Properties

Label 269.4.b.a.268.6
Level $269$
Weight $4$
Character 269.268
Analytic conductor $15.872$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [269,4,Mod(268,269)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("269.268"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(269, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 269.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.8715137915\)
Analytic rank: \(0\)
Dimension: \(66\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 268.6
Character \(\chi\) \(=\) 269.268
Dual form 269.4.b.a.268.61

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.95781i q^{2} +7.62155i q^{3} -16.5798 q^{4} +15.1989 q^{5} +37.7862 q^{6} +12.6208i q^{7} +42.5372i q^{8} -31.0881 q^{9} -75.3533i q^{10} +1.57260 q^{11} -126.364i q^{12} -37.6604 q^{13} +62.5715 q^{14} +115.839i q^{15} +78.2526 q^{16} +88.9897i q^{17} +154.129i q^{18} +21.2465i q^{19} -251.996 q^{20} -96.1902 q^{21} -7.79665i q^{22} -103.287 q^{23} -324.200 q^{24} +106.007 q^{25} +186.713i q^{26} -31.1576i q^{27} -209.251i q^{28} +3.06706i q^{29} +574.309 q^{30} +198.950i q^{31} -47.6633i q^{32} +11.9857i q^{33} +441.194 q^{34} +191.823i q^{35} +515.436 q^{36} +372.008 q^{37} +105.336 q^{38} -287.031i q^{39} +646.520i q^{40} +173.906 q^{41} +476.892i q^{42} -264.672 q^{43} -26.0735 q^{44} -472.506 q^{45} +512.078i q^{46} -25.0784 q^{47} +596.406i q^{48} +183.715 q^{49} -525.564i q^{50} -678.240 q^{51} +624.403 q^{52} -571.345 q^{53} -154.473 q^{54} +23.9018 q^{55} -536.854 q^{56} -161.932 q^{57} +15.2059 q^{58} +14.3309i q^{59} -1920.60i q^{60} +768.923 q^{61} +986.354 q^{62} -392.357i q^{63} +389.715 q^{64} -572.397 q^{65} +59.4226 q^{66} -674.938 q^{67} -1475.44i q^{68} -787.209i q^{69} +951.020 q^{70} +759.850i q^{71} -1322.40i q^{72} +356.197 q^{73} -1844.34i q^{74} +807.940i q^{75} -352.264i q^{76} +19.8475i q^{77} -1423.04 q^{78} -606.660 q^{79} +1189.35 q^{80} -601.909 q^{81} -862.191i q^{82} +260.514i q^{83} +1594.82 q^{84} +1352.55i q^{85} +1312.19i q^{86} -23.3758 q^{87} +66.8941i q^{88} +596.578 q^{89} +2342.59i q^{90} -475.304i q^{91} +1712.49 q^{92} -1516.31 q^{93} +124.334i q^{94} +322.924i q^{95} +363.268 q^{96} +869.474 q^{97} -910.824i q^{98} -48.8892 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 258 q^{4} - 34 q^{5} + 48 q^{6} - 564 q^{9} + 22 q^{11} + 118 q^{13} + 60 q^{14} + 1030 q^{16} + 144 q^{20} - 64 q^{21} - 80 q^{23} - 778 q^{24} + 1676 q^{25} - 1146 q^{30} + 308 q^{34} + 2030 q^{36}+ \cdots - 3982 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/269\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.95781i 1.75285i −0.481539 0.876425i \(-0.659922\pi\)
0.481539 0.876425i \(-0.340078\pi\)
\(3\) 7.62155i 1.46677i 0.679814 + 0.733384i \(0.262060\pi\)
−0.679814 + 0.733384i \(0.737940\pi\)
\(4\) −16.5798 −2.07248
\(5\) 15.1989 1.35943 0.679717 0.733475i \(-0.262103\pi\)
0.679717 + 0.733475i \(0.262103\pi\)
\(6\) 37.7862 2.57102
\(7\) 12.6208i 0.681460i 0.940161 + 0.340730i \(0.110674\pi\)
−0.940161 + 0.340730i \(0.889326\pi\)
\(8\) 42.5372i 1.87990i
\(9\) −31.0881 −1.15141
\(10\) 75.3533i 2.38288i
\(11\) 1.57260 0.0431052 0.0215526 0.999768i \(-0.493139\pi\)
0.0215526 + 0.999768i \(0.493139\pi\)
\(12\) 126.364i 3.03985i
