Properties

Label 269.4.b.a.268.8
Level $269$
Weight $4$
Character 269.268
Analytic conductor $15.872$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [269,4,Mod(268,269)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("269.268"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(269, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 269.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.8715137915\)
Analytic rank: \(0\)
Dimension: \(66\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 268.8
Character \(\chi\) \(=\) 269.268
Dual form 269.4.b.a.268.59

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.73556i q^{2} -8.07694i q^{3} -14.4255 q^{4} +20.1267 q^{5} -38.2489 q^{6} -21.3096i q^{7} +30.4286i q^{8} -38.2370 q^{9} -95.3113i q^{10} +26.0646 q^{11} +116.514i q^{12} -33.5638 q^{13} -100.913 q^{14} -162.562i q^{15} +28.6921 q^{16} +27.8099i q^{17} +181.074i q^{18} +95.2488i q^{19} -290.339 q^{20} -172.116 q^{21} -123.431i q^{22} -99.1262 q^{23} +245.770 q^{24} +280.084 q^{25} +158.943i q^{26} +90.7607i q^{27} +307.403i q^{28} -190.323i q^{29} -769.824 q^{30} -11.5174i q^{31} +107.556i q^{32} -210.522i q^{33} +131.696 q^{34} -428.892i q^{35} +551.590 q^{36} +189.094 q^{37} +451.057 q^{38} +271.093i q^{39} +612.427i q^{40} -291.037 q^{41} +815.068i q^{42} +491.737 q^{43} -375.996 q^{44} -769.585 q^{45} +469.418i q^{46} +348.232 q^{47} -231.744i q^{48} -111.099 q^{49} -1326.36i q^{50} +224.619 q^{51} +484.176 q^{52} +370.560 q^{53} +429.803 q^{54} +524.595 q^{55} +648.421 q^{56} +769.319 q^{57} -901.288 q^{58} -440.792i q^{59} +2345.05i q^{60} -859.957 q^{61} -54.5412 q^{62} +814.816i q^{63} +738.873 q^{64} -675.528 q^{65} -996.942 q^{66} +167.415 q^{67} -401.173i q^{68} +800.637i q^{69} -2031.05 q^{70} +242.493i q^{71} -1163.50i q^{72} +656.323 q^{73} -895.465i q^{74} -2262.22i q^{75} -1374.02i q^{76} -555.427i q^{77} +1283.78 q^{78} +1114.95 q^{79} +577.477 q^{80} -299.330 q^{81} +1378.22i q^{82} -422.201i q^{83} +2482.87 q^{84} +559.722i q^{85} -2328.65i q^{86} -1537.23 q^{87} +793.110i q^{88} -1502.11 q^{89} +3644.42i q^{90} +715.231i q^{91} +1429.95 q^{92} -93.0251 q^{93} -1649.08i q^{94} +1917.04i q^{95} +868.720 q^{96} -1348.20 q^{97} +526.117i q^{98} -996.633 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 258 q^{4} - 34 q^{5} + 48 q^{6} - 564 q^{9} + 22 q^{11} + 118 q^{13} + 60 q^{14} + 1030 q^{16} + 144 q^{20} - 64 q^{21} - 80 q^{23} - 778 q^{24} + 1676 q^{25} - 1146 q^{30} + 308 q^{34} + 2030 q^{36}+ \cdots - 3982 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/269\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.73556i 1.67427i −0.546993 0.837137i \(-0.684228\pi\)
0.546993 0.837137i \(-0.315772\pi\)
\(3\) 8.07694i 1.55441i −0.629248 0.777204i \(-0.716637\pi\)
0.629248 0.777204i \(-0.283363\pi\)
\(4\) −14.4255 −1.80319
\(5\) 20.1267 1.80019 0.900094 0.435697i \(-0.143498\pi\)
0.900094 + 0.435697i \(0.143498\pi\)
\(6\) −38.2489 −2.60251
\(7\) 21.3096i 1.15061i −0.817939 0.575305i \(-0.804883\pi\)
0.817939 0.575305i \(-0.195117\pi\)
\(8\) 30.4286i 1.34477i
\(9\) −38.2370 −1.41619
\(10\) 95.3113i 3.01401i
\(11\) 26.0646 0.714434 0.357217 0.934021i \(-0.383726\pi\)
0.357217 + 0.934021i \(0.383726\pi\)
\(12\) 116.514i 2.80290i
\(13\) −33.5638 −0.716070 −0.358035 0.933708i \(-0.616553\pi\)
−0.358035 + 0.933708i \(0.616553\pi\)
\(14\) −100.913 −1.92644
\(15\) 162.562i 2.79823i
\(16\) 28.6921 0.448314
\(17\) 27.8099i 0.396759i 0.980125 + 0.198379i \(0.0635678\pi\)
−0.980125 + 0.198379i \(0.936432\pi\)
\(18\) 181.074i 2.37108i
\(19\) 95.2488i 1.15008i 0.818124 + 0.575042i \(0.195014\pi\)
−0.818124 + 0.575042i \(0.804986\pi\)
\(20\) −290.339 −3.24609
\(21\) −172.116 −1.78852
\(22\) 123.431i 1.19616i
\(23\) −99.1262 −0.898663 −0.449331 0.893365i \(-0.648338\pi\)
−0.449331 + 0.893365i \(0.648338\pi\)
\(24\) 245.770 2.09032
\(25\) 280.084 2.24067
\(26\) 158.943i 1.19890i
\(27\) 90.7607i 0.646922i
\(28\) 307.403i 2.07477i
\(29\) 190.323i 1.21869i −0.792903 0.609347i \(-0.791432\pi\)
0.792903 0.609347i \(-0.208568\pi\)
\(30\) −769.824 −4.68500
\(31\) 11.5174i 0.0667284i −0.999443 0.0333642i \(-0.989378\pi\)
0.999443 0.0333642i \(-0.0106221\pi\)
\(32\) 107.556i 0.594166i
\(33\) 210.522i 1.11052i
\(34\) 131.696 0.664283
\(35\) 428.892i 2.07131i
\(36\) 551.590 2.55366
\(37\) 189.094 0.840184 0.420092 0.907482i \(-0.361998\pi\)
0.420092 + 0.907482i \(0.361998\pi\)
\(38\) 451.057 1.92555
\(39\) 271.093i 1.11307i
\(40\) 612.427i 2.42083i
\(41\) −291.037 −1.10859 −0.554297 0.832319i \(-0.687013\pi\)
−0.554297 + 0.832319i \(0.687013\pi\)
\(42\) 815.068i 2.99447i
\(43\) 491.737 1.74393 0.871967 0.489564i \(-0.162844\pi\)
0.871967 + 0.489564i \(0.162844\pi\)
\(44\) −375.996 −1.28826
\(45\) −769.585 −2.54940
\(46\) 469.418i 1.50461i
\(47\) 348.232 1.08074 0.540372 0.841427i \(-0.318284\pi\)
0.540372 + 0.841427i \(0.318284\pi\)
\(48\) 231.744i 0.696863i
\(49\) −111.099 −0.323904
\(50\) 1326.36i 3.75150i
\(51\) 224.619 0.616725
\(52\) 484.176 1.29121
\(53\) 370.560 0.960383 0.480191 0.877164i \(-0.340567\pi\)
0.480191 + 0.877164i \(0.340567\pi\)
\(54\) 429.803 1.08313
\(55\) 524.595 1.28612
\(56\) 648.421 1.54730
\(57\) 769.319 1.78770
