Defining parameters
| Level: | \( N \) | \(=\) | \( 27 = 3^{3} \) |
| Weight: | \( k \) | \(=\) | \( 15 \) |
| Character orbit: | \([\chi]\) | \(=\) | 27.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 4 \) | ||
| Sturm bound: | \(45\) | ||
| Trace bound: | \(4\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{15}(27, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 45 | 19 | 26 |
| Cusp forms | 39 | 19 | 20 |
| Eisenstein series | 6 | 0 | 6 |
Trace form
Decomposition of \(S_{15}^{\mathrm{new}}(27, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 27.15.b.a | $1$ | $33.569$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(1461083\) | \(q+2^{14}q^{4}+1461083q^{7}+33388991q^{13}+\cdots\) |
| 27.15.b.b | $4$ | $33.569$ | \(\mathbb{Q}[x]/(x^{4} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-1064644\) | \(q+\beta _{1}q^{2}+(-18122+17\beta _{3})q^{4}+(312\beta _{1}+\cdots)q^{5}+\cdots\) |
| 27.15.b.c | $4$ | $33.569$ | \(\mathbb{Q}[x]/(x^{4} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(448868\) | \(q+\beta _{1}q^{2}+(-5621+\beta _{3})q^{4}+(-149\beta _{1}+\cdots)q^{5}+\cdots\) |
| 27.15.b.d | $10$ | $33.569$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-751342\) | \(q-\beta _{5}q^{2}+(-9178-\beta _{1})q^{4}+(42\beta _{5}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{15}^{\mathrm{old}}(27, [\chi])\) into lower level spaces
\( S_{15}^{\mathrm{old}}(27, [\chi]) \simeq \) \(S_{15}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{15}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 2}\)