\(13\) −37.6604 −0.803470 −0.401735 0.915756i \(-0.631593\pi\)
−0.401735 + 0.915756i \(0.631593\pi\)
\(14\) 62.5715 1.19450
\(15\) 115.839i 1.99397i
\(16\) 78.2526 1.22270
\(17\) 88.9897i 1.26960i 0.772677 + 0.634799i \(0.218917\pi\)
−0.772677 + 0.634799i \(0.781083\pi\)
\(18\) 154.129i 2.01825i
\(19\) 21.2465i 0.256542i 0.991739 + 0.128271i \(0.0409427\pi\)
−0.991739 + 0.128271i \(0.959057\pi\)
\(20\) −251.996 −2.81740
\(21\) −96.1902 −0.999544
\(22\) 7.79665i 0.0755569i
\(23\) −103.287 −0.936386 −0.468193 0.883626i \(-0.655095\pi\)
−0.468193 + 0.883626i \(0.655095\pi\)
\(24\) −324.200 −2.75738
\(25\) 106.007 0.848058
\(26\) 186.713i 1.40836i
\(27\) 31.1576i 0.222085i
\(28\) 209.251i 1.41231i
\(29\) 3.06706i 0.0196393i 0.999952 + 0.00981965i \(0.00312574\pi\)
−0.999952 + 0.00981965i \(0.996874\pi\)
\(30\) 574.309 3.49514
\(31\) 198.950i 1.15266i 0.817218 + 0.576329i \(0.195515\pi\)
−0.817218 + 0.576329i \(0.804485\pi\)
\(32\) 47.6633i 0.263305i
\(33\) 11.9857i 0.0632253i
\(34\) 441.194 2.22541
\(35\) 191.823i 0.926399i
\(36\) 515.436 2.38628
\(37\) 372.008 1.65291 0.826456 0.563001i \(-0.190353\pi\)
0.826456 + 0.563001i \(0.190353\pi\)
\(38\) 105.336 0.449679
\(39\) 287.031i 1.17850i
\(40\) 646.520i 2.55559i
\(41\) 173.906 0.662427 0.331214 0.943556i \(-0.392542\pi\)
0.331214 + 0.943556i \(0.392542\pi\)
\(42\) 476.892i 1.75205i
\(43\) −264.672 −0.938655 −0.469327 0.883024i \(-0.655504\pi\)
−0.469327 + 0.883024i \(0.655504\pi\)
\(44\) −26.0735 −0.0893347
\(45\) −472.506 −1.56527
\(46\) 512.078i 1.64134i
\(47\) −25.0784 −0.0778311 −0.0389156 0.999243i \(-0.512390\pi\)
−0.0389156 + 0.999243i \(0.512390\pi\)
\(48\) 596.406i 1.79341i
\(49\) 183.715 0.535613
\(50\) 525.564i 1.48652i
\(51\) −678.240 −1.86221
\(52\) 624.403 1.66518
\(53\) −571.345 −1.48076 −0.740380 0.672188i \(-0.765355\pi\)
−0.740380 + 0.672188i \(0.765355\pi\)
\(54\) −154.473 −0.389281
\(55\) 23.9018 0.0585986
\(56\) −536.854 −1.28107
\(57\) −161.932 −0.376287
\(58\) 15.2059 0.0344247
\(59\) 14.3309i 0.0316225i 0.999875 + 0.0158113i \(0.00503309\pi\)
−0.999875 + 0.0158113i \(0.994967\pi\)
\(60\) 1920.60i 4.13247i
\(61\) 768.923 1.61394 0.806971 0.590590i \(-0.201105\pi\)
0.806971 + 0.590590i \(0.201105\pi\)
\(62\) 986.354 2.02044
\(63\) 392.357i 0.784640i
\(64\) 389.715 0.761162
\(65\) −572.397 −1.09226
\(66\) 59.4226 0.110824
\(67\) −674.938 −1.23070 −0.615349 0.788255i \(-0.710985\pi\)
−0.615349 + 0.788255i \(0.710985\pi\)
\(68\) 1475.44i 2.63122i
\(69\) 787.209i 1.37346i
\(70\) 951.020 1.62384
\(71\) 759.850i 1.27011i 0.772468 + 0.635053i \(0.219022\pi\)
−0.772468 + 0.635053i \(0.780978\pi\)
\(72\) 1322.40i 2.16453i
\(73\) 356.197 0.571092 0.285546 0.958365i \(-0.407825\pi\)
0.285546 + 0.958365i \(0.407825\pi\)
\(74\) 1844.34i 2.89731i
\(75\) 807.940i 1.24391i
\(76\) 352.264i 0.531677i
\(77\) 19.8475i 0.0293744i
\(78\) −1423.04 −2.06574
\(79\) −606.660 −0.863982 −0.431991 0.901878i \(-0.642189\pi\)
−0.431991 + 0.901878i \(0.642189\pi\)
\(80\) 1189.35 1.66217
\(81\) −601.909 −0.825664
\(82\) 862.191i 1.16114i
\(83\) 260.514i 0.344519i 0.985052 + 0.172260i \(0.0551068\pi\)
−0.985052 + 0.172260i \(0.944893\pi\)
\(84\) 1594.82 2.07154
\(85\) 1352.55i 1.72593i
\(86\) 1312.19i 1.64532i
\(87\) −23.3758 −0.0288063
\(88\) 66.8941i 0.0810333i
