20i − 0.265255i
\(894\) 0 0
\(895\) 4.91053e19 0.106750
\(896\) − 2.81718e20i − 0.607657i
\(897\) 0 0
\(898\) −8.06762e20 −1.71321
\(899\) − 8.17335e20i − 1.72219i
\(900\) 0 0
\(901\) −1.54240e21 −3.19980
\(902\) 1.29521e19i 0.0266621i
\(903\) 0 0
\(904\) −2.56798e20 −0.520491
\(905\) 3.71839e20i 0.747851i
\(906\) 0 0
\(907\) 3.66869e20 0.726542 0.363271 0.931684i \(-0.381660\pi\)
0.363271 + 0.931684i \(0.381660\pi\)
\(908\) 4.48570e20i 0.881515i
\(909\) 0 0
\(910\) 4.16076e20 0.805161
\(911\) − 8.57325e20i − 1.64633i −0.567802 0.823165i \(-0.692206\pi\)
0.567802 0.823165i \(-0.307794\pi\)
\(912\) 0 0
\(913\) 7.63033e19 0.144294
\(914\) − 6.40630e20i − 1.20222i
\(915\) 0 0
\(916\) 9.96851e20 1.84231
\(917\) − 4.62038e20i − 0.847408i
\(918\) 0 0
\(919\) −7.87018e20 −1.42160 −0.710798 0.703396i \(-0.751666\pi\)
−0.710798 + 0.703396i \(0.751666\pi\)
\(920\) 1.76447e20i 0.316300i
\(921\) 0 0
\(922\) 8.06388e19 0.142373
\(923\) − 7.06413e20i − 1.23779i
\(924\) 0 0
\(925\) −2.74368e20 −0.473523
\(926\) − 4.35527e20i − 0.745999i
\(927\) 0 0
\(928\) 9.55611e20 1.61230
\(929\) − 3.90816e20i − 0.654429i −0.944950 0.327215i \(-0.893890\pi\)
0.944950 0.327215i \(-0.106110\pi\)
\(930\) 0 0
\(931\) 5.66440e20 0.934343
\(932\) 4.05276e18i 0.00663498i
\(933\) 0 0
\(934\) 7.88126e20 1.27106
\(935\) 9.07654e19i 0.145291i
\(936\) 0 0
\(937\) 4.72084e20 0.744462 0.372231 0.928140i \(-0.378593\pi\)
0.372231 + 0.928140i \(0.378593\pi\)
\(938\) − 3.04674e20i − 0.476886i
\(939\) 0 0
\(940\) 1.52739e20 0.235535
\(941\) − 6.37124e19i − 0.0975207i −0.998811 0.0487603i \(-0.984473\pi\)
0.998811 0.0487603i \(-0.0155271\pi\)
\(942\) 0 0
\(943\) 6.79816e19 0.102520
\(944\) − 3.71409e19i − 0.0555966i
\(945\) 0 0
\(946\) 2.38281e19 0.0351440
\(947\) 9.92846e20i 1.45356i 0.686872 + 0.726778i \(0.258983\pi\)
−0.686872 + 0.726778i \(0.741017\pi\)
\(948\) 0 0
\(949\) −3.58771e20 −0.517552
\(950\) 3.77121e20i 0.540027i
\(951\) 0 0
\(952\) 3.77978e20 0.533344
\(953\) − 9.21582e20i − 1.29087i −0.763813 0.645437i \(-0.776675\pi\)
0.763813 0.645437i \(-0.223325\pi\)
\(954\) 0 0
\(955\) 2.90445e20 0.400903
\(956\) 5.95080e20i 0.815399i
\(957\) 0 0
\(958\) 2.66613e20 0.360017
\(959\) 1.81559e18i 0.00243381i
\(960\) 0 0
\(961\) 7.36183e20 0.972573
\(962\) 2.35436e21i 3.08779i
\(963\) 0 0
\(964\) −6.69299e20 −0.865129
\(965\) 5.19400e20i 0.666516i
\(966\) 0 0
\(967\) −3.60043e20 −0.455375 −0.227687 0.973734i \(-0.573116\pi\)
−0.227687 + 0.973734i \(0.573116\pi\)
\(968\) 4.69217e20i 0.589178i
\(969\) 0 0
\(970\) −2.09379e20 −0.259138
\(971\) 4.41176e20i 0.542097i 0.962566 + 0.271048i \(0.0873704\pi\)
−0.962566 + 0.271048i \(0.912630\pi\)
\(972\) 0 0
\(973\) 5.79187e20 0.701502
\(974\) − 2.10799e21i − 2.53487i
\(975\) 0 0
\(976\) −2.17943e20 −0.258342
\(977\) − 7.02053e20i − 0.826244i −0.910676 0.413122i \(-0.864438\pi\)
0.910676 0.413122i \(-0.135562\pi\)
\(978\) 0 0
\(979\) 1.30849e20 0.151807
\(980\) 7.20248e20i 0.829659i
\(981\) 0 0
\(982\) 7.94460e20 0.902176
\(983\) − 1.28519e21i − 1.44908i −0.689232 0.724541i \(-0.742052\pi\)
0.689232 0.724541i \(-0.257948\pi\)
\(984\) 0 0
\(985\) −7.91346e20 −0.879656
\(986\) 2.78823e21i 3.07745i
\(987\) 0 0
\(988\) 1.87959e21 2.04534
\(989\) − 1.25066e20i − 0.135135i
\(990\) 0 0
\(991\) −5.70962e20 −0.608263 −0.304132 0.952630i \(-0.598366\pi\)
−0.304132 + 0.952630i \(0.598366\pi\)
\(992\) 1.74573e21i 1.84670i
\(993\) 0 0
\(994\) −9.18234e20 −0.957743
\(995\) − 5.08420e20i − 0.526576i
\(996\) 0 0
\(997\) 9.32597e20 0.952419 0.476209 0.879332i \(-0.342010\pi\)
0.476209 + 0.879332i \(0.342010\pi\)
\(998\) − 6.11161e20i − 0.619786i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.15.b.c.26.1 4
3.2 odd 2 inner 27.15.b.c.26.4 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.15.b.c.26.1 4 1.1 even 1 trivial
27.15.b.c.26.4 yes 4 3.2 odd 2 inner