\(58\) −901.288 −2.04043
\(59\) 440.792i 0.972647i −0.873779 0.486323i \(-0.838338\pi\)
0.873779 0.486323i \(-0.161662\pi\)
\(60\) 2345.05i 5.04574i
\(61\) −859.957 −1.80502 −0.902510 0.430669i \(-0.858278\pi\)
−0.902510 + 0.430669i \(0.858278\pi\)
\(62\) −54.5412 −0.111722
\(63\) 814.816i 1.62948i
\(64\) 738.873 1.44311
\(65\) −675.528 −1.28906
\(66\) −996.942 −1.85932
\(67\) 167.415 0.305269 0.152635 0.988283i \(-0.451224\pi\)
0.152635 + 0.988283i \(0.451224\pi\)
\(68\) 401.173i 0.715433i
\(69\) 800.637i 1.39689i
\(70\) −2031.05 −3.46795
\(71\) 242.493i 0.405333i 0.979248 + 0.202666i \(0.0649607\pi\)
−0.979248 + 0.202666i \(0.935039\pi\)
\(72\) 1163.50i 1.90444i
\(73\) 656.323 1.05228 0.526142 0.850397i \(-0.323638\pi\)
0.526142 + 0.850397i \(0.323638\pi\)
\(74\) 895.465i 1.40670i
\(75\) 2262.22i 3.48292i
\(76\) 1374.02i 2.07382i
\(77\) 555.427i 0.822036i
\(78\) 1283.78 1.86358
\(79\) 1114.95 1.58786 0.793932 0.608006i \(-0.208030\pi\)
0.793932 + 0.608006i \(0.208030\pi\)
\(80\) 577.477 0.807049
\(81\) −299.330 −0.410604
\(82\) 1378.22i 1.85609i
\(83\) 422.201i 0.558344i −0.960241 0.279172i \(-0.909940\pi\)
0.960241 0.279172i \(-0.0900600\pi\)
\(84\) 2482.87 3.22505
\(85\) 559.722i 0.714240i
\(86\) 2328.65i 2.91982i
\(87\) −1537.23 −1.89435
\(88\) 793.110i 0.960747i
\(89\) −1502.11 −1.78902 −0.894512 0.447044i \(-0.852477\pi\)
−0.894512 + 0.447044i \(0.852477\pi\)
\(90\) 3644.42i 4.26839i
\(91\) 715.231i 0.823918i
\(92\) 1429.95 1.62046
\(93\) −93.0251 −0.103723
\(94\) 1649.08i 1.80946i
\(95\) 1917.04i 2.07036i
\(96\) 868.720 0.923577
\(97\) −1348.20 −1.41122 −0.705612 0.708598i \(-0.749328\pi\)
−0.705612 + 0.708598i \(0.749328\pi\)
\(98\) 526.117i 0.542305i
\(99\) −996.633 −1.01177
\(100\) −4040.37 −4.04037
\(101\) 1846.55i 1.81920i 0.415489 + 0.909598i \(0.363610\pi\)
−0.415489 + 0.909598i \(0.636390\pi\)
\(102\) 1063.70i 1.03257i
\(103\) −264.012 −0.252562 −0.126281 0.991994i \(-0.540304\pi\)
−0.126281 + 0.991994i \(0.540304\pi\)
\(104\) 1021.30i 0.962947i
\(105\) −3464.14 −3.21967
\(106\) 1754.81i 1.60794i
\(107\) 1915.10i 1.73027i 0.501536 + 0.865137i \(0.332769\pi\)
−0.501536 + 0.865137i \(0.667231\pi\)
\(108\) 1309.27i 1.16653i
\(109\) 1069.72i 0.940007i −0.882664 0.470004i \(-0.844253\pi\)
0.882664 0.470004i \(-0.155747\pi\)
\(110\) 2484.25i 2.15331i
\(111\) 1527.30i 1.30599i
\(112\) 611.417i 0.515834i
\(113\) 1089.89i 0.907330i −0.891172 0.453665i \(-0.850116\pi\)
0.891172 0.453665i \(-0.149884\pi\)
\(114\) 3643.16i 2.99310i
\(115\) −1995.08 −1.61776
\(116\) 2745.52i 2.19754i
\(117\) 1283.38 1.01409
\(118\) −2087.40 −1.62848
\(119\) 592.618 0.456515
\(120\) 4946.54 3.76296
\(121\) −651.636 −0.489584
\(122\) 4072.38i 3.02210i
\(123\) 2350.69i 1.72321i
\(124\) 166.144i 0.120324i
\(125\) 3121.33 2.23344
\(126\) 3858.61 2.72819
\(127\) −889.154 −0.621257 −0.310629 0.950531i \(-0.600540\pi\)
−0.310629 + 0.950531i \(0.600540\pi\)
\(128\) 2638.53i 1.82200i
\(129\) 3971.73i 2.71079i
\(130\) 3199.01i 2.15824i
\(131\) 2524.48 1.68370 0.841849 0.539713i \(-0.181467\pi\)
0.841849 + 0.539713i \(0.181467\pi\)
\(132\) 3036.90i 2.00249i
\(133\) 2029.71 1.32330
\(134\) 792.806i 0.511105i
\(135\) 1826.71i 1.16458i
\(136\) −846.217 −0.533548
\(137\) 1900.21i 1.18501i −0.805567 0.592505i \(-0.798139\pi\)
0.805567 0.592505i \(-0.201861\pi\)
\(138\) 3791.47 2.33878
\(139\) 798.987i 0.487548i 0.969832 + 0.243774i \(0.0783855\pi\)
−0.969832 + 0.243774i \(0.921615\pi\)
\(140\) 6187.00i 3.73498i
\(141\) 2812.65i 1.67992i
\(142\) 1148.34 0.678638
\(143\) −874.827 −0.511585
\(144\) −1097.10 −0.634895
\(145\) 3830.58i 2.19388i
\(146\) 3108.06i 1.76181i
\(147\) 897.342i 0.503480i
\(148\) −2727.78 −1.51501
\(149\) 1454.92 0.799942 0.399971 0.916528i \(-0.369020\pi\)
0.399971 + 0.916528i \(0.369020\pi\)
\(150\) −10712.9 −5.83137
\(151\) 2386.38 1.28610 0.643048 0.765826i \(-0.277670\pi\)
0.643048 + 0.765826i \(0.277670\pi\)
\(152\) −2898.29 −1.54659
\(153\) 1063.37i 0.561884i
\(154\) −2630.26 −1.37631
\(155\) 231.807i 0.120124i
\(156\) 3910.66i 2.00707i
\(157\) 721.836i 0.366935i −0.983026 0.183467i \(-0.941268\pi\)
0.983026 0.183467i \(-0.0587322\pi\)
\(158\) 5279.90i 2.65852i
\(159\) 2992.99i 1.49283i
\(160\) 2164.74i 1.06961i
\(161\) 2112.34i 1.03401i
\(162\) 1417.50i 0.687464i
\(163\) 90.2490i 0.0433671i 0.999765 + 0.0216836i \(0.00690264\pi\)
−0.999765 + 0.0216836i \(0.993097\pi\)
\(164\) 4198.37 1.99901
\(165\) 4237.12i 1.99915i
\(166\) −1999.36 −0.934821
\(167\) 464.752i 0.215351i 0.994186 + 0.107675i \(0.0343407\pi\)
−0.994186 + 0.107675i \(0.965659\pi\)
\(168\) 5237.26i 2.40514i
\(169\) −1070.47 −0.487243
\(170\) 2650.60 1.19583
\(171\) 3642.03i 1.62873i
\(172\) −7093.57 −3.14465
\(173\) 860.130 0.378003 0.189001 0.981977i \(-0.439475\pi\)
0.189001 + 0.981977i \(0.439475\pi\)
\(174\) 7279.65i 3.17166i
\(175\) 5968.48i 2.57814i
\(176\) 747.848 0.320291
\(177\) −3560.25 −1.51189
\(178\) 7113.32i 2.99532i
\(179\) 90.0971i 0.0376211i −0.999823 0.0188105i \(-0.994012\pi\)
0.999823 0.0188105i \(-0.00598793\pi\)
\(180\) 11101.7 4.59706
\(181\) 1188.19i 0.487943i −0.969782 0.243971i \(-0.921550\pi\)
0.969782 0.243971i \(-0.0784503\pi\)
\(182\) 3387.02 1.37946