\(89\) 596.578 0.710529 0.355265 0.934766i \(-0.384391\pi\)
0.355265 + 0.934766i \(0.384391\pi\)
\(90\) 2342.59i 2.74368i
\(91\) 475.304i 0.547532i
\(92\) 1712.49 1.94064
\(93\) −1516.31 −1.69068
\(94\) 124.334i 0.136426i
\(95\) 322.924i 0.348751i
\(96\) 363.268 0.386207
\(97\) 869.474 0.910121 0.455061 0.890460i \(-0.349618\pi\)
0.455061 + 0.890460i \(0.349618\pi\)
\(98\) 910.824i 0.938848i
\(99\) −48.8892 −0.0496318
\(100\) −1757.58 −1.75758
\(101\) 56.5618i 0.0557238i 0.999612 + 0.0278619i \(0.00886987\pi\)
−0.999612 + 0.0278619i \(0.991130\pi\)
\(102\) 3362.58i 3.26417i
\(103\) 1708.12 1.63404 0.817019 0.576610i \(-0.195625\pi\)
0.817019 + 0.576610i \(0.195625\pi\)
\(104\) 1601.97i 1.51044i
\(105\) −1461.99 −1.35881
\(106\) 2832.62i 2.59555i
\(107\) 584.870i 0.528425i −0.964464 0.264213i \(-0.914888\pi\)
0.964464 0.264213i \(-0.0851121\pi\)
\(108\) 516.588i 0.460266i
\(109\) 601.021i 0.528141i −0.964503 0.264070i \(-0.914935\pi\)
0.964503 0.264070i \(-0.0850651\pi\)
\(110\) 118.501i 0.102715i
\(111\) 2835.28i 2.42444i
\(112\) 987.611i 0.833218i
\(113\) 1248.01i 1.03896i −0.854482 0.519482i \(-0.826125\pi\)
0.854482 0.519482i \(-0.173875\pi\)
\(114\) 802.826i 0.659575i
\(115\) −1569.85 −1.27295
\(116\) 50.8515i 0.0407021i
\(117\) 1170.79 0.925124
\(118\) 71.0501 0.0554296
\(119\) −1123.12 −0.865180
\(120\) −4927.49 −3.74847
\(121\) −1328.53 −0.998142
\(122\) 3812.17i 2.82900i
\(123\) 1325.43i 0.971628i
\(124\) 3298.55i 2.38886i
\(125\) −288.669 −0.206555
\(126\) −1945.23 −1.37536
\(127\) −1013.30 −0.708002 −0.354001 0.935245i \(-0.615179\pi\)
−0.354001 + 0.935245i \(0.615179\pi\)
\(128\) 2313.44i 1.59751i
\(129\) 2017.21i 1.37679i
\(130\) 2837.83i 1.91457i
\(131\) 2432.15 1.62212 0.811062 0.584960i \(-0.198890\pi\)
0.811062 + 0.584960i \(0.198890\pi\)
\(132\) 198.720i 0.131033i
\(133\) −268.149 −0.174823
\(134\) 3346.21i 2.15723i
\(135\) 473.562i 0.301909i
\(136\) −3785.38 −2.38671
\(137\) 1929.53i 1.20329i −0.798763 0.601646i \(-0.794512\pi\)
0.798763 0.601646i \(-0.205488\pi\)
\(138\) −3902.83 −2.40747
\(139\) 2384.10i 1.45480i 0.686216 + 0.727398i \(0.259270\pi\)
−0.686216 + 0.727398i \(0.740730\pi\)
\(140\) 3180.39i 1.91994i
\(141\) 191.136i 0.114160i
\(142\) 3767.19 2.22631
\(143\) −59.2247 −0.0346337
\(144\) −2432.72 −1.40783
\(145\) 46.6161i 0.0266983i
\(146\) 1765.96i 1.00104i
\(147\) 1400.19i 0.785620i
\(148\) −6167.84 −3.42563
\(149\) 102.351 0.0562746 0.0281373 0.999604i \(-0.491042\pi\)
0.0281373 + 0.999604i \(0.491042\pi\)
\(150\) 4005.61 2.18038
\(151\) 2028.44 1.09319 0.546597 0.837396i \(-0.315923\pi\)
0.546597 + 0.837396i \(0.315923\pi\)
\(152\) −903.769 −0.482272
\(153\) 2766.52i 1.46183i
\(154\) 98.4001 0.0514890
\(155\) 3023.82i 1.56696i
\(156\) 4758.92i 2.44243i
\(157\) 1113.52i 0.566043i 0.959113 + 0.283022i \(0.0913369\pi\)
−0.959113 + 0.283022i \(0.908663\pi\)
\(158\) 3007.70i 1.51443i
\(159\) 4354.54i 2.17193i
\(160\) 724.431i 0.357945i
\(161\) 1303.57i 0.638109i
\(162\) 2984.15i 1.44726i
\(163\) 3851.70i 1.85085i −0.378930 0.925425i \(-0.623708\pi\)
0.378930 0.925425i \(-0.376292\pi\)
\(164\) −2883.33 −1.37287
\(165\) 182.169i 0.0859506i
\(166\) 1291.58 0.603890
\(167\) 3411.59i 1.58082i −0.612580 0.790409i \(-0.709868\pi\)
0.612580 0.790409i \(-0.290132\pi\)
\(168\) 4091.66i 1.87904i
\(169\) −778.697 −0.354436
