Properties

Label 27.14.a.b.1.4
Level $27$
Weight $14$
Character 27.1
Self dual yes
Analytic conductor $28.952$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,14,Mod(1,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-117,0,8101] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.9523508170\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2080x^{2} - 9500x + 13552 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{8}\cdot 13 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(48.1619\) of defining polynomial
Character \(\chi\) \(=\) 27.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+114.486 q^{2} +4914.99 q^{4} -6541.53 q^{5} +3023.86 q^{7} -375171. q^{8} -748912. q^{10} -2.93325e6 q^{11} -1.09205e7 q^{13} +346189. q^{14} -8.32153e7 q^{16} +3.91668e7 q^{17} -2.62272e8 q^{19} -3.21515e7 q^{20} -3.35815e8 q^{22} -5.10689e8 q^{23} -1.17791e9 q^{25} -1.25024e9 q^{26} +1.48623e7 q^{28} -1.28435e9 q^{29} +7.28041e9 q^{31} -6.45357e9 q^{32} +4.48404e9 q^{34} -1.97807e7 q^{35} +1.19549e10 q^{37} -3.00264e10 q^{38} +2.45419e9 q^{40} -4.94440e10 q^{41} +5.84125e8 q^{43} -1.44169e10 q^{44} -5.84666e10 q^{46} -4.28170e10 q^{47} -9.68799e10 q^{49} -1.34854e11 q^{50} -5.36741e10 q^{52} +2.39761e11 q^{53} +1.91879e10 q^{55} -1.13446e9 q^{56} -1.47039e11 q^{58} -3.71617e11 q^{59} +5.07461e11 q^{61} +8.33504e11 q^{62} -5.71420e10 q^{64} +7.14367e10 q^{65} +1.12088e12 q^{67} +1.92505e11 q^{68} -2.26461e9 q^{70} +1.68696e12 q^{71} +4.53212e11 q^{73} +1.36866e12 q^{74} -1.28906e12 q^{76} -8.86974e9 q^{77} +4.27255e11 q^{79} +5.44355e11 q^{80} -5.66063e12 q^{82} -1.21156e12 q^{83} -2.56211e11 q^{85} +6.68740e10 q^{86} +1.10047e12 q^{88} -5.30646e12 q^{89} -3.30221e10 q^{91} -2.51003e12 q^{92} -4.90194e12 q^{94} +1.71566e12 q^{95} +1.48907e13 q^{97} -1.10914e13 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 117 q^{2} + 8101 q^{4} - 11412 q^{5} + 54572 q^{7} - 615375 q^{8} + 969579 q^{10} - 4927212 q^{11} + 12107576 q^{13} - 2015487 q^{14} + 56856625 q^{16} + 34729992 q^{17} + 269848016 q^{19} - 179564463 q^{20}+ \cdots - 3817815378498 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 114.486 1.26490 0.632450 0.774601i \(-0.282049\pi\)
0.632450 + 0.774601i \(0.282049\pi\)
\(3\) 0 0
\(4\) 4914.99 0.599974
\(5\) −6541.53 −0.187229 −0.0936147 0.995609i \(-0.529842\pi\)
−0.0936147 + 0.995609i \(0.529842\pi\)
\(6\) 0 0
\(7\) 3023.86 0.00971459 0.00485730 0.999988i \(-0.498454\pi\)
0.00485730 + 0.999988i \(0.498454\pi\)
\(8\) −375171. −0.505993
\(9\) 0 0
\(10\) −748912. −0.236827
\(11\) −2.93325e6 −0.499225 −0.249613 0.968346i \(-0.580303\pi\)
−0.249613 + 0.968346i \(0.580303\pi\)
\(12\) 0 0
\(13\) −1.09205e7 −0.627495 −0.313748 0.949506i \(-0.601585\pi\)
−0.313748 + 0.949506i \(0.601585\pi\)
\(14\) 346189. 0.0122880
\(15\) 0 0
\(16\) −8.32153e7 −1.24001
\(17\) 3.91668e7 0.393550 0.196775 0.980449i \(-0.436953\pi\)
0.196775 + 0.980449i \(0.436953\pi\)
\(18\) 0 0
\(19\) −2.62272e8 −1.27895 −0.639475 0.768812i \(-0.720848\pi\)
−0.639475 + 0.768812i \(0.720848\pi\)
\(20\) −3.21515e7 −0.112333
\(21\) 0 0
\(22\) −3.35815e8 −0.631471
\(23\) −5.10689e8 −0.719325 −0.359663 0.933082i \(-0.617108\pi\)
−0.359663 + 0.933082i \(0.617108\pi\)
\(24\) 0 0
\(25\) −1.17791e9 −0.964945
\(26\) −1.25024e9 −0.793719
\(27\) 0 0
\(28\) 1.48623e7 0.00582851
\(29\) −1.28435e9 −0.400955 −0.200477 0.979698i \(-0.564249\pi\)
−0.200477 + 0.979698i \(0.564249\pi\)
\(30\) 0 0
\(31\) 7.28041e9 1.47335 0.736674 0.676249i \(-0.236395\pi\)
0.736674 + 0.676249i \(0.236395\pi\)
\(32\) −6.45357e9 −1.06249
\(33\) 0 0
\(34\) 4.48404e9 0.497802
\(35\) −1.97807e7 −0.00181886
\(36\) 0 0
\(37\) 1.19549e10 0.766008 0.383004 0.923747i \(-0.374890\pi\)
0.383004 + 0.923747i \(0.374890\pi\)
\(38\) −3.00264e10 −1.61774
\(39\) 0 0
\(40\) 2.45419e9 0.0947367
\(41\) −4.94440e10 −1.62562 −0.812809 0.582531i \(-0.802063\pi\)
−0.812809 + 0.582531i \(0.802063\pi\)
\(42\) 0 0
\(43\) 5.84125e8 0.0140916 0.00704581 0.999975i \(-0.497757\pi\)
0.00704581 + 0.999975i \(0.497757\pi\)
\(44\) −1.44169e10 −0.299522
\(45\) 0 0
\(46\) −5.84666e10 −0.909875
\(47\) −4.28170e10 −0.579402 −0.289701 0.957117i \(-0.593556\pi\)
−0.289701 + 0.957117i \(0.593556\pi\)
\(48\) 0 0
\(49\) −9.68799e10 −0.999906
\(50\) −1.34854e11 −1.22056
\(51\) 0 0
\(52\) −5.36741e10 −0.376481
\(53\) 2.39761e11 1.48588 0.742942 0.669356i \(-0.233430\pi\)
0.742942 + 0.669356i \(0.233430\pi\)
\(54\) 0 0
\(55\) 1.91879e10 0.0934696
\(56\) −1.13446e9 −0.00491551
\(57\) 0 0
\(58\) −1.47039e11 −0.507168
\(59\) −3.71617e11 −1.14698 −0.573492 0.819211i \(-0.694412\pi\)
−0.573492 + 0.819211i \(0.694412\pi\)
\(60\) 0 0
\(61\) 5.07461e11 1.26113 0.630564 0.776138i \(-0.282824\pi\)
0.630564 + 0.776138i \(0.282824\pi\)
\(62\) 8.33504e11 1.86364
\(63\) 0 0