\(183\) 6945.82i 2.80574i
\(184\) 3016.27i 1.20849i
\(185\) 3805.83 1.51249
\(186\) 440.526i 0.173661i
\(187\) 724.855i 0.283458i
\(188\) −5023.44 −1.94879
\(189\) 1934.07 0.744355
\(190\) 9078.29 3.46636
\(191\) −1982.60 −0.751079 −0.375539 0.926806i \(-0.622543\pi\)
−0.375539 + 0.926806i \(0.622543\pi\)
\(192\) 5967.83i 2.24318i
\(193\) 3140.27i 1.17120i −0.810601 0.585599i \(-0.800859\pi\)
0.810601 0.585599i \(-0.199141\pi\)
\(194\) 6384.47i 2.36278i
\(195\) 5456.20i 2.00373i
\(196\) 1602.67 0.584062
\(197\) 2919.11i 1.05572i 0.849330 + 0.527862i \(0.177006\pi\)
−0.849330 + 0.527862i \(0.822994\pi\)
\(198\) 4719.62i 1.69398i
\(199\) −152.119 −0.0541882 −0.0270941 0.999633i \(-0.508625\pi\)
−0.0270941 + 0.999633i \(0.508625\pi\)
\(200\) 8522.57i 3.01318i
\(201\) 1352.21i 0.474513i
\(202\) 8744.46 3.04583
\(203\) −4055.71 −1.40224
\(204\) −3240.26 −1.11207
\(205\) −5857.61 −1.99568
\(206\) 1250.25i 0.422858i
\(207\) 3790.29 1.27267
\(208\) −963.014 −0.321024
\(209\) 2482.62i 0.821659i
\(210\) 16404.6i 5.39061i
\(211\) 2308.19 0.753092 0.376546 0.926398i \(-0.377112\pi\)
0.376546 + 0.926398i \(0.377112\pi\)
\(212\) −5345.53 −1.73176
\(213\) 1958.60 0.630053
\(214\) 9069.06 2.89695
\(215\) 9897.04 3.13941
\(216\) −2761.72 −0.869959
\(217\) −245.430 −0.0767783
\(218\) −5065.74 −1.57383
\(219\) 5301.08i 1.63568i
\(220\) −7567.57 −2.31912
\(221\) 933.406i 0.284107i
\(222\) −7232.62 −2.18658
\(223\) 4027.41i 1.20939i 0.796455 + 0.604697i \(0.206706\pi\)
−0.796455 + 0.604697i \(0.793294\pi\)
\(224\) 2291.97 0.683654
\(225\) −10709.6 −3.17321
\(226\) −5161.25 −1.51912
\(227\) 2007.31i 0.586915i −0.955972 0.293457i \(-0.905194\pi\)
0.955972 0.293457i \(-0.0948059\pi\)
\(228\) −11097.9 −3.22357
\(229\) 5831.16i 1.68268i 0.540505 + 0.841341i \(0.318233\pi\)
−0.540505 + 0.841341i \(0.681767\pi\)
\(230\) 9447.85i 2.70858i
\(231\) −4486.15 −1.27778
\(232\) 5791.27 1.63886
\(233\) −900.698 −0.253248 −0.126624 0.991951i \(-0.540414\pi\)
−0.126624 + 0.991951i \(0.540414\pi\)
\(234\) 6077.52i 1.69786i
\(235\) 7008.77 1.94554
\(236\) 6358.66i 1.75387i
\(237\) 9005.36i 2.46819i
\(238\) 2806.38i 0.764331i
\(239\) −581.982 −0.157512 −0.0787559 0.996894i \(-0.525095\pi\)
−0.0787559 + 0.996894i \(0.525095\pi\)
\(240\) 4664.25i 1.25448i
\(241\) 159.184i 0.0425475i −0.999774 0.0212737i \(-0.993228\pi\)
0.999774 0.0212737i \(-0.00677215\pi\)
\(242\) 3085.86i 0.819697i
\(243\) 4868.21i 1.28517i
\(244\) 12405.4 3.25480
\(245\) −2236.06 −0.583089
\(246\) 11131.8 2.88512
\(247\) 3196.91i 0.823541i
\(248\) 350.457 0.0897340
\(249\) −3410.09 −0.867895
\(250\) 14781.3i 3.73940i
\(251\) 33.6382i 0.00845907i −0.999991 0.00422954i \(-0.998654\pi\)
0.999991 0.00422954i \(-0.00134631\pi\)
\(252\) 11754.2i 2.93826i
\(253\) −2583.69 −0.642036
\(254\) 4210.65i 1.04016i
\(255\) 4520.84 1.11022
\(256\) −6583.96 −1.60741
\(257\) 372.660i 0.0904509i −0.998977 0.0452255i \(-0.985599\pi\)
0.998977 0.0452255i \(-0.0144006\pi\)
\(258\) −18808.4 −4.53860
\(259\) 4029.51i 0.966724i
\(260\) 9744.86 2.32443
\(261\) 7277.39i 1.72590i
\(262\) 11954.8i 2.81897i
\(263\) −6103.61 −1.43104 −0.715522 0.698590i \(-0.753811\pi\)
−0.715522 + 0.698590i \(0.753811\pi\)
\(264\) 6405.90 1.49339
\(265\) 7458.14 1.72887
\(266\) 9611.84i 2.21556i
\(267\) 12132.4i 2.78087i
\(268\) −2415.06 −0.550460
\(269\) −789.764 4340.67i −0.179007 0.983848i
\(270\) 8650.51 1.94983
\(271\) 2198.78i 0.492866i −0.969160 0.246433i \(-0.920742\pi\)
0.969160 0.246433i \(-0.0792584\pi\)
\(272\) 797.925i 0.177872i
\(273\) 5776.88 1.28071
\(274\) −8998.59 −1.98403
\(275\) 7300.29 1.60081
\(276\) 11549.6i 2.51886i
\(277\) 7730.15i 1.67675i 0.545093 + 0.838375i \(0.316494\pi\)
−0.545093 + 0.838375i \(0.683506\pi\)
\(278\) 3783.65 0.816289
\(279\) 440.389i 0.0944997i
\(280\) 13050.6 2.78543
\(281\) 3967.92i 0.842371i −0.906974 0.421186i \(-0.861614\pi\)
0.906974 0.421186i \(-0.138386\pi\)
\(282\) −13319.5 −2.81264
\(283\) −1905.18 −0.400181 −0.200091 0.979777i \(-0.564124\pi\)
−0.200091 + 0.979777i \(0.564124\pi\)
\(284\) 3498.10i 0.730894i
\(285\) 15483.9 3.21819
\(286\) 4142.80i 0.856534i
\(287\) 6201.88i 1.27556i
\(288\) 4112.60i 0.841450i
\(289\) 4139.61 0.842583
\(290\) −18139.9 −3.67315
\(291\) 10889.3i 2.19362i
\(292\) −9467.82 −1.89747
\(293\) 3512.20 0.700290 0.350145 0.936696i \(-0.386132\pi\)
0.350145 + 0.936696i \(0.386132\pi\)
\(294\) 4249.42 0.842963
\(295\) 8871.68i 1.75095i
\(296\) 5753.85i 1.12985i
\(297\) 2365.64i 0.462183i
\(298\) 6889.84i 1.33932i
\(299\) 3327.05 0.643506
\(300\) 32633.8i 6.28038i
\(301\) 10478.7i 2.00659i
\(302\) 11300.8i 2.15328i
\(303\) 14914.5 2.82777
\(304\) 2732.89i 0.515598i
\(305\) −17308.1 −3.24937
\(306\) −5035.65 −0.940748
\(307\) −3554.13 −0.660733 −0.330366 0.943853i \(-0.607172\pi\)
−0.330366 + 0.943853i \(0.607172\pi\)
\(308\) 8012.34i 1.48229i
\(309\) 2132.41i 0.392585i
\(310\) −1097.73 −0.201120
\(311\) 3198.40i 0.583166i −0.956546 0.291583i \(-0.905818\pi\)
0.956546 0.291583i \(-0.0941819\pi\)
\(312\) −8248.97 −1.49681
\(313\) −8821.58 −1.59305 −0.796526 0.604605i \(-0.793331\pi\)
−0.796526 + 0.604605i \(0.793331\pi\)
\(314\) −3418.30 −0.614349
\(315\) 16399.5i 2.93336i
\(316\) −16083.7 −2.86323
