Properties

Label 27.14.a.b
Level $27$
Weight $14$
Character orbit 27.a
Self dual yes
Analytic conductor $28.952$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [27,14,Mod(1,27)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("27.1"); S:= CuspForms(chi, 14); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(27, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 14, names="a")
 
Level: \( N \) \(=\) \( 27 = 3^{3} \)
Weight: \( k \) \(=\) \( 14 \)
Character orbit: \([\chi]\) \(=\) 27.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-117,0,8101] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.9523508170\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2080x^{2} - 9500x + 13552 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{8}\cdot 13 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 29) q^{2} + (\beta_{2} - 36 \beta_1 + 2016) q^{4} + ( - \beta_{3} + 17 \beta_1 - 2849) q^{5} + (9 \beta_{3} - 8 \beta_{2} + \cdots + 13645) q^{7} + (4 \beta_{3} - 81 \beta_{2} + \cdots - 153114) q^{8}+ \cdots + ( - 81415664 \beta_{3} + \cdots - 976917889922) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 117 q^{2} + 8101 q^{4} - 11412 q^{5} + 54572 q^{7} - 615375 q^{8} + 969579 q^{10} - 4927212 q^{11} + 12107576 q^{13} - 2015487 q^{14} + 56856625 q^{16} + 34729992 q^{17} + 269848016 q^{19} - 179564463 q^{20}+ \cdots - 3817815378498 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2080x^{2} - 9500x + 13552 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 3\nu - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 9\nu^{2} - 72\nu - 9344 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 27\nu^{3} - 81\nu^{2} - 55386\nu - 136396 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta _1 + 1 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 24\beta _1 + 9368 ) / 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{3} + 9\beta_{2} + 18678\beta _1 + 239170 ) / 27 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−42.5027
−5.80055
1.14134
48.1619
−157.508 0 16616.8 −4600.12 0 −68896.2 −1.32698e6 0 724556.
1.2 −47.4017 0 −5945.08 −47381.4 0 480775. 670121. 0 2.24596e6
1.3 −26.5760 0 −7485.72 47111.1 0 −360331. 416651. 0 −1.25202e6
1.4 114.486 0 4914.99 −6541.53 0 3023.86 −375171. 0 −748912.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 27.14.a.b 4
3.b odd 2 1 27.14.a.e yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
27.14.a.b 4 1.a even 1 1 trivial
27.14.a.e yes 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 117T_{2}^{3} - 13590T_{2}^{2} - 1279800T_{2} - 22716288 \) acting on \(S_{14}^{\mathrm{new}}(\Gamma_0(27))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 117 T^{3} + \cdots - 22716288 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots - 67\!\cdots\!75 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 36\!\cdots\!25 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 45\!\cdots\!25 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 61\!\cdots\!00 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 33\!\cdots\!36 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 36\!\cdots\!08 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots - 27\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 66\!\cdots\!01 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 51\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots - 65\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots - 54\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots - 12\!\cdots\!40 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 90\!\cdots\!11 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots - 94\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 13\!\cdots\!52 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots - 23\!\cdots\!00 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots - 16\!\cdots\!75 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 38\!\cdots\!16 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 34\!\cdots\!19 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 23\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots - 98\!\cdots\!75 \) Copy content Toggle raw display
show more
show less