Properties

Label 27.15.b
Level $27$
Weight $15$
Character orbit 27.b
Rep. character $\chi_{27}(26,\cdot)$
Character field $\Q$
Dimension $19$
Newform subspaces $4$
Sturm bound $45$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 15 \)
Character orbit: \([\chi]\) \(=\) 27.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(45\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{15}(27, [\chi])\).

Total New Old
Modular forms 45 19 26
Cusp forms 39 19 20
Eisenstein series 6 0 6

Trace form

\( 19 q - 170366 q^{4} + 93965 q^{7} - 19253502 q^{10} - 147980269 q^{13} + 725920234 q^{16} + 387979139 q^{19} + 8721888858 q^{22} - 27472229903 q^{25} + 41659798106 q^{28} + 68978528360 q^{31} - 243639534420 q^{34}+ \cdots - 130092231045667 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{15}^{\mathrm{new}}(27, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
27.15.b.a 27.b 3.b $1$ $33.569$ \(\Q\) \(\Q(\sqrt{-3}) \) 27.15.b.a \(0\) \(0\) \(0\) \(1461083\) $\mathrm{U}(1)[D_{2}]$ \(q+2^{14}q^{4}+1461083q^{7}+33388991q^{13}+\cdots\)
27.15.b.b 27.b 3.b $4$ $33.569$ \(\mathbb{Q}[x]/(x^{4} + \cdots)\) None 27.15.b.b \(0\) \(0\) \(0\) \(-1064644\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-18122+17\beta _{3})q^{4}+(312\beta _{1}+\cdots)q^{5}+\cdots\)
27.15.b.c 27.b 3.b $4$ $33.569$ \(\mathbb{Q}[x]/(x^{4} + \cdots)\) None 27.15.b.c \(0\) \(0\) \(0\) \(448868\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(-5621+\beta _{3})q^{4}+(-149\beta _{1}+\cdots)q^{5}+\cdots\)
27.15.b.d 27.b 3.b $10$ $33.569$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 27.15.b.d \(0\) \(0\) \(0\) \(-751342\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{2}+(-9178-\beta _{1})q^{4}+(42\beta _{5}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{15}^{\mathrm{old}}(27, [\chi])\) into lower level spaces

\( S_{15}^{\mathrm{old}}(27, [\chi]) \simeq \) \(S_{15}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{15}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)