\(317\) 4506.14i 0.798392i 0.916866 + 0.399196i \(0.130711\pi\)
−0.916866 + 0.399196i \(0.869289\pi\)
\(318\) −14173.5 −2.49940
\(319\) 4960.70i 0.870677i
\(320\) 14871.1 2.59787
\(321\) 15468.1 2.68955
\(322\) 10003.1 1.73122
\(323\) −2648.86 −0.456305
\(324\) 4318.01 0.740399
\(325\) −9400.68 −1.60448
\(326\) 427.380 0.0726085
\(327\) −8640.09 −1.46116
\(328\) 8855.84i 1.49080i
\(329\) 7420.70i 1.24351i
\(330\) −20065.2 −3.34712
\(331\) 4847.54 0.804970 0.402485 0.915427i \(-0.368147\pi\)
0.402485 + 0.915427i \(0.368147\pi\)
\(332\) 6090.48i 1.00680i
\(333\) −7230.38 −1.18986
\(334\) 2200.86 0.360556
\(335\) 3369.52 0.549542
\(336\) −4938.38 −0.801817
\(337\) 11260.0i 1.82010i 0.414501 + 0.910049i \(0.363956\pi\)
−0.414501 + 0.910049i \(0.636044\pi\)
\(338\) 5069.29i 0.815778i
\(339\) −8802.99 −1.41036
\(340\) 8074.30i 1.28791i
\(341\) 300.196i 0.0476730i
\(342\) −17247.1 −2.72694
\(343\) 4941.71i 0.777923i
\(344\) 14962.9i 2.34518i
\(345\) 16114.2i 2.51466i
\(346\) 4073.20i 0.632880i
\(347\) 7308.68 1.13069 0.565347 0.824853i \(-0.308742\pi\)
0.565347 + 0.824853i \(0.308742\pi\)
\(348\) 22175.4 3.41588
\(349\) 3383.84 0.519005 0.259502 0.965742i \(-0.416441\pi\)
0.259502 + 0.965742i \(0.416441\pi\)
\(350\) −28264.1 −4.31652
\(351\) 3046.27i 0.463242i
\(352\) 2803.40i 0.424493i
\(353\) 5010.02 0.755400 0.377700 0.925928i \(-0.376715\pi\)
0.377700 + 0.925928i \(0.376715\pi\)
\(354\) 16859.8i 2.53132i
\(355\) 4880.59i 0.729675i
\(356\) 21668.7 3.22596
\(357\) 4786.55i 0.709610i
\(358\) −426.660 −0.0629880
\(359\) 537.756i 0.0790576i 0.999218 + 0.0395288i \(0.0125857\pi\)
−0.999218 + 0.0395288i \(0.987414\pi\)
\(360\) 23417.4i 3.42835i
\(361\) −2213.34 −0.322691
\(362\) −5626.76 −0.816950
\(363\) 5263.22i 0.761013i
\(364\) 10317.6i 1.48568i
\(365\) 13209.6 1.89431
\(366\) 32892.4 4.69757
\(367\) 1596.36i 0.227055i −0.993535 0.113528i \(-0.963785\pi\)
0.993535 0.113528i \(-0.0362150\pi\)
\(368\) −2844.14 −0.402883
\(369\) 11128.4 1.56997
\(370\) 18022.8i 2.53232i
\(371\) 7896.48i 1.10503i
\(372\) 1341.94 0.187033
\(373\) 821.716i 0.114067i −0.998372 0.0570333i \(-0.981836\pi\)
0.998372 0.0570333i \(-0.0181641\pi\)
\(374\) 3432.60 0.474586
\(375\) 25210.8i 3.47168i
\(376\) 10596.2i 1.45335i
\(377\) 6387.97i 0.872671i
\(378\) 9158.93i 1.24626i
\(379\) 3784.87i 0.512970i 0.966548 + 0.256485i \(0.0825644\pi\)
−0.966548 + 0.256485i \(0.917436\pi\)
\(380\) 27654.4i 3.73327i
\(381\) 7181.65i 0.965688i
\(382\) 9388.74i 1.25751i
\(383\) 9689.78i 1.29275i −0.763018 0.646377i \(-0.776283\pi\)
0.763018 0.646377i \(-0.223717\pi\)
\(384\) −21311.3 −2.83213
\(385\) 11178.9i 1.47982i
\(386\) −14870.9 −1.96091
\(387\) −18802.5 −2.46973
\(388\) 19448.5 2.54471
\(389\) 2542.40 0.331375 0.165687 0.986178i \(-0.447016\pi\)
0.165687 + 0.986178i \(0.447016\pi\)
\(390\) 25838.2 3.35479
\(391\) 2756.69i 0.356552i
\(392\) 3380.59i 0.435576i
\(393\) 20390.0i 2.61715i
\(394\) 13823.6 1.76757
\(395\) 22440.2 2.85845
\(396\) 14377.0 1.82442
\(397\) 10257.7i 1.29678i 0.761310 + 0.648388i \(0.224556\pi\)
−0.761310 + 0.648388i \(0.775444\pi\)
\(398\) 720.371i 0.0907260i
\(399\) 16393.9i 2.05695i
\(400\) 8036.20 1.00452
\(401\) 10975.1i 1.36676i 0.730062 + 0.683380i \(0.239491\pi\)
−0.730062 + 0.683380i \(0.760509\pi\)
\(402\) −6403.45 −0.794466
\(403\) 386.566i 0.0477822i
\(404\) 26637.5i 3.28036i
\(405\) −6024.53 −0.739164
\(406\) 19206.1i 2.34774i
\(407\) 4928.65 0.600256
\(408\) 6834.84i 0.829351i
\(409\) 6904.41i 0.834721i −0.908741 0.417361i \(-0.862955\pi\)
0.908741 0.417361i \(-0.137045\pi\)
\(410\) 27739.1i 3.34131i
\(411\) −15347.9 −1.84199
\(412\) 3808.52 0.455419
\(413\) −9393.09 −1.11914
\(414\) 17949.2i 2.13080i
\(415\) 8497.51i 1.00512i
\(416\) 3609.97i 0.425465i
\(417\) 6453.37 0.757849
\(418\) 11756.6 1.37568
\(419\) −43.0412 −0.00501838 −0.00250919 0.999997i \(-0.500799\pi\)
−0.00250919 + 0.999997i \(0.500799\pi\)
\(420\) 49972.1 5.80568
\(421\) −14164.0 −1.63969 −0.819845 0.572585i \(-0.805941\pi\)
−0.819845 + 0.572585i \(0.805941\pi\)
\(422\) 10930.6i 1.26088i
\(423\) −13315.4 −1.53053
\(424\) 11275.6i 1.29149i
\(425\) 7789.12i 0.889007i
\(426\) 9275.09i 1.05488i
\(427\) 18325.3i 2.07687i
\(428\) 27626.3i 3.12002i
\(429\) 7065.93i 0.795213i
\(430\) 46868.1i 5.25623i
\(431\) 13563.6i 1.51586i 0.652334 + 0.757931i \(0.273790\pi\)
−0.652334 + 0.757931i \(0.726210\pi\)
\(432\) 2604.11i 0.290024i
\(433\) 17947.8 1.99196 0.995979 0.0895844i \(-0.0285539\pi\)
0.995979 + 0.0895844i \(0.0285539\pi\)
\(434\) 1162.25i 0.128548i
\(435\) −30939.4 −3.41018
\(436\) 15431.3i 1.69502i
\(437\) 9441.66i 1.03354i
\(438\) −25103.6 −2.73858
\(439\) 6275.04 0.682212 0.341106 0.940025i \(-0.389198\pi\)
0.341106 + 0.940025i \(0.389198\pi\)
\(440\) 15962.7i 1.72952i
\(441\) 4248.10 0.458709
\(442\) −4420.20 −0.475673
\(443\) 12827.4i 1.37573i −0.725837 0.687866i \(-0.758548\pi\)
0.725837 0.687866i \(-0.241452\pi\)
\(444\) 22032.1i 2.35495i
\(445\) −30232.5 −3.22058
\(446\) 19072.0 2.02486
\(447\) 11751.3i 1.24344i
\(448\) 15745.1i 1.66046i
\(449\) 1291.11 0.135704 0.0678519 0.997695i \(-0.478385\pi\)
0.0678519 + 0.997695i \(0.478385\pi\)
\(450\) 50715.9i 5.31282i
\(451\) −7585.77 −0.792017