\(64\) −5.71420e10 −0.103941
\(65\) 7.14367e10 0.117486
\(66\) 0 0
\(67\) 1.12088e12 1.51382 0.756908 0.653521i \(-0.226709\pi\)
0.756908 + 0.653521i \(0.226709\pi\)
\(68\) 1.92505e11 0.236120
\(69\) 0 0
\(70\) −2.26461e9 −0.00230067
\(71\) 1.68696e12 1.56288 0.781439 0.623982i \(-0.214486\pi\)
0.781439 + 0.623982i \(0.214486\pi\)
\(72\) 0 0
\(73\) 4.53212e11 0.350512 0.175256 0.984523i \(-0.443925\pi\)
0.175256 + 0.984523i \(0.443925\pi\)
\(74\) 1.36866e12 0.968924
\(75\) 0 0
\(76\) −1.28906e12 −0.767337
\(77\) −8.86974e9 −0.00484977
\(78\) 0 0
\(79\) 4.27255e11 0.197747 0.0988737 0.995100i \(-0.468476\pi\)
0.0988737 + 0.995100i \(0.468476\pi\)
\(80\) 5.44355e11 0.232165
\(81\) 0 0
\(82\) −5.66063e12 −2.05625
\(83\) −1.21156e12 −0.406759 −0.203380 0.979100i \(-0.565193\pi\)
−0.203380 + 0.979100i \(0.565193\pi\)
\(84\) 0 0
\(85\) −2.56211e11 −0.0736842
\(86\) 6.68740e10 0.0178245
\(87\) 0 0
\(88\) 1.10047e12 0.252604
\(89\) −5.30646e12 −1.13180 −0.565900 0.824474i \(-0.691471\pi\)
−0.565900 + 0.824474i \(0.691471\pi\)
\(90\) 0 0
\(91\) −3.30221e10 −0.00609586
\(92\) −2.51003e12 −0.431577
\(93\) 0 0
\(94\) −4.90194e12 −0.732886
\(95\) 1.71566e12 0.239457
\(96\) 0 0
\(97\) 1.48907e13 1.81509 0.907544 0.419957i \(-0.137955\pi\)
0.907544 + 0.419957i \(0.137955\pi\)
\(98\) −1.10914e13 −1.26478
\(99\) 0 0
\(100\) −5.78942e12 −0.578942
\(101\) −2.31222e12 −0.216741 −0.108370 0.994111i \(-0.534563\pi\)
−0.108370 + 0.994111i \(0.534563\pi\)
\(102\) 0 0
\(103\) 3.62363e12 0.299021 0.149511 0.988760i \(-0.452230\pi\)
0.149511 + 0.988760i \(0.452230\pi\)
\(104\) 4.09705e12 0.317508
\(105\) 0 0
\(106\) 2.74492e13 1.87950
\(107\) −2.49571e13 −1.60768 −0.803839 0.594847i \(-0.797213\pi\)
−0.803839 + 0.594847i \(0.797213\pi\)
\(108\) 0 0
\(109\) −6.85838e12 −0.391696 −0.195848 0.980634i \(-0.562746\pi\)
−0.195848 + 0.980634i \(0.562746\pi\)
\(110\) 2.19674e12 0.118230
\(111\) 0 0
\(112\) −2.51632e11 −0.0120461
\(113\) −1.65589e12 −0.0748208 −0.0374104 0.999300i \(-0.511911\pi\)
−0.0374104 + 0.999300i \(0.511911\pi\)
\(114\) 0 0
\(115\) 3.34068e12 0.134679
\(116\) −6.31255e12 −0.240563
\(117\) 0 0
\(118\) −4.25449e13 −1.45082
\(119\) 1.18435e11 0.00382318
\(120\) 0 0
\(121\) −2.59188e13 −0.750774
\(122\) 5.80971e13 1.59520
\(123\) 0 0
\(124\) 3.57832e13 0.883971
\(125\) 1.56906e13 0.367896
\(126\) 0 0
\(127\) −7.41286e13 −1.56770 −0.783848 0.620953i \(-0.786746\pi\)
−0.783848 + 0.620953i \(0.786746\pi\)
\(128\) 4.63257e13 0.931016
\(129\) 0 0
\(130\) 8.17848e12 0.148608
\(131\) −2.34322e13 −0.405088 −0.202544 0.979273i \(-0.564921\pi\)
−0.202544 + 0.979273i \(0.564921\pi\)
\(132\) 0 0
\(133\) −7.93074e11 −0.0124245
\(134\) 1.28325e14 1.91483
\(135\) 0 0
\(136\) −1.46943e13 −0.199134
\(137\) −2.83009e13 −0.365693 −0.182846 0.983141i \(-0.558531\pi\)
−0.182846 + 0.983141i \(0.558531\pi\)
\(138\) 0 0
\(139\) −1.00157e13 −0.117784 −0.0588921 0.998264i \(-0.518757\pi\)
−0.0588921 + 0.998264i \(0.518757\pi\)
\(140\) −9.72218e10 −0.00109127
\(141\) 0 0
\(142\) 1.93133e14 1.97689
\(143\) 3.20325e13 0.313261
\(144\) 0 0
\(145\) 8.40159e12 0.0750705
\(146\) 5.18863e13 0.443363
\(147\) 0 0
\(148\) 5.87580e13 0.459585
\(149\) −2.30649e14 −1.72680 −0.863398 0.504523i \(-0.831668\pi\)
−0.863398 + 0.504523i \(0.831668\pi\)
\(150\) 0 0
\(151\) 9.06240e13 0.622147 0.311073 0.950386i \(-0.399311\pi\)
0.311073 + 0.950386i \(0.399311\pi\)
\(152\) 9.83968e13 0.647139
\(153\) 0 0
\(154\) −1.01546e12 −0.00613448
\(155\) −4.76250e13 −0.275854
\(156\) 0 0
\(157\) −1.09770e14 −0.584971 −0.292485 0.956270i \(-0.594482\pi\)
−0.292485 + 0.956270i \(0.594482\pi\)
\(158\) 4.89146e13 0.250131
\(159\) 0 0
\(160\) 4.22162e13 0.198930
\(161\) −1.54425e12 −0.00698795
\(162\) 0 0
\(163\) −1.40380e14 −0.586254 −0.293127 0.956073i \(-0.594696\pi\)
−0.293127 + 0.956073i \(0.594696\pi\)
\(164\) −2.43017e14 −0.975329
\(165\) 0 0
\(166\) −1.38706e14 −0.514510
\(167\) −4.32365e14 −1.54239 −0.771193 0.636601i \(-0.780340\pi\)
−0.771193 + 0.636601i \(0.780340\pi\)
\(168\) 0 0
\(169\) −1.83618e14 −0.606250
\(170\) −2.93325e13 −0.0932032
\(171\) 0 0
\(172\) 2.87097e12 0.00845461
\(173\) −2.05104e14 −0.581667 −0.290833 0.956774i \(-0.593933\pi\)
−0.290833 + 0.956774i \(0.593933\pi\)
\(174\) 0 0
\(175\) −3.56184e12 −0.00937405
\(176\) 2.44091e14 0.619042
\(177\) 0 0
\(178\) −6.07514e14 −1.43161
\(179\) −5.14530e14 −1.16914 −0.584569 0.811344i \(-0.698736\pi\)
−0.584569 + 0.811344i \(0.698736\pi\)
\(180\) 0 0
\(181\) 2.47164e14 0.522487 0.261243 0.965273i \(-0.415867\pi\)
0.261243 + 0.965273i \(0.415867\pi\)
\(182\) −3.78055e12 −0.00771066
\(183\) 0 0
\(184\) 1.91596e14 0.363973
\(185\) −7.82030e13 −0.143419
\(186\) 0 0
\(187\) −1.14886e14 −0.196470
\(188\) −2.10445e14 −0.347626
\(189\) 0 0
\(190\) 1.96418e14 0.302889