\(170\) 6705.67 3.02530
\(171\) 660.514i 0.295385i
\(172\) 4388.23 1.94534
\(173\) −3490.18 −1.53384 −0.766918 0.641745i \(-0.778211\pi\)
−0.766918 + 0.641745i \(0.778211\pi\)
\(174\) 115.893i 0.0504931i
\(175\) 1337.90i 0.577918i
\(176\) 123.060 0.0527045
\(177\) −109.224 −0.0463830
\(178\) 2957.72i 1.24545i
\(179\) 526.934i 0.220027i 0.993930 + 0.110014i \(0.0350895\pi\)
−0.993930 + 0.110014i \(0.964911\pi\)
\(180\) 7834.07 3.24398
\(181\) 1697.10i 0.696929i 0.937322 + 0.348465i \(0.113297\pi\)
−0.937322 + 0.348465i \(0.886703\pi\)
\(182\) −2356.47 −0.959742
\(183\) 5860.39i 2.36728i
\(184\) 4393.55i 1.76031i
\(185\) 5654.12 2.24702
\(186\) 7517.55i 2.96351i
\(187\) 139.945i 0.0547263i
\(188\) 415.796 0.161303
\(189\) 393.234 0.151342
\(190\) 1601.00 0.611308
\(191\) 4632.42 1.75492 0.877462 0.479647i \(-0.159235\pi\)
0.877462 + 0.479647i \(0.159235\pi\)
\(192\) 2970.24i 1.11645i
\(193\) 2750.88i 1.02597i −0.858397 0.512986i \(-0.828539\pi\)
0.858397 0.512986i \(-0.171461\pi\)
\(194\) 4310.69i 1.59531i
\(195\) 4362.56i 1.60210i
\(196\) −3045.97 −1.11005
\(197\) 1211.75i 0.438243i −0.975698 0.219121i \(-0.929681\pi\)
0.975698 0.219121i \(-0.0703191\pi\)
\(198\) 242.383i 0.0869970i
\(199\) −777.501 −0.276963 −0.138481 0.990365i \(-0.544222\pi\)
−0.138481 + 0.990365i \(0.544222\pi\)
\(200\) 4509.26i 1.59426i
\(201\) 5144.07i 1.80515i
\(202\) 280.422 0.0976755
\(203\) −38.7088 −0.0133834
\(204\) 11245.1 3.85939
\(205\) 2643.18 0.900525
\(206\) 8468.53i 2.86422i
\(207\) 3211.00 1.07817
\(208\) −2947.02 −0.982399
\(209\) 33.4123i 0.0110583i
\(210\) 7248.25i 2.38179i
\(211\) 2930.70 0.956199 0.478099 0.878306i \(-0.341326\pi\)
0.478099 + 0.878306i \(0.341326\pi\)
\(212\) 9472.82 3.06885
\(213\) −5791.24 −1.86295
\(214\) −2899.67 −0.926250
\(215\) −4022.73 −1.27604
\(216\) 1325.36 0.417496
\(217\) −2510.91 −0.785490
\(218\) −2979.74 −0.925751
\(219\) 2714.78i 0.837660i
\(220\) −396.289 −0.121444
\(221\) 3351.38i 1.02008i
\(222\) 14056.8 4.24968
\(223\) 5039.29i 1.51325i −0.653847 0.756627i \(-0.726846\pi\)
0.653847 0.756627i \(-0.273154\pi\)
\(224\) 601.549 0.179432
\(225\) −3295.56 −0.976463
\(226\) −6187.39 −1.82115
\(227\) 5168.68i 1.51127i 0.654995 + 0.755633i \(0.272671\pi\)
−0.654995 + 0.755633i \(0.727329\pi\)
\(228\) 2684.80 0.779848
\(229\) 4397.95i 1.26910i −0.772881 0.634551i \(-0.781185\pi\)
0.772881 0.634551i \(-0.218815\pi\)
\(230\) 7783.04i 2.23130i
\(231\) −151.269 −0.0430855
\(232\) −130.464 −0.0369199
\(233\) 3417.64 0.960932 0.480466 0.877013i \(-0.340467\pi\)
0.480466 + 0.877013i \(0.340467\pi\)
\(234\) 5804.55i 1.62160i
\(235\) −381.165 −0.105806
\(236\) 237.605i 0.0655371i
\(237\) 4623.69i 1.26726i
\(238\) 5568.22i 1.51653i
\(239\) −5256.30 −1.42260 −0.711301 0.702888i \(-0.751893\pi\)
−0.711301 + 0.702888i \(0.751893\pi\)
\(240\) 9064.73i 2.43802i
\(241\) 4285.44i 1.14543i −0.819753 0.572717i \(-0.805889\pi\)
0.819753 0.572717i \(-0.194111\pi\)
\(242\) 6586.58i 1.74959i
\(243\) 5428.74i 1.43314i
\(244\) −12748.6 −3.34487
\(245\) 2792.27 0.728129
\(246\) 6571.24 1.70312
\(247\) 800.152i 0.206123i
\(248\) −8462.76 −2.16688
\(249\) −1985.52 −0.505330
\(250\) 1431.17i 0.362059i
\(251\) 3564.90i 0.896471i 0.893915 + 0.448236i \(0.147947\pi\)
−0.893915 + 0.448236i \(0.852053\pi\)