\(452\) 15722.3i 1.63609i
\(453\) 19274.6i 1.99912i
\(454\) −9505.73 −0.982656
\(455\) 14395.2i 1.48321i
\(456\) 23409.3i 2.40404i
\(457\) 10581.2 1.08308 0.541541 0.840674i \(-0.317841\pi\)
0.541541 + 0.840674i \(0.317841\pi\)
\(458\) 27613.8 2.81727
\(459\) −2524.05 −0.256672
\(460\) 28780.2 2.91714
\(461\) 15374.5i 1.55328i 0.629943 + 0.776642i \(0.283078\pi\)
−0.629943 + 0.776642i \(0.716922\pi\)
\(462\) 21244.4i 2.13935i
\(463\) 5319.23i 0.533922i 0.963707 + 0.266961i \(0.0860194\pi\)
−0.963707 + 0.266961i \(0.913981\pi\)
\(464\) 5460.77i 0.546358i
\(465\) −1872.29 −0.186721
\(466\) 4265.31i 0.424006i
\(467\) 659.354i 0.0653346i 0.999466 + 0.0326673i \(0.0104002\pi\)
−0.999466 + 0.0326673i \(0.989600\pi\)
\(468\) −18513.4 −1.82860
\(469\) 3567.56i 0.351246i
\(470\) 33190.5i 3.25737i
\(471\) −5830.23 −0.570367
\(472\) 13412.7 1.30798
\(473\) 12816.9 1.24593
\(474\) −42645.5 −4.13243
\(475\) 26677.7i 2.57696i
\(476\) −8548.85 −0.823184
\(477\) −14169.1 −1.36008
\(478\) 2756.01i 0.263718i
\(479\) 8836.54i 0.842905i 0.906850 + 0.421453i \(0.138480\pi\)
−0.906850 + 0.421453i \(0.861520\pi\)
\(480\) 17484.5 1.66261
\(481\) −6346.70 −0.601631
\(482\) −753.825 −0.0712361
\(483\) 17061.3 1.60728
\(484\) 9400.20 0.882814
\(485\) −27134.8 −2.54047
\(486\) 23053.7 2.15172
\(487\) −5443.00 −0.506460 −0.253230 0.967406i \(-0.581493\pi\)
−0.253230 + 0.967406i \(0.581493\pi\)
\(488\) 26167.3i 2.42733i
\(489\) 728.936 0.0674102
\(490\) 10589.0i 0.976250i
\(491\) 19392.6 1.78243 0.891217 0.453578i \(-0.149853\pi\)
0.891217 + 0.453578i \(0.149853\pi\)
\(492\) 33910.0i 3.10728i
\(493\) 5292.88 0.483528
\(494\) −15139.2 −1.37883
\(495\) −20058.9 −1.82138
\(496\) 330.457i 0.0299152i
\(497\) 5167.43 0.466380
\(498\) 16148.7i 1.45309i
\(499\) 8271.96i 0.742091i 0.928615 + 0.371046i \(0.121001\pi\)
−0.928615 + 0.371046i \(0.878999\pi\)
\(500\) −45026.9 −4.02733
\(501\) 3753.77 0.334743
\(502\) −159.296 −0.0141628
\(503\) 15629.3i 1.38544i −0.721206 0.692720i \(-0.756412\pi\)
0.721206 0.692720i \(-0.243588\pi\)
\(504\) −24793.7 −2.19127
\(505\) 37165.0i 3.27489i
\(506\) 12235.2i 1.07494i
\(507\) 8646.15i 0.757375i
\(508\) 12826.5 1.12025
\(509\) 5128.61i 0.446605i −0.974749 0.223302i \(-0.928316\pi\)
0.974749 0.223302i \(-0.0716837\pi\)
\(510\) 21408.7i 1.85881i
\(511\) 13986.0i 1.21077i
\(512\) 10070.5i 0.869250i
\(513\) −8644.85 −0.744014
\(514\) −1764.75 −0.151440
\(515\) −5313.70 −0.454659
\(516\) 57294.4i 4.88807i
\(517\) 9076.55 0.772120
\(518\) −19082.0 −1.61856
\(519\) 6947.22i 0.587571i
\(520\) 20555.4i 1.73349i
\(521\) 11732.0i 0.986539i 0.869877 + 0.493269i \(0.164198\pi\)
−0.869877 + 0.493269i \(0.835802\pi\)
\(522\) 34462.5 2.88963
\(523\) 2994.44i 0.250359i 0.992134 + 0.125180i \(0.0399507\pi\)
−0.992134 + 0.125180i \(0.960049\pi\)
\(524\) −36417.0 −3.03603
\(525\) −48207.1 −4.00749
\(526\) 28904.0i 2.39596i
\(527\) 320.297 0.0264751
\(528\) 6040.33i 0.497863i
\(529\) −2340.99 −0.192405
\(530\) 35318.5i 2.89460i
\(531\) 16854.5i 1.37745i
\(532\) −29279.8 −2.38616
\(533\) 9768.30 0.793831
\(534\) 57453.9 4.65594
\(535\) 38544.6i 3.11482i
\(536\) 5094.22i 0.410516i
\(537\) −727.709 −0.0584785
\(538\) −20555.5 + 3739.98i −1.64723 + 0.299706i
\(539\) −2895.76 −0.231408
\(540\) 26351.3i 2.09997i
\(541\) 21174.0i 1.68270i −0.540492 0.841349i \(-0.681762\pi\)
0.540492 0.841349i \(-0.318238\pi\)
\(542\) −10412.5 −0.825192
\(543\) −9596.96 −0.758462
\(544\) −2991.11 −0.235741
\(545\) 21530.0i 1.69219i
\(546\) 27356.8i 2.14425i
\(547\) −1945.85 −0.152100 −0.0760499 0.997104i \(-0.524231\pi\)
−0.0760499 + 0.997104i \(0.524231\pi\)
\(548\) 27411.6i 2.13680i
\(549\) 32882.2 2.55624
\(550\) 34571.0i 2.68020i
\(551\) 18128.1 1.40160
\(552\) −24362.3 −1.87849
\(553\) 23759.1i 1.82701i
\(554\) 36606.6 2.80734
\(555\) 30739.5i 2.35102i
\(556\) 11525.8i 0.879143i
\(557\) 20363.0i 1.54903i 0.632558 + 0.774513i \(0.282005\pi\)
−0.632558 + 0.774513i \(0.717995\pi\)
\(558\) 2085.49 0.158218
\(559\) −16504.5 −1.24878
\(560\) 12305.8i 0.928599i
\(561\) 5854.61 0.440610
\(562\) −18790.3 −1.41036
\(563\) −8233.13 −0.616314 −0.308157 0.951335i \(-0.599712\pi\)
−0.308157 + 0.951335i \(0.599712\pi\)
\(564\) 40574.1i 3.02921i
\(565\) 21935.9i 1.63336i
\(566\) 9022.11i 0.670013i
\(567\) 6378.61i 0.472445i
\(568\) −7378.72 −0.545078
\(569\) 21399.5i 1.57665i −0.615260 0.788324i \(-0.710949\pi\)
0.615260 0.788324i \(-0.289051\pi\)
\(570\) 73324.8i 5.38814i
\(571\) 2418.21i 0.177231i −0.996066 0.0886154i \(-0.971756\pi\)
0.996066 0.0886154i \(-0.0282442\pi\)
\(572\) 12619.9 0.922487
\(573\) 16013.4i 1.16748i
\(574\) 29369.4 2.13564
\(575\) −27763.7 −2.01361
\(576\) −28252.3 −2.04371
\(577\) 11128.1i 0.802896i 0.915882 + 0.401448i \(0.131493\pi\)
−0.915882 + 0.401448i \(0.868507\pi\)
\(578\) 19603.4i 1.41071i
\(579\) −25363.8 −1.82052
\(580\) 55258.2i 3.95599i
\(581\) −8996.93 −0.642437
\(582\) 51567.0 3.67272
\(583\) 9658.50 0.686130
\(584\) 19971.0i 1.41508i
\(585\) 25830.2 1.82555
\(586\) 16632.2i 1.17248i
\(587\) 21614.3 1.51979 0.759896 0.650044i \(-0.225250\pi\)
0.759896 + 0.650044i \(0.225250\pi\)
\(588\) 12944.7i 0.907872i
\(589\) 1097.02 0.0767432
\(590\) −42012.4 −2.93156
\(591\) 23577.5 1.64103