\(191\) 6.83084e14 1.01802 0.509011 0.860760i \(-0.330011\pi\)
0.509011 + 0.860760i \(0.330011\pi\)
\(192\) 0 0
\(193\) 1.01525e15 1.41400 0.707001 0.707212i \(-0.250048\pi\)
0.707001 + 0.707212i \(0.250048\pi\)
\(194\) 1.70477e15 2.29591
\(195\) 0 0
\(196\) −4.76164e14 −0.599918
\(197\) −5.56249e14 −0.678014 −0.339007 0.940784i \(-0.610091\pi\)
−0.339007 + 0.940784i \(0.610091\pi\)
\(198\) 0 0
\(199\) 1.42117e15 1.62219 0.811094 0.584916i \(-0.198873\pi\)
0.811094 + 0.584916i \(0.198873\pi\)
\(200\) 4.41918e14 0.488255
\(201\) 0 0
\(202\) −2.64717e14 −0.274156
\(203\) −3.88369e12 −0.00389511
\(204\) 0 0
\(205\) 3.23439e14 0.304363
\(206\) 4.14854e14 0.378232
\(207\) 0 0
\(208\) 9.08752e14 0.778097
\(209\) 7.69309e14 0.638484
\(210\) 0 0
\(211\) −2.60015e14 −0.202844 −0.101422 0.994843i \(-0.532339\pi\)
−0.101422 + 0.994843i \(0.532339\pi\)
\(212\) 1.17842e15 0.891492
\(213\) 0 0
\(214\) −2.85723e15 −2.03355
\(215\) −3.82107e12 −0.00263837
\(216\) 0 0
\(217\) 2.20150e13 0.0143130
\(218\) −7.85187e14 −0.495457
\(219\) 0 0
\(220\) 9.43085e13 0.0560794
\(221\) −4.27721e14 −0.246951
\(222\) 0 0
\(223\) −1.04630e15 −0.569738 −0.284869 0.958567i \(-0.591950\pi\)
−0.284869 + 0.958567i \(0.591950\pi\)
\(224\) −1.95147e13 −0.0103217
\(225\) 0 0
\(226\) −1.89576e14 −0.0946409
\(227\) 7.53498e14 0.365523 0.182761 0.983157i \(-0.441496\pi\)
0.182761 + 0.983157i \(0.441496\pi\)
\(228\) 0 0
\(229\) −2.15536e15 −0.987618 −0.493809 0.869570i \(-0.664396\pi\)
−0.493809 + 0.869570i \(0.664396\pi\)
\(230\) 3.82461e14 0.170355
\(231\) 0 0
\(232\) 4.81850e14 0.202880
\(233\) 1.82751e15 0.748248 0.374124 0.927379i \(-0.377943\pi\)
0.374124 + 0.927379i \(0.377943\pi\)
\(234\) 0 0
\(235\) 2.80088e14 0.108481
\(236\) −1.82649e15 −0.688162
\(237\) 0 0
\(238\) 1.35591e13 0.00483595
\(239\) −4.09058e15 −1.41971 −0.709853 0.704350i \(-0.751239\pi\)
−0.709853 + 0.704350i \(0.751239\pi\)
\(240\) 0 0
\(241\) −2.10327e15 −0.691489 −0.345744 0.938329i \(-0.612374\pi\)
−0.345744 + 0.938329i \(0.612374\pi\)
\(242\) −2.96733e15 −0.949655
\(243\) 0 0
\(244\) 2.49417e15 0.756644
\(245\) 6.33742e14 0.187212
\(246\) 0 0
\(247\) 2.86414e15 0.802534
\(248\) −2.73140e15 −0.745503
\(249\) 0 0
\(250\) 1.79635e15 0.465351
\(251\) 4.82134e15 1.21699 0.608497 0.793556i \(-0.291773\pi\)
0.608497 + 0.793556i \(0.291773\pi\)
\(252\) 0 0
\(253\) 1.49798e15 0.359105
\(254\) −8.48667e15 −1.98298
\(255\) 0 0
\(256\) 5.77174e15 1.28158
\(257\) −6.87431e15 −1.48821 −0.744104 0.668064i \(-0.767123\pi\)
−0.744104 + 0.668064i \(0.767123\pi\)
\(258\) 0 0
\(259\) 3.61498e13 0.00744145
\(260\) 3.51111e14 0.0704883
\(261\) 0 0
\(262\) −2.68265e15 −0.512396
\(263\) 4.29952e15 0.801139 0.400570 0.916266i \(-0.368812\pi\)
0.400570 + 0.916266i \(0.368812\pi\)
\(264\) 0 0
\(265\) −1.56840e15 −0.278201
\(266\) −9.07957e13 −0.0157157
\(267\) 0 0
\(268\) 5.50912e15 0.908251
\(269\) 4.51075e15 0.725871 0.362935 0.931814i \(-0.381775\pi\)
0.362935 + 0.931814i \(0.381775\pi\)
\(270\) 0 0
\(271\) −6.31461e15 −0.968381 −0.484190 0.874963i \(-0.660886\pi\)
−0.484190 + 0.874963i \(0.660886\pi\)
\(272\) −3.25928e15 −0.488004
\(273\) 0 0
\(274\) −3.24005e15 −0.462565
\(275\) 3.45511e15 0.481725
\(276\) 0 0
\(277\) 2.04896e15 0.272530 0.136265 0.990672i \(-0.456490\pi\)
0.136265 + 0.990672i \(0.456490\pi\)
\(278\) −1.14666e15 −0.148985
\(279\) 0 0
\(280\) 7.42113e12 0.000920329 0
\(281\) 1.13826e16 1.37928 0.689640 0.724153i \(-0.257769\pi\)
0.689640 + 0.724153i \(0.257769\pi\)
\(282\) 0 0
\(283\) −1.26106e16 −1.45923 −0.729614 0.683859i \(-0.760300\pi\)
−0.729614 + 0.683859i \(0.760300\pi\)
\(284\) 8.29138e15 0.937687
\(285\) 0 0
\(286\) 3.66727e15 0.396245
\(287\) −1.49512e14 −0.0157922
\(288\) 0 0
\(289\) −8.37054e15 −0.845118
\(290\) 9.61863e14 0.0949568
\(291\) 0 0
\(292\) 2.22753e15 0.210298
\(293\) 3.42022e15 0.315801 0.157901 0.987455i \(-0.449527\pi\)
0.157901 + 0.987455i \(0.449527\pi\)
\(294\) 0 0
\(295\) 2.43094e15 0.214749
\(296\) −4.48512e15 −0.387594
\(297\) 0 0
\(298\) −2.64060e16 −2.18423
\(299\) 5.57697e15 0.451373
\(300\) 0 0
\(301\) 1.76631e12 0.000136894 0
\(302\) 1.03752e16 0.786954
\(303\) 0 0
\(304\) 2.18250e16 1.58590
\(305\) −3.31957e15 −0.236120
\(306\) 0 0
\(307\) 1.73522e16 1.18292 0.591461 0.806334i \(-0.298551\pi\)
0.591461 + 0.806334i \(0.298551\pi\)
\(308\) −4.35947e13 −0.00290974
\(309\) 0 0
\(310\) −5.45239e15 −0.348928
\(311\) 1.96489e16 1.23139 0.615695 0.787985i \(-0.288875\pi\)
0.615695 + 0.787985i \(0.288875\pi\)
\(312\) 0 0
\(313\) 1.85002e16 1.11209 0.556043 0.831154i \(-0.312319\pi\)
0.556043 + 0.831154i \(0.312319\pi\)
\(314\) −1.25670e16 −0.739930
\(315\) 0 0
\(316\) 2.09995e15 0.118643
\(317\) 7.67121e15 0.424599 0.212299 0.977205i \(-0.431905\pi\)
0.212299 + 0.977205i \(0.431905\pi\)