\(252\) 6505.22i 1.62615i
\(253\) −162.430 −0.0403631
\(254\) 5023.77i 1.24102i
\(255\) −10308.5 −2.53155
\(256\) −8351.86 −2.03903
\(257\) 7296.09i 1.77088i 0.464750 + 0.885442i \(0.346144\pi\)
−0.464750 + 0.885442i \(0.653856\pi\)
\(258\) −10001.0 −2.41330
\(259\) 4695.05i 1.12639i
\(260\) 9490.26 2.26369
\(261\) 95.3492i 0.0226129i
\(262\) 12058.1i 2.84334i
\(263\) 2868.66 0.672582 0.336291 0.941758i \(-0.390827\pi\)
0.336291 + 0.941758i \(0.390827\pi\)
\(264\) −509.837 −0.118857
\(265\) −8683.84 −2.01300
\(266\) 1329.43i 0.306438i
\(267\) 4546.85i 1.04218i
\(268\) 11190.4 2.55060
\(269\) 3534.27 2640.84i 0.801072 0.598569i
\(270\) −2347.83 −0.529201
\(271\) 528.768i 0.118525i −0.998242 0.0592627i \(-0.981125\pi\)
0.998242 0.0592627i \(-0.0188750\pi\)
\(272\) 6963.67i 1.55233i
\(273\) 3622.56 0.803103
\(274\) −9566.25 −2.10919
\(275\) 166.707 0.0365557
\(276\) 13051.8i 2.84647i
\(277\) 1236.95i 0.268308i −0.990961 0.134154i \(-0.957168\pi\)
0.990961 0.134154i \(-0.0428316\pi\)
\(278\) 11819.9 2.55004
\(279\) 6184.96i 1.32718i
\(280\) −8159.61 −1.74154
\(281\) 2220.29i 0.471356i 0.971831 + 0.235678i \(0.0757311\pi\)
−0.971831 + 0.235678i \(0.924269\pi\)
\(282\) −947.618 −0.200106
\(283\) −1832.16 −0.384843 −0.192422 0.981312i \(-0.561634\pi\)
−0.192422 + 0.981312i \(0.561634\pi\)
\(284\) 12598.2i 2.63227i
\(285\) −2461.19 −0.511537
\(286\) 293.625i 0.0607077i
\(287\) 2194.83i 0.451417i
\(288\) 1481.76i 0.303172i
\(289\) −3006.17 −0.611880
\(290\) 231.114 0.0467981
\(291\) 6626.75i 1.33494i
\(292\) −5905.70 −1.18358
\(293\) 4447.80 0.886837 0.443418 0.896315i \(-0.353766\pi\)
0.443418 + 0.896315i \(0.353766\pi\)
\(294\) 6941.89 1.37707
\(295\) 217.815i 0.0429887i
\(296\) 15824.2i 3.10731i
\(297\) 48.9985i 0.00957300i
\(298\) 507.437i 0.0986410i
\(299\) 3889.84 0.752358
\(300\) 13395.5i 2.57797i
\(301\) 3340.38i 0.639655i
\(302\) 10056.6i 1.91620i
\(303\) −431.089 −0.0817340
\(304\) 1662.60i 0.313672i
\(305\) 11686.8 2.19405
\(306\) −13715.9 −2.56237
\(307\) 8062.05 1.49878 0.749390 0.662128i \(-0.230347\pi\)
0.749390 + 0.662128i \(0.230347\pi\)
\(308\) 329.068i 0.0608780i
\(309\) 13018.5i 2.39676i
\(310\) 14991.5 2.74665
\(311\) 2892.88i 0.527460i 0.964597 + 0.263730i \(0.0849528\pi\)
−0.964597 + 0.263730i \(0.915047\pi\)
\(312\) 12209.5 2.21547
\(313\) 7447.54 1.34492 0.672459 0.740134i \(-0.265238\pi\)
0.672459 + 0.740134i \(0.265238\pi\)
\(314\) 5520.63 0.992189
\(315\) 5963.40i 1.06667i
\(316\) 10058.3 1.79059
\(317\) 869.733i 0.154098i −0.997027 0.0770490i \(-0.975450\pi\)
0.997027 0.0770490i \(-0.0245498\pi\)
\(318\) −21589.0 −3.80707
\(319\) 4.82327i 0.000846555i
\(320\) 5923.25 1.03475
\(321\) 4457.62 0.775078
\(322\) −6462.84 −1.11851
\(323\) −1890.72 −0.325705
\(324\) 9979.56 1.71117
\(325\) −3992.27 −0.681389
\(326\) −19096.0 −3.24426
\(327\) 4580.71 0.774660
\(328\) 7397.47i 1.24530i
\(329\) 316.510i 0.0530388i
\(330\) 903.159 0.150658
\(331\) −213.953 −0.0355285 −0.0177642 0.999842i \(-0.505655\pi\)
−0.0177642 + 0.999842i \(0.505655\pi\)
\(332\) 4319.28i 0.714010i
\(333\) −11565.0 −1.90318
\(334\) −16914.0 −2.77094
\(335\) −10258.3 −1.67305
\(336\) −7527.13 −1.22214
\(337\) 8612.67i 1.39217i 0.717958 + 0.696086i \(0.245077\pi\)
−0.717958 + 0.696086i \(0.754923\pi\)
\(338\) 3860.63i 0.621274i