\(592\) 5425.49 0.376666
\(593\) −12329.1 −0.853785 −0.426892 0.904302i \(-0.640392\pi\)
−0.426892 + 0.904302i \(0.640392\pi\)
\(594\) 11202.6 0.773822
\(595\) 11927.5 0.821812
\(596\) −20988.0 −1.44245
\(597\) 1228.66i 0.0842307i
\(598\) 15755.5i 1.07741i
\(599\) 6683.58 0.455899 0.227950 0.973673i \(-0.426798\pi\)
0.227950 + 0.973673i \(0.426798\pi\)
\(600\) 68836.3 4.68372
\(601\) 18283.4i 1.24092i 0.784237 + 0.620461i \(0.213055\pi\)
−0.784237 + 0.620461i \(0.786945\pi\)
\(602\) −49622.6 −3.35958
\(603\) −6401.47 −0.432318
\(604\) −34424.8 −2.31908
\(605\) −13115.3 −0.881342
\(606\) 70628.5i 4.73447i
\(607\) 1327.48i 0.0887656i −0.999015 0.0443828i \(-0.985868\pi\)
0.999015 0.0443828i \(-0.0141321\pi\)
\(608\) −10244.5 −0.683341
\(609\) 32757.8i 2.17966i
\(610\) 81963.6i 5.44034i
\(611\) −11688.0 −0.773888
\(612\) 15339.7i 1.01319i
\(613\) 10405.5i 0.685604i 0.939408 + 0.342802i \(0.111376\pi\)
−0.939408 + 0.342802i \(0.888624\pi\)
\(614\) 16830.8i 1.10625i
\(615\) 47311.6i 3.10209i
\(616\) 16900.8 1.10545
\(617\) −13704.5 −0.894201 −0.447101 0.894484i \(-0.647543\pi\)
−0.447101 + 0.894484i \(0.647543\pi\)
\(618\) 10098.2 0.657295
\(619\) −8999.60 −0.584369 −0.292185 0.956362i \(-0.594382\pi\)
−0.292185 + 0.956362i \(0.594382\pi\)
\(620\) 3343.94i 0.216606i
\(621\) 8996.76i 0.581365i
\(622\) −15146.2 −0.976379
\(623\) 32009.3i 2.05847i
\(624\) 7778.21i 0.499003i
\(625\) 27811.6 1.77994
\(626\) 41775.1i 2.66720i
\(627\) 20052.0 1.27719
\(628\) 10412.9i 0.661655i
\(629\) 5258.68i 0.333350i
\(630\) 77661.1 4.91126
\(631\) −7133.29 −0.450035 −0.225017 0.974355i \(-0.572244\pi\)
−0.225017 + 0.974355i \(0.572244\pi\)
\(632\) 33926.3i 2.13531i
\(633\) 18643.1i 1.17061i
\(634\) 21339.1 1.33673
\(635\) −17895.7 −1.11838
\(636\) 43175.5i 2.69186i
\(637\) 3728.91 0.231938
\(638\) −23491.7 −1.45775
\(639\) 9272.21i 0.574027i
\(640\) 53105.0i 3.27994i
\(641\) −5372.22 −0.331029 −0.165515 0.986207i \(-0.552929\pi\)
−0.165515 + 0.986207i \(0.552929\pi\)
\(642\) 73250.3i 4.50305i
\(643\) −11188.4 −0.686199 −0.343100 0.939299i \(-0.611477\pi\)
−0.343100 + 0.939299i \(0.611477\pi\)
\(644\) 30471.7i 1.86452i
\(645\) 79937.8i 4.87992i
\(646\) 12543.9i 0.763980i
\(647\) 10964.4i 0.666234i −0.942886 0.333117i \(-0.891900\pi\)
0.942886 0.333117i \(-0.108100\pi\)
\(648\) 9108.20i 0.552167i
\(649\) 11489.1i 0.694892i
\(650\) 44517.5i 2.68634i
\(651\) 1982.33i 0.119345i
\(652\) 1301.89i 0.0781994i
\(653\) 21489.9 1.28785 0.643923 0.765090i \(-0.277306\pi\)
0.643923 + 0.765090i \(0.277306\pi\)
\(654\) 40915.7i 2.44637i
\(655\) 50809.4 3.03097
\(656\) −8350.45 −0.496998
\(657\) −25095.8 −1.49023
\(658\) −35141.2 −2.08198
\(659\) 1174.60 0.0694326 0.0347163 0.999397i \(-0.488947\pi\)
0.0347163 + 0.999397i \(0.488947\pi\)
\(660\) 61122.8i 3.60485i
\(661\) 8495.64i 0.499913i −0.968257 0.249956i \(-0.919584\pi\)
0.968257 0.249956i \(-0.0804163\pi\)
\(662\) 22955.8i 1.34774i
\(663\) −7539.07 −0.441619
\(664\) 12847.0 0.750843
\(665\) 40851.5 2.38218
\(666\) 34239.9i 1.99215i
\(667\) 18866.0i 1.09520i
\(668\) 6704.30i 0.388319i
\(669\) 32529.1 1.87989
\(670\) 15956.6i 0.920084i
\(671\) −22414.5 −1.28957
\(672\) 18512.1i 1.06268i
\(673\) 26636.0i 1.52562i −0.646623 0.762810i \(-0.723819\pi\)
0.646623 0.762810i \(-0.276181\pi\)
\(674\) 53322.6 3.04734
\(675\) 25420.6i 1.44954i
\(676\) 15442.2 0.878594
\(677\) 23389.0i 1.32779i 0.747826 + 0.663895i \(0.231098\pi\)
−0.747826 + 0.663895i \(0.768902\pi\)
\(678\) 41687.1i 2.36133i
\(679\) 28729.6i 1.62377i
\(680\) −17031.6 −0.960486
\(681\) −16212.9 −0.912305
\(682\) −1421.59 −0.0798177
\(683\) 4715.32i 0.264168i −0.991239 0.132084i \(-0.957833\pi\)
0.991239 0.132084i \(-0.0421669\pi\)
\(684\) 52538.3i 2.93692i
\(685\) 38245.1i 2.13324i
\(686\) −23401.8 −1.30246
\(687\) 47098.0 2.61557
\(688\) 14109.0 0.781830
\(689\) −12437.4 −0.687702
\(690\) 76309.7 4.21023
\(691\) 6719.64i 0.369938i 0.982744 + 0.184969i \(0.0592185\pi\)
−0.982744 + 0.184969i \(0.940781\pi\)
\(692\) −12407.9 −0.681612
\(693\) 21237.9i 1.16415i
\(694\) 34610.7i 1.89309i
\(695\) 16081.0i 0.877677i
\(696\) 46775.7i 2.54746i
\(697\) 8093.72i 0.439844i
\(698\) 16024.4i 0.868956i
\(699\) 7274.89i 0.393650i
\(700\) 86098.6i 4.64889i
\(701\) 18659.0i 1.00534i 0.864480 + 0.502668i \(0.167648\pi\)
−0.864480 + 0.502668i \(0.832352\pi\)
\(702\) −14425.8 −0.775594
\(703\) 18010.9i 0.966281i
\(704\) 19258.4 1.03101
\(705\) 56609.4i 3.02416i
\(706\) 23725.2i 1.26475i
\(707\) 39349.3 2.09319
\(708\) 51358.5 2.72623
\(709\) 26439.1i 1.40048i −0.713906 0.700241i \(-0.753076\pi\)
0.713906 0.700241i \(-0.246924\pi\)
\(710\) 23112.3 1.22168
\(711\) −42632.2 −2.24871
\(712\) 45707.0i 2.40582i
\(713\) 1141.67i 0.0599663i
\(714\) −22667.0 −1.18808
\(715\) −17607.4 −0.920949
\(716\) 1299.70i 0.0678381i
\(717\) 4700.64i 0.244838i
\(718\) 2546.58 0.132364
\(719\) 3726.01i 0.193264i −0.995320 0.0966319i \(-0.969193\pi\)
0.995320 0.0966319i \(-0.0308070\pi\)
\(720\) −22081.0 −1.14293
\(721\) 5626.00i 0.290601i
\(722\) 10481.4i 0.540274i
\(723\) −1285.72 −0.0661361
\(724\) 17140.3i 0.879855i
\(725\) 53306.5i 2.73070i
\(726\) 24924.3 1.27414
\(727\) 1288.72 0.0657441 0.0328720 0.999460i \(-0.489535\pi\)