\(318\) 0 0
\(319\) 3.76731e15 0.200167
\(320\) 3.73796e14 0.0194608
\(321\) 0 0
\(322\) −1.76795e14 −0.00883907
\(323\) −1.02724e16 −0.503331
\(324\) 0 0
\(325\) 1.28634e16 0.605498
\(326\) −1.60715e16 −0.741554
\(327\) 0 0
\(328\) 1.85499e16 0.822551
\(329\) −1.29473e14 −0.00562866
\(330\) 0 0
\(331\) 4.44416e15 0.185741 0.0928705 0.995678i \(-0.470396\pi\)
0.0928705 + 0.995678i \(0.470396\pi\)
\(332\) −5.95481e15 −0.244045
\(333\) 0 0
\(334\) −4.94996e16 −1.95097
\(335\) −7.33227e15 −0.283431
\(336\) 0 0
\(337\) 1.01752e16 0.378398 0.189199 0.981939i \(-0.439411\pi\)
0.189199 + 0.981939i \(0.439411\pi\)
\(338\) −2.10216e16 −0.766846
\(339\) 0 0
\(340\) −1.25927e15 −0.0442086
\(341\) −2.13553e16 −0.735532
\(342\) 0 0
\(343\) −5.85930e14 −0.0194283
\(344\) −2.19147e14 −0.00713026
\(345\) 0 0
\(346\) −2.34815e16 −0.735751
\(347\) −3.71340e16 −1.14190 −0.570952 0.820983i \(-0.693426\pi\)
−0.570952 + 0.820983i \(0.693426\pi\)
\(348\) 0 0
\(349\) −3.31685e16 −0.982563 −0.491282 0.871001i \(-0.663471\pi\)
−0.491282 + 0.871001i \(0.663471\pi\)
\(350\) −4.07780e14 −0.0118572
\(351\) 0 0
\(352\) 1.89299e16 0.530422
\(353\) −3.87859e16 −1.06694 −0.533468 0.845820i \(-0.679112\pi\)
−0.533468 + 0.845820i \(0.679112\pi\)
\(354\) 0 0
\(355\) −1.10353e16 −0.292617
\(356\) −2.60812e16 −0.679051
\(357\) 0 0
\(358\) −5.89063e16 −1.47884
\(359\) 3.95144e16 0.974185 0.487093 0.873350i \(-0.338057\pi\)
0.487093 + 0.873350i \(0.338057\pi\)
\(360\) 0 0
\(361\) 2.67335e16 0.635711
\(362\) 2.82968e16 0.660894
\(363\) 0 0
\(364\) −1.62303e14 −0.00365736
\(365\) −2.96470e15 −0.0656262
\(366\) 0 0
\(367\) 1.58923e16 0.339514 0.169757 0.985486i \(-0.445702\pi\)
0.169757 + 0.985486i \(0.445702\pi\)
\(368\) 4.24971e16 0.891967
\(369\) 0 0
\(370\) −8.95313e15 −0.181411
\(371\) 7.25003e14 0.0144348
\(372\) 0 0
\(373\) −2.97259e16 −0.571514 −0.285757 0.958302i \(-0.592245\pi\)
−0.285757 + 0.958302i \(0.592245\pi\)
\(374\) −1.31528e16 −0.248515
\(375\) 0 0
\(376\) 1.60637e16 0.293173
\(377\) 1.40257e16 0.251597
\(378\) 0 0
\(379\) 3.32748e16 0.576715 0.288357 0.957523i \(-0.406891\pi\)
0.288357 + 0.957523i \(0.406891\pi\)
\(380\) 8.43244e15 0.143668
\(381\) 0 0
\(382\) 7.82034e16 1.28770
\(383\) 2.19430e16 0.355225 0.177612 0.984101i \(-0.443163\pi\)
0.177612 + 0.984101i \(0.443163\pi\)
\(384\) 0 0
\(385\) 5.80216e13 0.000908020 0
\(386\) 1.16232e17 1.78857
\(387\) 0 0
\(388\) 7.31875e16 1.08901
\(389\) −7.78907e16 −1.13976 −0.569880 0.821728i \(-0.693010\pi\)
−0.569880 + 0.821728i \(0.693010\pi\)
\(390\) 0 0
\(391\) −2.00020e16 −0.283091
\(392\) 3.63465e16 0.505945
\(393\) 0 0
\(394\) −6.36825e16 −0.857620
\(395\) −2.79490e15 −0.0370241
\(396\) 0 0
\(397\) 1.14310e17 1.46537 0.732684 0.680569i \(-0.238267\pi\)
0.732684 + 0.680569i \(0.238267\pi\)
\(398\) 1.62704e17 2.05191
\(399\) 0 0
\(400\) 9.80203e16 1.19654
\(401\) −7.06722e16 −0.848809 −0.424405 0.905473i \(-0.639517\pi\)
−0.424405 + 0.905473i \(0.639517\pi\)
\(402\) 0 0
\(403\) −7.95057e16 −0.924518
\(404\) −1.13646e16 −0.130039
\(405\) 0 0
\(406\) −4.44627e14 −0.00492693
\(407\) −3.50666e16 −0.382410
\(408\) 0 0
\(409\) −1.48247e17 −1.56597 −0.782987 0.622038i \(-0.786305\pi\)
−0.782987 + 0.622038i \(0.786305\pi\)
\(410\) 3.70292e16 0.384990
\(411\) 0 0
\(412\) 1.78101e16 0.179405
\(413\) −1.12372e15 −0.0111425
\(414\) 0 0
\(415\) 7.92545e15 0.0761573
\(416\) 7.04762e16 0.666708
\(417\) 0 0
\(418\) 8.80749e16 0.807619
\(419\) 1.93096e17 1.74334 0.871671 0.490091i \(-0.163037\pi\)
0.871671 + 0.490091i \(0.163037\pi\)
\(420\) 0 0
\(421\) −1.84851e17 −1.61804 −0.809018 0.587783i \(-0.800001\pi\)
−0.809018 + 0.587783i \(0.800001\pi\)
\(422\) −2.97680e16 −0.256578
\(423\) 0 0
\(424\) −8.99512e16 −0.751846
\(425\) −4.61350e16 −0.379754
\(426\) 0 0
\(427\) 1.53449e15 0.0122513
\(428\) −1.22664e17 −0.964566
\(429\) 0 0
\(430\) −4.37458e14 −0.00333727
\(431\) −2.61733e17 −1.96678 −0.983392 0.181494i \(-0.941907\pi\)
−0.983392 + 0.181494i \(0.941907\pi\)
\(432\) 0 0
\(433\) 1.95120e15 0.0142275 0.00711376 0.999975i \(-0.497736\pi\)
0.00711376 + 0.999975i \(0.497736\pi\)
\(434\) 2.52040e15 0.0181045
\(435\) 0 0
\(436\) −3.37089e16 −0.235008
\(437\) 1.33939e17 0.919980
\(438\) 0 0
\(439\) −1.62018e17 −1.08030 −0.540149 0.841569i \(-0.681632\pi\)
−0.540149 + 0.841569i \(0.681632\pi\)
\(440\) −7.19875e15 −0.0472950
\(441\) 0 0
\(442\) −4.89679e16 −0.312368
\(443\) −1.00283e17 −0.630382 −0.315191 0.949028i \(-0.602069\pi\)
−0.315191 + 0.949028i \(0.602069\pi\)
\(444\) 0 0
\(445\) 3.47123e16 0.211906
\(446\) −1.19787e17 −0.720662
\(447\) 0 0
\(448\) −1.72789e14 −0.00100974
\(449\) −2.07644e17 −1.19596 −0.597982 0.801510i \(-0.704031\pi\)
−0.597982 + 0.801510i \(0.704031\pi\)
\(450\) 0 0
\(451\) 1.45032e17 0.811549
\(452\) −8.13870e15 −0.0448906