\(339\) 9511.77 1.52392
\(340\) 22425.0i 3.57697i
\(341\) 312.868i 0.0496855i
\(342\) −3274.70 −0.517765
\(343\) 6647.57i 1.04646i
\(344\) 11258.4i 1.76457i
\(345\) 11964.7i 1.86713i
\(346\) 17303.7i 2.68858i
\(347\) −11076.3 −1.71356 −0.856781 0.515681i \(-0.827539\pi\)
−0.856781 + 0.515681i \(0.827539\pi\)
\(348\) 387.567 0.0597005
\(349\) 1975.79 0.303041 0.151521 0.988454i \(-0.451583\pi\)
0.151521 + 0.988454i \(0.451583\pi\)
\(350\) 6633.04 1.01300
\(351\) 1173.41i 0.178438i
\(352\) 74.9553i 0.0113498i
\(353\) 2710.41 0.408670 0.204335 0.978901i \(-0.434497\pi\)
0.204335 + 0.978901i \(0.434497\pi\)
\(354\) 541.512i 0.0813024i
\(355\) 11548.9i 1.72663i
\(356\) −9891.17 −1.47256
\(357\) 8559.94i 1.26902i
\(358\) 2612.44 0.385675
\(359\) 2803.49i 0.412151i 0.978536 + 0.206076i \(0.0660693\pi\)
−0.978536 + 0.206076i \(0.933931\pi\)
\(360\) 20099.1i 2.94254i
\(361\) 6407.58 0.934186
\(362\) 8413.88 1.22161
\(363\) 10125.4i 1.46404i
\(364\) 7880.47i 1.13475i
\(365\) 5413.82 0.776362
\(366\) 29054.7 4.14949
\(367\) 6737.38i 0.958279i 0.877739 + 0.479140i \(0.159051\pi\)
−0.877739 + 0.479140i \(0.840949\pi\)
\(368\) −8082.49 −1.14492
\(369\) −5406.40 −0.762726
\(370\) 28032.1i 3.93869i
\(371\) 7210.84i 1.00908i
\(372\) 25140.1 3.50391
\(373\) 3588.48i 0.498135i 0.968486 + 0.249067i \(0.0801240\pi\)
−0.968486 + 0.249067i \(0.919876\pi\)
\(374\) 693.822 0.0959269
\(375\) 2200.11i 0.302968i
\(376\) 1066.77i 0.146314i
\(377\) 115.507i 0.0157796i
\(378\) 1949.58i 0.265279i
\(379\) 8436.11i 1.14336i 0.820476 + 0.571681i \(0.193708\pi\)
−0.820476 + 0.571681i \(0.806292\pi\)
\(380\) 5354.04i 0.722780i
\(381\) 7722.95i 1.03847i
\(382\) 22966.7i 3.07612i
\(383\) 6519.78i 0.869831i −0.900471 0.434916i \(-0.856778\pi\)
0.900471 0.434916i \(-0.143222\pi\)
\(384\) 17632.0 2.34318
\(385\) 301.661i 0.0399326i
\(386\) −13638.3 −1.79837
\(387\) 8228.16 1.08078
\(388\) −14415.8 −1.88621
\(389\) 7945.96 1.03567 0.517836 0.855480i \(-0.326738\pi\)
0.517836 + 0.855480i \(0.326738\pi\)
\(390\) −21628.7 −2.80824
\(391\) 9191.50i 1.18883i
\(392\) 7814.73i 1.00690i
\(393\) 18536.8i 2.37928i
\(394\) −6007.64 −0.768174
\(395\) −9220.58 −1.17453
\(396\) 810.575 0.102861
\(397\) 6697.98i 0.846755i 0.905953 + 0.423378i \(0.139156\pi\)
−0.905953 + 0.423378i \(0.860844\pi\)
\(398\) 3854.70i 0.485474i
\(399\) 2043.71i 0.256425i
\(400\) 8295.34 1.03692
\(401\) 2642.93i 0.329132i 0.986366 + 0.164566i \(0.0526223\pi\)
−0.986366 + 0.164566i \(0.947378\pi\)
\(402\) −25503.3 −3.16415
\(403\) 7492.52i 0.926126i
\(404\) 937.786i 0.115487i
\(405\) −9148.37 −1.12243
\(406\) 191.911i 0.0234591i
\(407\) 585.020 0.0712491
\(408\) 28850.4i 3.50076i
\(409\) 11419.6i 1.38060i 0.723524 + 0.690299i \(0.242521\pi\)
−0.723524 + 0.690299i \(0.757479\pi\)
\(410\) 13104.4i 1.57849i
\(411\) 14706.0 1.76495
\(412\) −28320.4 −3.38651
\(413\) −180.868 −0.0215495
\(414\) 15919.5i 1.88986i
\(415\) 3959.53i 0.468351i
\(416\) 1795.02i 0.211558i
\(417\) −18170.5 −2.13385
\(418\) 165.652 0.0193835
\(419\) 15450.7 1.80147 0.900734 0.434372i \(-0.143030\pi\)
0.900734 + 0.434372i \(0.143030\pi\)
\(420\) 24239.5 2.81611
\(421\) −2426.07 −0.280854 −0.140427 0.990091i \(-0.544848\pi\)
−0.140427 + 0.990091i \(0.544848\pi\)
\(422\) 14529.9i 1.67607i
\(423\) 779.640 0.0896156