0.0328720 + 0.999460i \(0.489535\pi\)
\(728\) −21763.5 −1.10798
\(729\) 31238.4 1.58707
\(730\) 62554.9i 3.17159i
\(731\) 13675.2i 0.691921i
\(732\) 100197.i 5.05929i
\(733\) 6011.52i 0.302920i −0.988463 0.151460i \(-0.951602\pi\)
0.988463 0.151460i \(-0.0483975\pi\)
\(734\) −7559.66 −0.380153
\(735\) 18060.5i 0.906358i
\(736\) 10661.6i 0.533955i
\(737\) 4363.62 0.218095
\(738\) 52699.1i 2.62857i
\(739\) 24120.5i 1.20066i −0.799753 0.600329i \(-0.795036\pi\)
0.799753 0.600329i \(-0.204964\pi\)
\(740\) −54901.2 −2.72731
\(741\) −25821.3 −1.28012
\(742\) −37394.3 −1.85012
\(743\) −11342.9 −0.560070 −0.280035 0.959990i \(-0.590346\pi\)
−0.280035 + 0.959990i \(0.590346\pi\)
\(744\) 2830.62i 0.139483i
\(745\) 29282.6 1.44004
\(746\) −3891.29 −0.190979
\(747\) 16143.7i 0.790719i
\(748\) 10456.4i 0.511130i
\(749\) 40809.9 1.99087
\(750\) −119387. −5.81255
\(751\) −35093.2 −1.70515 −0.852575 0.522605i \(-0.824960\pi\)
−0.852575 + 0.522605i \(0.824960\pi\)
\(752\) 9991.51 0.484512
\(753\) −271.694 −0.0131489
\(754\) 30250.6 1.46109
\(755\) 48029.9 2.31521
\(756\) −27900.1 −1.34222
\(757\) 7493.88i 0.359802i 0.983685 + 0.179901i \(0.0575777\pi\)
−0.983685 + 0.179901i \(0.942422\pi\)
\(758\) 17923.5 0.858852
\(759\) 20868.3i 0.997986i
\(760\) −58333.0 −2.78416
\(761\) 9128.51i 0.434834i 0.976079 + 0.217417i \(0.0697631\pi\)
−0.976079 + 0.217417i \(0.930237\pi\)
\(762\) 34009.1 1.61683
\(763\) −22795.4 −1.08158
\(764\) 28600.1 1.35434
\(765\) 21402.1i 1.01150i
\(766\) −45886.6 −2.16442
\(767\) 14794.6i 0.696484i
\(768\) 53178.2i 2.49857i
\(769\) 18181.6 0.852593 0.426297 0.904583i \(-0.359818\pi\)
0.426297 + 0.904583i \(0.359818\pi\)
\(770\) −52938.4 −2.47762
\(771\) −3009.95 −0.140598
\(772\) 45300.1i 2.11190i
\(773\) 8098.95 0.376842 0.188421 0.982088i \(-0.439663\pi\)
0.188421 + 0.982088i \(0.439663\pi\)
\(774\) 89040.6i 4.13501i
\(775\) 3225.83i 0.149516i
\(776\) 41023.8i 1.89777i
\(777\) −32546.1 −1.50268
\(778\) 12039.7i 0.554812i
\(779\) 27720.9i 1.27497i
\(780\) 78708.7i 3.61311i
\(781\) 6320.49i 0.289584i
\(782\) −13054.5 −0.596966
\(783\) 17273.9 0.788401
\(784\) −3187.67 −0.145211
\(785\) 14528.2i 0.660551i
\(786\) −96558.3 −4.38183
\(787\) −29197.4 −1.32246 −0.661230 0.750183i \(-0.729965\pi\)
−0.661230 + 0.750183i \(0.729965\pi\)
\(788\) 42109.7i 1.90368i
\(789\) 49298.5i 2.22443i
\(790\) 106267.i 4.78583i
\(791\) −23225.1 −1.04398
\(792\) 30326.1i 1.36060i
\(793\) 28863.4 1.29252
\(794\) 48576.0 2.17116
\(795\) 60239.0i 2.68737i
\(796\) 2194.41 0.0977119
\(797\) 8661.06i 0.384932i 0.981304 + 0.192466i \(0.0616485\pi\)
−0.981304 + 0.192466i \(0.938352\pi\)
\(798\) −77634.3 −3.44389
\(799\) 9684.32i 0.428794i
\(800\) 30124.6i 1.33133i
\(801\) 57436.1 2.53359
\(802\) 51973.3 2.28833
\(803\) 17106.8 0.751788
\(804\) 19506.3i 0.855640i
\(805\) 42514.5i 1.86141i
\(806\) 1830.61 0.0800005
\(807\) −35059.3 + 6378.88i −1.52930 + 0.278249i
\(808\) −56188.0 −2.44639
\(809\) 33501.6i 1.45594i 0.685610 + 0.727969i \(0.259535\pi\)
−0.685610 + 0.727969i \(0.740465\pi\)
\(810\) 28529.6i 1.23756i
\(811\) 5160.34 0.223433 0.111716 0.993740i \(-0.464365\pi\)
0.111716 + 0.993740i \(0.464365\pi\)
\(812\) 58505.9 2.52852
\(813\) −17759.4 −0.766114
\(814\) 23339.9i 1.00499i
\(815\) 1816.41i 0.0780690i
\(816\) 6444.79 0.276486
\(817\) 46837.4i 2.00567i
\(818\) −32696.3 −1.39755
\(819\) 27348.3i 1.16682i
\(820\) 84499.3 3.59859
\(821\) 40003.3 1.70052 0.850260 0.526363i \(-0.176445\pi\)
0.850260 + 0.526363i \(0.176445\pi\)
\(822\) 72681.1i 3.08399i
\(823\) −8931.00 −0.378269 −0.189134 0.981951i \(-0.560568\pi\)
−0.189134 + 0.981951i \(0.560568\pi\)
\(824\) 8033.52i 0.339637i
\(825\) 58964.0i 2.48832i
\(826\) 44481.6i 1.87374i
\(827\) −1638.18 −0.0688817 −0.0344409 0.999407i \(-0.510965\pi\)
−0.0344409 + 0.999407i \(0.510965\pi\)
\(828\) −54677.0 −2.29488
\(829\) 315.738i 0.0132280i 0.999978 + 0.00661401i \(0.00210532\pi\)
−0.999978 + 0.00661401i \(0.997895\pi\)
\(830\) −40240.5 −1.68285
\(831\) 62436.0 2.60636
\(832\) −24799.4 −1.03337
\(833\) 3089.66i 0.128512i
\(834\) 30560.3i 1.26885i
\(835\) 9353.92i 0.387671i
\(836\) 35813.2i 1.48161i
\(837\) 1045.32 0.0431681
\(838\) 203.824i 0.00840214i
\(839\) 11648.8i 0.479332i −0.970855 0.239666i \(-0.922962\pi\)
0.970855 0.239666i \(-0.0770380\pi\)
\(840\) 105409.i 4.32970i
\(841\) −11833.9 −0.485217
\(842\) 67074.4i 2.74529i
\(843\) −32048.7 −1.30939
\(844\) −33296.9 −1.35797
\(845\) −21545.1 −0.877129
\(846\) 63055.8i 2.56253i
\(847\) 13886.1i 0.563320i
\(848\) 10632.1 0.430553
\(849\) 15388.1i 0.622045i
\(850\) 36885.9 1.48844
\(851\) −18744.1 −0.755042
\(852\) −28253.9 −1.13611
\(853\) 6167.91i 0.247579i 0.992308 + 0.123790i \(0.0395048\pi\)
−0.992308 + 0.123790i \(0.960495\pi\)
\(854\) 86780.8 3.47726
\(855\) 73302.1i 2.93202i
\(856\) −58273.7 −2.32681
\(857\) 21518.7i 0.857720i −0.903371 0.428860i \(-0.858915\pi\)
0.903371 0.428860i \(-0.141085\pi\)
\(858\) 33461.1 1.33140
\(859\) 5904.86 0.234542 0.117271 0.993100i \(-0.462585\pi\)
0.117271 + 0.993100i \(0.462585\pi\)
\(860\) −142770. −5.66096
\(861\) 50092.2 1.98274
\(862\) 64231.4 2.53797
\(863\) −9362.93 −0.369314 −0.184657 0.982803i \(-0.559117\pi\)