\(453\) 0 0
\(454\) 8.62648e16 0.462350
\(455\) 2.16015e14 0.00114132
\(456\) 0 0
\(457\) 3.67342e17 1.88632 0.943160 0.332340i \(-0.107838\pi\)
0.943160 + 0.332340i \(0.107838\pi\)
\(458\) −2.46758e17 −1.24924
\(459\) 0 0
\(460\) 1.64194e16 0.0808038
\(461\) −2.67782e17 −1.29935 −0.649674 0.760213i \(-0.725095\pi\)
−0.649674 + 0.760213i \(0.725095\pi\)
\(462\) 0 0
\(463\) −1.53329e17 −0.723349 −0.361675 0.932304i \(-0.617795\pi\)
−0.361675 + 0.932304i \(0.617795\pi\)
\(464\) 1.06877e17 0.497186
\(465\) 0 0
\(466\) 2.09224e17 0.946460
\(467\) 2.51521e17 1.12206 0.561028 0.827797i \(-0.310406\pi\)
0.561028 + 0.827797i \(0.310406\pi\)
\(468\) 0 0
\(469\) 3.38939e15 0.0147061
\(470\) 3.20661e16 0.137218
\(471\) 0 0
\(472\) 1.39420e17 0.580366
\(473\) −1.71338e15 −0.00703489
\(474\) 0 0
\(475\) 3.08933e17 1.23412
\(476\) 5.82107e14 0.00229381
\(477\) 0 0
\(478\) −4.68313e17 −1.79579
\(479\) 4.67447e17 1.76828 0.884141 0.467220i \(-0.154744\pi\)
0.884141 + 0.467220i \(0.154744\pi\)
\(480\) 0 0
\(481\) −1.30553e17 −0.480666
\(482\) −2.40795e17 −0.874665
\(483\) 0 0
\(484\) −1.27390e17 −0.450445
\(485\) −9.74076e16 −0.339838
\(486\) 0 0
\(487\) 4.25409e17 1.44500 0.722501 0.691370i \(-0.242992\pi\)
0.722501 + 0.691370i \(0.242992\pi\)
\(488\) −1.90385e17 −0.638121
\(489\) 0 0
\(490\) 7.25545e16 0.236804
\(491\) 2.71463e17 0.874343 0.437171 0.899378i \(-0.355980\pi\)
0.437171 + 0.899378i \(0.355980\pi\)
\(492\) 0 0
\(493\) −5.03038e16 −0.157796
\(494\) 3.27903e17 1.01513
\(495\) 0 0
\(496\) −6.05842e17 −1.82696
\(497\) 5.10113e15 0.0151827
\(498\) 0 0
\(499\) −3.49875e17 −1.01452 −0.507259 0.861794i \(-0.669341\pi\)
−0.507259 + 0.861794i \(0.669341\pi\)
\(500\) 7.71192e16 0.220728
\(501\) 0 0
\(502\) 5.51975e17 1.53938
\(503\) 4.96554e17 1.36702 0.683510 0.729941i \(-0.260453\pi\)
0.683510 + 0.729941i \(0.260453\pi\)
\(504\) 0 0
\(505\) 1.51255e16 0.0405803
\(506\) 1.71497e17 0.454233
\(507\) 0 0
\(508\) −3.64342e17 −0.940577
\(509\) −6.10574e17 −1.55623 −0.778113 0.628124i \(-0.783823\pi\)
−0.778113 + 0.628124i \(0.783823\pi\)
\(510\) 0 0
\(511\) 1.37045e15 0.00340508
\(512\) 2.81282e17 0.690061
\(513\) 0 0
\(514\) −7.87010e17 −1.88244
\(515\) −2.37041e16 −0.0559856
\(516\) 0 0
\(517\) 1.25593e17 0.289252
\(518\) 4.13864e15 0.00941270
\(519\) 0 0
\(520\) −2.68010e16 −0.0594468
\(521\) 7.37351e17 1.61521 0.807605 0.589724i \(-0.200763\pi\)
0.807605 + 0.589724i \(0.200763\pi\)
\(522\) 0 0
\(523\) −1.38691e17 −0.296338 −0.148169 0.988962i \(-0.547338\pi\)
−0.148169 + 0.988962i \(0.547338\pi\)
\(524\) −1.15169e17 −0.243042
\(525\) 0 0
\(526\) 4.92234e17 1.01336
\(527\) 2.85151e17 0.579836
\(528\) 0 0
\(529\) −2.43234e17 −0.482571
\(530\) −1.79560e17 −0.351897
\(531\) 0 0
\(532\) −3.89795e15 −0.00745437
\(533\) 5.39953e17 1.02007
\(534\) 0 0
\(535\) 1.63257e17 0.301005
\(536\) −4.20522e17 −0.765980
\(537\) 0 0
\(538\) 5.16417e17 0.918155
\(539\) 2.84173e17 0.499178
\(540\) 0 0
\(541\) 5.71783e17 0.980504 0.490252 0.871581i \(-0.336905\pi\)
0.490252 + 0.871581i \(0.336905\pi\)
\(542\) −7.22933e17 −1.22491
\(543\) 0 0
\(544\) −2.52766e17 −0.418144
\(545\) 4.48643e16 0.0733370
\(546\) 0 0
\(547\) 3.67486e17 0.586575 0.293287 0.956024i \(-0.405251\pi\)
0.293287 + 0.956024i \(0.405251\pi\)
\(548\) −1.39099e17 −0.219406
\(549\) 0 0
\(550\) 3.95561e17 0.609334
\(551\) 3.36848e17 0.512801
\(552\) 0 0
\(553\) 1.29196e15 0.00192104
\(554\) 2.34576e17 0.344724
\(555\) 0 0
\(556\) −4.92273e16 −0.0706675
\(557\) −1.10324e18 −1.56535 −0.782677 0.622428i \(-0.786146\pi\)
−0.782677 + 0.622428i \(0.786146\pi\)
\(558\) 0 0
\(559\) −6.37893e15 −0.00884242
\(560\) 1.64606e15 0.00225539
\(561\) 0 0
\(562\) 1.30315e18 1.74465
\(563\) −4.85768e17 −0.642872 −0.321436 0.946931i \(-0.604165\pi\)
−0.321436 + 0.946931i \(0.604165\pi\)
\(564\) 0 0
\(565\) 1.08321e16 0.0140087
\(566\) −1.44373e18 −1.84578
\(567\) 0 0
\(568\) −6.32898e17 −0.790805
\(569\) −8.39125e17 −1.03657 −0.518283 0.855209i \(-0.673429\pi\)
−0.518283 + 0.855209i \(0.673429\pi\)
\(570\) 0 0
\(571\) −1.01671e18 −1.22762 −0.613808 0.789456i \(-0.710363\pi\)
−0.613808 + 0.789456i \(0.710363\pi\)
\(572\) 1.57440e17 0.187949
\(573\) 0 0
\(574\) −1.71170e16 −0.0199756
\(575\) 6.01546e17 0.694109
\(576\) 0 0
\(577\) 6.57622e17 0.741880 0.370940 0.928657i \(-0.379036\pi\)
0.370940 + 0.928657i \(0.379036\pi\)
\(578\) −9.58308e17 −1.06899
\(579\) 0 0
\(580\) 4.12937e16 0.0450404
\(581\) −3.66359e15 −0.00395150
\(582\) 0 0
\(583\) −7.03278e17 −0.741790
\(584\) −1.70032e17 −0.177357
\(585\) 0 0
\(586\) 3.91566e17 0.399457
\(587\) 1.64594e18 1.66060 0.830302 0.557314i \(-0.188168\pi\)
0.830302 + 0.557314i \(0.188168\pi\)
\(588\) 0 0
\(589\) −1.90945e18 −1.88434
\(590\) 2.78308e17 0.271637
\(591\) 0 0
\(592\) −9.94828e17 −0.949854