\(424\) 24303.4i 2.78368i
\(425\) 9433.56i 1.07669i
\(426\) 28711.8i 3.26548i
\(427\) 9704.43i 1.09984i
\(428\) 9697.05i 1.09515i
\(429\) 451.384i 0.0507996i
\(430\) 19943.9i 2.23670i
\(431\) 21.2328i 0.00237297i 0.999999 + 0.00118648i \(0.000377670\pi\)
−0.999999 + 0.00118648i \(0.999622\pi\)
\(432\) 2438.16i 0.271542i
\(433\) −4284.70 −0.475542 −0.237771 0.971321i \(-0.576417\pi\)
−0.237771 + 0.971321i \(0.576417\pi\)
\(434\) 12448.6i 1.37685i
\(435\) −355.287 −0.0391602
\(436\) 9964.83i 1.09456i
\(437\) 2194.50i 0.240222i
\(438\) 13459.3 1.46829
\(439\) −12210.0 −1.32745 −0.663724 0.747977i \(-0.731025\pi\)
−0.663724 + 0.747977i \(0.731025\pi\)
\(440\) 1016.72i 0.110159i
\(441\) −5711.35 −0.616710
\(442\) −16615.5 −1.78805
\(443\) 11792.6i 1.26475i 0.774662 + 0.632375i \(0.217920\pi\)
−0.774662 + 0.632375i \(0.782080\pi\)
\(444\) 47008.5i 5.02461i
\(445\) 9067.34 0.965917
\(446\) −24983.8 −2.65251
\(447\) 780.074i 0.0825419i
\(448\) 4918.52i 0.518702i
\(449\) 1464.96 0.153977 0.0769886 0.997032i \(-0.475470\pi\)
0.0769886 + 0.997032i \(0.475470\pi\)
\(450\) 16338.8i 1.71159i
\(451\) 273.484 0.0285540
\(452\) 20691.8i 2.15323i
\(453\) 15459.9i 1.60346i
\(454\) 25625.3 2.64902
\(455\) 7224.12i 0.744334i
\(456\) 6888.12i 0.707381i
\(457\) −7117.41 −0.728530 −0.364265 0.931295i \(-0.618680\pi\)
−0.364265 + 0.931295i \(0.618680\pi\)
\(458\) −21804.2 −2.22455
\(459\) 2772.71 0.281958
\(460\) 26028.0 2.63817
\(461\) 9909.12i 1.00111i −0.865704 0.500557i \(-0.833129\pi\)
0.865704 0.500557i \(-0.166871\pi\)
\(462\) 749.961i 0.0755224i
\(463\) 11770.3i 1.18145i 0.806871 + 0.590727i \(0.201159\pi\)
−0.806871 + 0.590727i \(0.798841\pi\)
\(464\) 240.006i 0.0240129i
\(465\) −23046.2 −2.29837
\(466\) 16944.0i 1.68437i
\(467\) 8192.86i 0.811820i −0.913913 0.405910i \(-0.866955\pi\)
0.913913 0.405910i \(-0.133045\pi\)
\(468\) −19411.5 −1.91730
\(469\) 8518.26i 0.838671i
\(470\) 1889.74i 0.185462i
\(471\) −8486.78 −0.830255
\(472\) −609.599 −0.0594471
\(473\) −416.224 −0.0404609
\(474\) −22923.4 −2.22132
\(475\) 2252.29i 0.217562i
\(476\) 18621.2 1.79307
\(477\) 17762.0 1.70496
\(478\) 26059.7i 2.49361i
\(479\) 633.723i 0.0604500i 0.999543 + 0.0302250i \(0.00962238\pi\)
−0.999543 + 0.0302250i \(0.990378\pi\)
\(480\) 5521.29 0.525023
\(481\) −14010.0 −1.32807
\(482\) −21246.4 −2.00777
\(483\) 9935.22 0.935959
\(484\) 22026.8 2.06863
\(485\) 13215.1 1.23725
\(486\) −26914.6 −2.51208
\(487\) −1241.82 −0.115549 −0.0577745 0.998330i \(-0.518400\pi\)
−0.0577745 + 0.998330i \(0.518400\pi\)
\(488\) 32707.9i 3.03405i
\(489\) 29356.0 2.71477
\(490\) 13843.5i 1.27630i
\(491\) −4282.65 −0.393632 −0.196816 0.980440i \(-0.563060\pi\)
−0.196816 + 0.980440i \(0.563060\pi\)
\(492\) 21975.5i 2.01368i
\(493\) −272.937 −0.0249340
\(494\) −3967.00 −0.361303
\(495\) −743.063 −0.0674711
\(496\) 15568.3i 1.40935i
\(497\) −9589.92 −0.865527
\(498\) 9843.82i 0.885768i
\(499\) 8735.12i 0.783642i −0.920041 0.391821i \(-0.871845\pi\)
0.920041 0.391821i \(-0.128155\pi\)
\(500\) 4786.09 0.428081
\(501\) 26001.6 2.31869
\(502\) 17674.1 1.57138
\(503\) 280.586i 0.0248722i −0.999923 0.0124361i \(-0.996041\pi\)
0.999923 0.0124361i \(-0.00395863\pi\)
\(504\) 16689.8 1.47504
\(505\) 859.678i 0.0757528i
\(506\) 805.295i 0.0707504i
\(507\) 5934.88i 0.519876i