−0.184657 + 0.982803i \(0.559117\pi\)
\(864\) −9761.82 −0.384379
\(865\) 17311.6 0.680476
\(866\) 84993.1i 3.33508i
\(867\) 33435.4i 1.30972i
\(868\) 3540.47 0.138446
\(869\) 29060.7 1.13443
\(870\) 146515.i 5.70958i
\(871\) −5619.10 −0.218594
\(872\) 32550.1 1.26409
\(873\) 51551.0 1.99856
\(874\) −44711.6 −1.73042
\(875\) 66514.4i 2.56982i
\(876\) 76471.0i 2.94945i
\(877\) 23208.3 0.893602 0.446801 0.894633i \(-0.352563\pi\)
0.446801 + 0.894633i \(0.352563\pi\)
\(878\) 29715.8i 1.14221i
\(879\) 28367.8i 1.08854i
\(880\) 15051.7 0.576583
\(881\) 3624.39i 0.138603i −0.997596 0.0693013i \(-0.977923\pi\)
0.997596 0.0693013i \(-0.0220770\pi\)
\(882\) 20117.2i 0.768004i
\(883\) 11140.3i 0.424575i 0.977207 + 0.212288i \(0.0680914\pi\)
−0.977207 + 0.212288i \(0.931909\pi\)
\(884\) 13464.9i 0.512300i
\(885\) −71656.1 −2.72169
\(886\) −60745.1 −2.30335
\(887\) 36092.6 1.36626 0.683130 0.730297i \(-0.260618\pi\)
0.683130 + 0.730297i \(0.260618\pi\)
\(888\) 46473.5 1.75625
\(889\) 18947.5i 0.714825i
\(890\) 143168.i 5.39213i
\(891\) −7801.93 −0.293350
\(892\) 58097.5i 2.18077i
\(893\) 33168.7i 1.24294i
\(894\) −55648.9 −2.08185
\(895\) 1813.36i 0.0677250i
\(896\) −56226.1 −2.09641
\(897\) 26872.4i 1.00027i
\(898\) 6114.11i 0.227205i
\(899\) −2192.02 −0.0813215
\(900\) 154492. 5.72191
\(901\) 10305.2i 0.381040i
\(902\) 35922.9i 1.32605i
\(903\) −84636.0 −3.11906
\(904\) 33163.8 1.22015
\(905\) 23914.4i 0.878388i
\(906\) −91276.1 −3.34707
\(907\) 11723.4 0.429184 0.214592 0.976704i \(-0.431158\pi\)
0.214592 + 0.976704i \(0.431158\pi\)
\(908\) 28956.5i 1.05832i
\(909\) 70606.6i 2.57632i
\(910\) 68169.5 2.48329
\(911\) 40622.2i 1.47736i −0.674057 0.738680i \(-0.735450\pi\)
0.674057 0.738680i \(-0.264550\pi\)
\(912\) 22073.4 0.801450
\(913\) 11004.5i 0.398900i
\(914\) 50108.0i 1.81338i
\(915\) 139797.i 5.05085i
\(916\) 84117.7i 3.03420i
\(917\) 53795.6i 1.93728i
\(918\) 11952.8i 0.429739i
\(919\) 21883.1i 0.785480i −0.919650 0.392740i \(-0.871527\pi\)
0.919650 0.392740i \(-0.128473\pi\)
\(920\) 60707.6i 2.17551i
\(921\) 28706.5i 1.02705i
\(922\) 72807.1 2.60062
\(923\) 8138.98i 0.290247i
\(924\) 64715.2 2.30408
\(925\) 52962.1 1.88258
\(926\) 25189.6 0.893931
\(927\) 10095.0 0.357675
\(928\) 20470.3 0.724107
\(929\) 40912.2i 1.44487i 0.691439 + 0.722435i \(0.256977\pi\)
−0.691439 + 0.722435i \(0.743023\pi\)
\(930\) 8866.34i 0.312622i
\(931\) 10582.1i 0.372517i
\(932\) 12993.1 0.456655
\(933\) −25833.3 −0.906477
\(934\) 3122.41 0.109388
\(935\) 14588.9i 0.510277i
\(936\) 39051.4i 1.36371i
\(937\) 44502.6i 1.55159i −0.630988 0.775793i \(-0.717350\pi\)
0.630988 0.775793i \(-0.282650\pi\)
\(938\) −16894.4 −0.588082
\(939\) 71251.4i 2.47625i
\(940\) −101105. −3.50818
\(941\) 21540.3i 0.746221i −0.927787 0.373111i \(-0.878291\pi\)
0.927787 0.373111i \(-0.121709\pi\)
\(942\) 27609.4i 0.954950i
\(943\) 28849.4 0.996252
\(944\) 12647.2i 0.436051i
\(945\) 38926.5 1.33998
\(946\) 60695.4i 2.08602i
\(947\) 20740.1i 0.711681i 0.934547 + 0.355840i \(0.115805\pi\)
−0.934547 + 0.355840i \(0.884195\pi\)
\(948\) 129907.i 4.45063i
\(949\) −22028.7 −0.753510
\(950\) 126334. 4.31454
\(951\) 36395.9 1.24103
\(952\) 18032.5i 0.613906i
\(953\) 34601.4i 1.17613i 0.808815 + 0.588063i \(0.200109\pi\)
−0.808815 + 0.588063i \(0.799891\pi\)
\(954\) 67098.6i 2.27715i
\(955\) −39903.2 −1.35208
\(956\) 8395.41 0.284024
\(957\) −40067.3 −1.35339
\(958\) 41846.0 1.41125
\(959\) −40492.8 −1.36348
\(960\) 120113.i 4.03815i
\(961\) 29658.4 0.995547
\(962\) 30055.2i 1.00730i
\(963\) 73227.5i 2.45039i
\(964\) 2296.32i 0.0767213i
\(965\) 63203.2i 2.10838i
\(966\) 80794.6i 2.69102i
\(967\) 56344.0i 1.87373i 0.349686 + 0.936867i \(0.386288\pi\)
−0.349686 + 0.936867i \(0.613712\pi\)
\(968\) 19828.4i 0.658375i
\(969\) 21394.7i 0.709285i
\(970\) 128498.i 4.25344i
\(971\) −37400.7 −1.23609 −0.618046 0.786142i \(-0.712076\pi\)
−0.618046 + 0.786142i \(0.712076\pi\)
\(972\) 70226.6i 2.31741i
\(973\) 17026.1 0.560978
\(974\) 25775.7i 0.847952i
\(975\) 75928.8i 2.49402i
\(976\) −24674.0 −0.809215
\(977\) 2699.81 0.0884080 0.0442040 0.999023i \(-0.485925\pi\)
0.0442040 + 0.999023i \(0.485925\pi\)
\(978\) 3451.92i 0.112863i
\(979\) −39151.9 −1.27814
\(980\) 32256.4 1.05142
\(981\) 40903.0i 1.33122i
\(982\) 91834.8i 2.98428i
\(983\) 28578.6 0.927278 0.463639 0.886024i \(-0.346543\pi\)
0.463639 + 0.886024i \(0.346543\pi\)
\(984\) −71528.1 −2.31731
\(985\) 58752.0i 1.90050i
\(986\) 25064.7i 0.809558i
\(987\) −59936.5 −1.93293
\(988\) 46117.2i 1.48500i
\(989\) −48744.0 −1.56721
\(990\) 94990.3i 3.04949i
\(991\) 24680.3i 0.791116i 0.918441 + 0.395558i \(0.129449\pi\)
−0.918441 + 0.395558i \(0.870551\pi\)
\(992\) 1238.76 0.0396477
\(993\) 39153.3i 1.25125i
\(994\) 24470.7i 0.780848i
\(995\) −3061.66 −0.0975490
\(996\) 49192.5 1.56498
\(997\) −41312.7 −1.31232 −0.656162 0.754620i \(-0.727821\pi\)
−0.656162 + 0.754620i \(0.727821\pi\)
\(998\) 39172.4 1.24246
\(999\) 17162.3i 0.543534i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 269.4.b.a.268.8 66
269.268 even 2 inner 269.4.b.a.268.59 yes 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
269.4.b.a.268.8 66 1.1 even 1 trivial
269.4.b.a.268.59 yes 66 269.268 even 2 inner