\(593\) −1.74184e18 −1.64495 −0.822473 0.568804i \(-0.807406\pi\)
−0.822473 + 0.568804i \(0.807406\pi\)
\(594\) 0 0
\(595\) −7.74746e14 −0.000715812 0
\(596\) −1.13364e18 −1.03603
\(597\) 0 0
\(598\) 6.38484e17 0.570942
\(599\) 9.58228e17 0.847607 0.423803 0.905754i \(-0.360695\pi\)
0.423803 + 0.905754i \(0.360695\pi\)
\(600\) 0 0
\(601\) −8.44262e17 −0.730791 −0.365395 0.930852i \(-0.619066\pi\)
−0.365395 + 0.930852i \(0.619066\pi\)
\(602\) 2.02218e14 0.000173158 0
\(603\) 0 0
\(604\) 4.45416e17 0.373272
\(605\) 1.69548e17 0.140567
\(606\) 0 0
\(607\) 2.78894e17 0.226315 0.113157 0.993577i \(-0.463904\pi\)
0.113157 + 0.993577i \(0.463904\pi\)
\(608\) 1.69259e18 1.35887
\(609\) 0 0
\(610\) −3.80044e17 −0.298669
\(611\) 4.67583e17 0.363572
\(612\) 0 0
\(613\) −5.82115e17 −0.443114 −0.221557 0.975147i \(-0.571114\pi\)
−0.221557 + 0.975147i \(0.571114\pi\)
\(614\) 1.98658e18 1.49628
\(615\) 0 0
\(616\) 3.32767e15 0.00245395
\(617\) −2.23431e18 −1.63038 −0.815192 0.579190i \(-0.803369\pi\)
−0.815192 + 0.579190i \(0.803369\pi\)
\(618\) 0 0
\(619\) −1.72028e18 −1.22916 −0.614582 0.788853i \(-0.710675\pi\)
−0.614582 + 0.788853i \(0.710675\pi\)
\(620\) −2.34077e17 −0.165505
\(621\) 0 0
\(622\) 2.24952e18 1.55759
\(623\) −1.60460e16 −0.0109950
\(624\) 0 0
\(625\) 1.33524e18 0.896064
\(626\) 2.11801e18 1.40668
\(627\) 0 0
\(628\) −5.39516e17 −0.350967
\(629\) 4.68234e17 0.301463
\(630\) 0 0
\(631\) 1.43832e18 0.907121 0.453560 0.891225i \(-0.350154\pi\)
0.453560 + 0.891225i \(0.350154\pi\)
\(632\) −1.60294e17 −0.100059
\(633\) 0 0
\(634\) 8.78245e17 0.537076
\(635\) 4.84914e17 0.293519
\(636\) 0 0
\(637\) 1.05798e18 0.627436
\(638\) 4.31303e17 0.253191
\(639\) 0 0
\(640\) −3.03041e17 −0.174314
\(641\) −8.11058e16 −0.0461822 −0.0230911 0.999733i \(-0.507351\pi\)
−0.0230911 + 0.999733i \(0.507351\pi\)
\(642\) 0 0
\(643\) 1.89202e18 1.05573 0.527866 0.849328i \(-0.322992\pi\)
0.527866 + 0.849328i \(0.322992\pi\)
\(644\) −7.58998e15 −0.00419259
\(645\) 0 0
\(646\) −1.17604e18 −0.636664
\(647\) 7.37029e17 0.395009 0.197504 0.980302i \(-0.436716\pi\)
0.197504 + 0.980302i \(0.436716\pi\)
\(648\) 0 0
\(649\) 1.09005e18 0.572604
\(650\) 1.47267e18 0.765895
\(651\) 0 0
\(652\) −6.89967e17 −0.351738
\(653\) −2.07702e18 −1.04835 −0.524173 0.851612i \(-0.675625\pi\)
−0.524173 + 0.851612i \(0.675625\pi\)
\(654\) 0 0
\(655\) 1.53282e17 0.0758443
\(656\) 4.11450e18 2.01577
\(657\) 0 0
\(658\) −1.48228e16 −0.00711969
\(659\) 1.26324e18 0.600800 0.300400 0.953813i \(-0.402880\pi\)
0.300400 + 0.953813i \(0.402880\pi\)
\(660\) 0 0
\(661\) −5.47092e17 −0.255124 −0.127562 0.991831i \(-0.540715\pi\)
−0.127562 + 0.991831i \(0.540715\pi\)
\(662\) 5.08793e17 0.234944
\(663\) 0 0
\(664\) 4.54542e17 0.205817
\(665\) 5.18791e15 0.00232623
\(666\) 0 0
\(667\) 6.55901e17 0.288417
\(668\) −2.12507e18 −0.925393
\(669\) 0 0
\(670\) −8.39440e17 −0.358512
\(671\) −1.48851e18 −0.629586
\(672\) 0 0
\(673\) −1.49579e18 −0.620542 −0.310271 0.950648i \(-0.600420\pi\)
−0.310271 + 0.950648i \(0.600420\pi\)
\(674\) 1.16492e18 0.478636
\(675\) 0 0
\(676\) −9.02481e17 −0.363734
\(677\) −3.21910e18 −1.28501 −0.642506 0.766280i \(-0.722105\pi\)
−0.642506 + 0.766280i \(0.722105\pi\)
\(678\) 0 0
\(679\) 4.50273e16 0.0176328
\(680\) 9.61228e16 0.0372837
\(681\) 0 0
\(682\) −2.44487e18 −0.930375
\(683\) 1.37368e18 0.517786 0.258893 0.965906i \(-0.416642\pi\)
0.258893 + 0.965906i \(0.416642\pi\)
\(684\) 0 0
\(685\) 1.85131e17 0.0684685
\(686\) −6.70807e16 −0.0245748
\(687\) 0 0
\(688\) −4.86082e16 −0.0174737
\(689\) −2.61830e18 −0.932385
\(690\) 0 0
\(691\) 2.87602e18 1.00504 0.502521 0.864565i \(-0.332406\pi\)
0.502521 + 0.864565i \(0.332406\pi\)
\(692\) −1.00808e18 −0.348985
\(693\) 0 0
\(694\) −4.25131e18 −1.44440
\(695\) 6.55183e16 0.0220527
\(696\) 0 0
\(697\) −1.93656e18 −0.639762
\(698\) −3.79732e18 −1.24285
\(699\) 0 0
\(700\) −1.75064e16 −0.00562419
\(701\) −3.51627e18 −1.11922 −0.559610 0.828756i \(-0.689049\pi\)
−0.559610 + 0.828756i \(0.689049\pi\)
\(702\) 0 0
\(703\) −3.13542e18 −0.979685
\(704\) 1.67612e17 0.0518898
\(705\) 0 0
\(706\) −4.44043e18 −1.34957
\(707\) −6.99184e15 −0.00210555
\(708\) 0 0
\(709\) 3.33008e18 0.984586 0.492293 0.870430i \(-0.336159\pi\)
0.492293 + 0.870430i \(0.336159\pi\)
\(710\) −1.26338e18 −0.370131
\(711\) 0 0
\(712\) 1.99083e18 0.572682
\(713\) −3.71802e18 −1.05982
\(714\) 0 0
\(715\) −2.09542e17 −0.0586517
\(716\) −2.52891e18 −0.701453
\(717\) 0 0
\(718\) 4.52384e18 1.23225
\(719\) 1.59173e18 0.429666 0.214833 0.976651i \(-0.431079\pi\)
0.214833 + 0.976651i \(0.431079\pi\)
\(720\) 0 0
\(721\) 1.09574e16 0.00290487
\(722\) 3.06061e18 0.804111
\(723\) 0 0
\(724\) 1.21481e18 0.313479
\(725\) 1.51285e18 0.386899
\(726\) 0 0
\(727\) 1.40771e18 0.353622 0.176811 0.984245i \(-0.443422\pi\)
0.176811 + 0.984245i \(0.443422\pi\)
\(728\) 1.23889e16 0.00308446
\(729\) 0 0
\(730\) −3.39416e17 −0.0830106
\(731\) 2.28783e16 0.00554576
\(732\) 0 0
\(733\) 5.31732e18 1.26624 0.633121 0.774052i \(-0.281773\pi\)
0.633121 + 0.774052i \(0.281773\pi\)
\(734\) 1.81944e18 0.429451
\(735\) 0 0
\(736\) 3.29576e18 0.764276
\(737\) −3.28782e18 −0.755735
\(738\) 0 0
\(739\) 1.55754e17 0.0351764 0.0175882 0.999845i \(-0.494401\pi\)
0.0175882 + 0.999845i \(0.494401\pi\)
\(740\) −3.84367e17 −0.0860478
\(741\) 0 0
\(742\) 8.30025e16 0.0182585
\(743\) 4.30761e18 0.939310 0.469655 0.882850i \(-0.344378\pi\)
0.469655 + 0.882850i \(0.344378\pi\)
\(744\) 0 0
\(745\) 1.50880e18 0.323307
\(746\) −3.40319e18 −0.722909
\(747\) 0 0
\(748\) −5.64664e17 −0.117877
\(749\) −7.54667e16 −0.0156179
\(750\) 0 0
\(751\) 1.97069e18 0.400828 0.200414 0.979711i \(-0.435771\pi\)
0.200414 + 0.979711i \(0.435771\pi\)
\(752\) 3.56303e18 0.718462
\(753\) 0 0
\(754\) 1.60574e18 0.318246
\(755\) −5.92819e17 −0.116484
\(756\) 0 0
\(757\) −8.51821e18 −1.64522 −0.822612 0.568603i \(-0.807484\pi\)
−0.822612 + 0.568603i \(0.807484\pi\)
\(758\) 3.80950e18 0.729487
\(759\) 0 0
\(760\) −6.43665e17 −0.121163
\(761\) 3.33558e18 0.622546 0.311273 0.950321i \(-0.399245\pi\)
0.311273 + 0.950321i \(0.399245\pi\)
\(762\) 0 0
\(763\) −2.07388e16 −0.00380517
\(764\) 3.35735e18 0.610787
\(765\) 0 0
\(766\) 2.51216e18 0.449324
\(767\) 4.05824e18 0.719727
\(768\) 0 0
\(769\) 4.94092e18 0.861563 0.430781 0.902456i \(-0.358238\pi\)
0.430781 + 0.902456i \(0.358238\pi\)
\(770\) 6.64265e15 0.00114855
\(771\) 0 0
\(772\) 4.98994e18 0.848365
\(773\) −5.55567e18 −0.936633 −0.468317 0.883561i \(-0.655139\pi\)
−0.468317 + 0.883561i \(0.655139\pi\)
\(774\) 0 0
\(775\) −8.57568e18 −1.42170
\(776\) −5.58654e18 −0.918421
\(777\) 0 0
\(778\) −8.91738e18 −1.44168
\(779\) 1.29678e19 2.07908
\(780\) 0 0
\(781\) −4.94827e18 −0.780228
\(782\) −2.28995e18 −0.358082
\(783\) 0 0
\(784\) 8.06189e18 1.23989
\(785\) 7.18060e17 0.109524
\(786\) 0 0
\(787\) −1.08869e19 −1.63331 −0.816657 0.577124i \(-0.804175\pi\)
−0.816657 + 0.577124i \(0.804175\pi\)
\(788\) −2.73396e18 −0.406791
\(789\) 0 0
\(790\) −3.19976e17 −0.0468319
\(791\) −5.00719e15 −0.000726853 0
\(792\) 0 0
\(793\) −5.54172e18 −0.791351
\(794\) 1.30869e19 1.85355
\(795\) 0 0
\(796\) 6.98504e18 0.973271
\(797\) 4.46024e18 0.616424 0.308212 0.951318i \(-0.400269\pi\)
0.308212 + 0.951318i \(0.400269\pi\)
\(798\) 0 0
\(799\) −1.67701e18 −0.228024
\(800\) 7.60174e18 1.02525
\(801\) 0 0
\(802\) −8.09096e18 −1.07366
\(803\) −1.32938e18 −0.174984
\(804\) 0 0
\(805\) 1.01018e16 0.00130835
\(806\) −9.10227e18 −1.16942
\(807\) 0 0
\(808\) 8.67479e17 0.109669
\(809\) 1.01200e19 1.26916 0.634579 0.772858i \(-0.281174\pi\)
0.634579 + 0.772858i \(0.281174\pi\)
\(810\) 0 0
\(811\) 4.80568e18 0.593088 0.296544 0.955019i \(-0.404166\pi\)
0.296544 + 0.955019i \(0.404166\pi\)
\(812\) −1.90883e16 −0.00233697
\(813\) 0 0
\(814\) −4.01462e18 −0.483711
\(815\) 9.18300e17 0.109764
\(816\) 0 0
\(817\) −1.53200e17 −0.0180225
\(818\) −1.69722e19 −1.98080
\(819\) 0 0
\(820\) 1.58970e18 0.182610
\(821\) −8.52222e18 −0.971230 −0.485615 0.874173i \(-0.661404\pi\)
−0.485615 + 0.874173i \(0.661404\pi\)
\(822\) 0 0
\(823\) 1.05317e19 1.18140 0.590702 0.806890i \(-0.298851\pi\)
0.590702 + 0.806890i \(0.298851\pi\)
\(824\) −1.35948e18 −0.151303
\(825\) 0 0
\(826\) −1.28650e17 −0.0140941
\(827\) 5.41391e18 0.588471 0.294235 0.955733i \(-0.404935\pi\)
0.294235 + 0.955733i \(0.404935\pi\)
\(828\) 0 0
\(829\) 4.47079e17 0.0478388 0.0239194 0.999714i \(-0.492385\pi\)
0.0239194 + 0.999714i \(0.492385\pi\)
\(830\) 9.07351e17 0.0963314
\(831\) 0 0
\(832\) 6.24019e17 0.0652223
\(833\) −3.79448e18 −0.393513
\(834\) 0 0
\(835\) 2.82833e18 0.288780
\(836\) 3.78115e18 0.383074
\(837\) 0 0
\(838\) 2.21068e19 2.20516
\(839\) 3.35229e18 0.331810 0.165905 0.986142i \(-0.446946\pi\)
0.165905 + 0.986142i \(0.446946\pi\)
\(840\) 0 0
\(841\) −8.61108e18 −0.839235
\(842\) −2.11628e19 −2.04666
\(843\) 0 0
\(844\) −1.27797e18 −0.121701
\(845\) 1.20114e18 0.113508
\(846\) 0 0
\(847\) −7.83747e16 −0.00729347
\(848\) −1.99518e19 −1.84250
\(849\) 0 0
\(850\) −5.28181e18 −0.480352
\(851\) −6.10521e18 −0.551009
\(852\) 0 0
\(853\) 1.17906e19 1.04801 0.524007 0.851714i \(-0.324437\pi\)
0.524007 + 0.851714i \(0.324437\pi\)
\(854\) 1.75678e17 0.0154967
\(855\) 0 0
\(856\) 9.36317e18 0.813473
\(857\) −6.74326e18 −0.581426 −0.290713 0.956810i \(-0.593892\pi\)
−0.290713 + 0.956810i \(0.593892\pi\)
\(858\) 0 0
\(859\) 1.95628e19 1.66140 0.830700 0.556720i \(-0.187940\pi\)
0.830700 + 0.556720i \(0.187940\pi\)
\(860\) −1.87805e16 −0.00158295
\(861\) 0 0
\(862\) −2.99647e19 −2.48779
\(863\) 8.84466e18 0.728805 0.364402 0.931242i \(-0.381273\pi\)
0.364402 + 0.931242i \(0.381273\pi\)
\(864\) 0 0
\(865\) 1.34169e18 0.108905
\(866\) 2.23384e17 0.0179964
\(867\) 0 0
\(868\) 1.08203e17 0.00858742
\(869\) −1.25325e18 −0.0987205
\(870\) 0 0
\(871\) −1.22406e19 −0.949912
\(872\) 2.57306e18 0.198195
\(873\) 0 0
\(874\) 1.53341e19 1.16368
\(875\) 4.74462e16 0.00357396
\(876\) 0 0
\(877\) 8.52671e18 0.632826 0.316413 0.948622i \(-0.397522\pi\)
0.316413 + 0.948622i \(0.397522\pi\)
\(878\) −1.85487e19 −1.36647
\(879\) 0 0
\(880\) −1.59673e18 −0.115903
\(881\) 4.36783e18 0.314719 0.157359 0.987541i \(-0.449702\pi\)
0.157359 + 0.987541i \(0.449702\pi\)
\(882\) 0 0
\(883\) −2.24110e19 −1.59117 −0.795585 0.605842i \(-0.792836\pi\)
−0.795585 + 0.605842i \(0.792836\pi\)
\(884\) −2.10224e18 −0.148164
\(885\) 0 0
\(886\) −1.14810e19 −0.797371
\(887\) 1.04948e19 0.723554 0.361777 0.932265i \(-0.382170\pi\)
0.361777 + 0.932265i \(0.382170\pi\)
\(888\) 0 0
\(889\) −2.24155e17 −0.0152295
\(890\) 3.97407e18 0.268040
\(891\) 0 0
\(892\) −5.14256e18 −0.341828
\(893\) 1.12297e19 0.741026
\(894\) 0 0
\(895\) 3.36581e18 0.218897
\(896\) 1.40083e17 0.00904444
\(897\) 0 0
\(898\) −2.37723e19 −1.51278
\(899\) −9.35058e18 −0.590746
\(900\) 0 0
\(901\) 9.39066e18 0.584770
\(902\) 1.66040e19 1.02653
\(903\) 0 0
\(904\) 6.21243e17 0.0378588
\(905\) −1.61683e18 −0.0978249
\(906\) 0 0
\(907\) −1.42478e19 −0.849767 −0.424884 0.905248i \(-0.639685\pi\)
−0.424884 + 0.905248i \(0.639685\pi\)
\(908\) 3.70344e18 0.219304
\(909\) 0 0
\(910\) 2.47306e16 0.00144366
\(911\) −1.87944e19 −1.08933 −0.544664 0.838654i \(-0.683343\pi\)
−0.544664 + 0.838654i \(0.683343\pi\)
\(912\) 0 0
\(913\) 3.55381e18 0.203064
\(914\) 4.20554e19 2.38601
\(915\) 0 0
\(916\) −1.05936e19 −0.592546
\(917\) −7.08556e16 −0.00393526
\(918\) 0 0
\(919\) 2.11122e19 1.15606 0.578032 0.816014i \(-0.303821\pi\)
0.578032 + 0.816014i \(0.303821\pi\)
\(920\) −1.25333e18 −0.0681465
\(921\) 0 0
\(922\) −3.06572e19 −1.64355
\(923\) −1.84224e19 −0.980698
\(924\) 0 0
\(925\) −1.40818e19 −0.739156
\(926\) −1.75540e19 −0.914965
\(927\) 0 0
\(928\) 8.28863e18 0.426011
\(929\) 2.93826e19 1.49964 0.749822 0.661639i \(-0.230139\pi\)
0.749822 + 0.661639i \(0.230139\pi\)
\(930\) 0 0
\(931\) 2.54089e19 1.27883
\(932\) 8.98218e18 0.448930
\(933\) 0 0
\(934\) 2.87956e19 1.41929
\(935\) 7.51530e17 0.0367850
\(936\) 0 0
\(937\) −2.32101e18 −0.112039 −0.0560195 0.998430i \(-0.517841\pi\)
−0.0560195 + 0.998430i \(0.517841\pi\)
\(938\) 3.88037e17 0.0186018
\(939\) 0 0
\(940\) 1.37663e18 0.0650859
\(941\) 1.70723e19 0.801601 0.400800 0.916165i \(-0.368732\pi\)
0.400800 + 0.916165i \(0.368732\pi\)
\(942\) 0 0
\(943\) 2.52505e19 1.16935
\(944\) 3.09242e19 1.42227
\(945\) 0 0
\(946\) −1.96158e17 −0.00889844
\(947\) 1.83288e19 0.825768 0.412884 0.910784i \(-0.364521\pi\)
0.412884 + 0.910784i \(0.364521\pi\)
\(948\) 0 0
\(949\) −4.94930e18 −0.219945
\(950\) 3.53684e19 1.56103
\(951\) 0 0
\(952\) −4.44334e16 −0.00193450
\(953\) −3.07542e19 −1.32984 −0.664922 0.746913i \(-0.731535\pi\)
−0.664922 + 0.746913i \(0.731535\pi\)
\(954\) 0 0
\(955\) −4.46841e18 −0.190604
\(956\) −2.01051e19 −0.851787
\(957\) 0 0
\(958\) 5.35160e19 2.23670
\(959\) −8.55780e16 −0.00355256
\(960\) 0 0
\(961\) 2.85869e19 1.17075
\(962\) −1.49465e19 −0.607995
\(963\) 0 0
\(964\) −1.03376e19 −0.414876
\(965\) −6.64128e18 −0.264743
\(966\) 0 0
\(967\) −3.02790e19 −1.19088 −0.595442 0.803398i \(-0.703023\pi\)
−0.595442 + 0.803398i \(0.703023\pi\)
\(968\) 9.72397e18 0.379886
\(969\) 0 0
\(970\) −1.11518e19 −0.429861
\(971\) −5.19323e18 −0.198844 −0.0994221 0.995045i \(-0.531699\pi\)
−0.0994221 + 0.995045i \(0.531699\pi\)
\(972\) 0 0
\(973\) −3.02862e16 −0.00114423
\(974\) 4.87033e19 1.82778
\(975\) 0 0
\(976\) −4.22285e19 −1.56380
\(977\) −1.76022e19 −0.647517 −0.323758 0.946140i \(-0.604947\pi\)
−0.323758 + 0.946140i \(0.604947\pi\)
\(978\) 0 0
\(979\) 1.55652e19 0.565023
\(980\) 3.11484e18 0.112322
\(981\) 0 0
\(982\) 3.10787e19 1.10596
\(983\) −1.35519e19 −0.479074 −0.239537 0.970887i \(-0.576996\pi\)
−0.239537 + 0.970887i \(0.576996\pi\)
\(984\) 0 0
\(985\) 3.63871e18 0.126944
\(986\) −5.75907e18 −0.199596
\(987\) 0 0
\(988\) 1.40772e19 0.481500
\(989\) −2.98306e17 −0.0101365
\(990\) 0 0
\(991\) −3.58254e19 −1.20147 −0.600734 0.799449i \(-0.705125\pi\)
−0.600734 + 0.799449i \(0.705125\pi\)
\(992\) −4.69847e19 −1.56542
\(993\) 0 0
\(994\) 5.84007e17 0.0192046
\(995\) −9.29662e18 −0.303721
\(996\) 0 0
\(997\) −3.39036e19 −1.09327 −0.546635 0.837371i \(-0.684091\pi\)
−0.546635 + 0.837371i \(0.684091\pi\)
\(998\) −4.00557e19 −1.28326
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 27.14.a.b.1.4 4
3.2 odd 2 27.14.a.e.1.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.14.a.b.1.4 4 1.1 even 1 trivial
27.14.a.e.1.1 yes 4 3.2 odd 2