\(508\) 16800.4 1.46732
\(509\) 18953.0i 1.65044i −0.564809 0.825222i \(-0.691050\pi\)
0.564809 0.825222i \(-0.308950\pi\)
\(510\) 51107.6i 4.43742i
\(511\) 4495.50i 0.389176i
\(512\) 22899.4i 1.97660i
\(513\) 661.991 0.0569739
\(514\) 36172.6 3.10409
\(515\) 25961.6 2.22137
\(516\) 33445.1i 2.85337i
\(517\) −39.4383 −0.00335492
\(518\) 23277.1 1.97440
\(519\) 26600.6i 2.24978i
\(520\) 24348.2i 2.05334i
\(521\) 8311.93i 0.698949i 0.936946 + 0.349474i \(0.113640\pi\)
−0.936946 + 0.349474i \(0.886360\pi\)
\(522\) −472.723 −0.0396370
\(523\) 19480.5i 1.62873i 0.580354 + 0.814364i \(0.302914\pi\)
−0.580354 + 0.814364i \(0.697086\pi\)
\(524\) −40324.7 −3.36182
\(525\) −10196.9 −0.847671
\(526\) 14222.3i 1.17893i
\(527\) −17704.5 −1.46341
\(528\) 937.909i 0.0773054i
\(529\) −1498.74 −0.123181
\(530\) 43052.8i 3.52848i
\(531\) 445.522i 0.0364105i
\(532\) 4445.86 0.362317
\(533\) −6549.35 −0.532240
\(534\) 22542.4 1.82679
\(535\) 8889.39i 0.718359i
\(536\) 28710.0i 2.31359i
\(537\) −4016.06 −0.322729
\(538\) −13092.8 17522.2i −1.04920 1.40416i
\(539\) 288.911 0.0230877
\(540\) 7851.59i 0.625701i
\(541\) 21391.5i 1.69999i 0.526793 + 0.849994i \(0.323394\pi\)
−0.526793 + 0.849994i \(0.676606\pi\)
\(542\) −2621.53 −0.207757
\(543\) −12934.5 −1.02223
\(544\) 4241.54 0.334291
\(545\) 9134.87i 0.717972i
\(546\) 17959.9i 1.40772i
\(547\) 1297.46 0.101418 0.0507089 0.998713i \(-0.483852\pi\)
0.0507089 + 0.998713i \(0.483852\pi\)
\(548\) 31991.3i 2.49380i
\(549\) −23904.4 −1.85831
\(550\) 826.502i 0.0640766i
\(551\) −65.1645 −0.00503830
\(552\) 33485.7 2.58197
\(553\) 7656.54i 0.588769i
\(554\) −6132.57 −0.470303
\(555\) 43093.2i 3.29587i
\(556\) 39528.0i 3.01504i
\(557\) 20021.4i 1.52304i −0.648142 0.761520i \(-0.724454\pi\)
0.648142 0.761520i \(-0.275546\pi\)
\(558\) −30663.9 −2.32635
\(559\) 9967.66 0.754181
\(560\) 15010.6i 1.13270i
\(561\) −1066.60 −0.0802708
\(562\) 11007.7 0.826217
\(563\) 7131.14 0.533822 0.266911 0.963721i \(-0.413997\pi\)
0.266911 + 0.963721i \(0.413997\pi\)
\(564\) 3169.01i 0.236595i
\(565\) 18968.4i 1.41240i
\(566\) 9083.50i 0.674572i
\(567\) 7596.58i 0.562657i
\(568\) −32321.9 −2.38767
\(569\) 24027.7i 1.77029i −0.465314 0.885145i \(-0.654059\pi\)
0.465314 0.885145i \(-0.345941\pi\)
\(570\) 12202.1i 0.896648i
\(571\) 4919.44i 0.360547i −0.983617 0.180273i \(-0.942302\pi\)
0.983617 0.180273i \(-0.0576982\pi\)
\(572\) 981.937 0.0717777
\(573\) 35306.3i 2.57407i
\(574\) 10881.6 0.791267
\(575\) −10949.2 −0.794110
\(576\) −12115.5 −0.876411
\(577\) 4128.25i 0.297853i 0.988848 + 0.148927i \(0.0475819\pi\)
−0.988848 + 0.148927i \(0.952418\pi\)
\(578\) 14904.0i 1.07253i
\(579\) 20966.0 1.50486
\(580\) 772.888i 0.0553317i
\(581\) −3287.90 −0.234776
\(582\) 32854.1 2.33994
\(583\) −898.498 −0.0638285
\(584\) 15151.6i 1.07360i
\(585\) 17794.7 1.25764
\(586\) 22051.3i 1.55449i
\(587\) −3913.26 −0.275157 −0.137579 0.990491i \(-0.543932\pi\)
−0.137579 + 0.990491i \(0.543932\pi\)
\(588\) 23215.0i 1.62818i
\(589\) −4226.99 −0.295705
\(590\) 1079.88 0.0753528
\(591\) 9235.44 0.642801
\(592\) 29110.6 2.02101
\(593\) −14080.1 −0.975043 −0.487522 0.873111i \(-0.662099\pi\)
−0.487522 + 0.873111i \(0.662099\pi\)
\(594\) −242.925 −0.0167800
\(595\) −17070.2 −1.17615
\(596\) −1696.96 −0.116628
\(597\) 5925.77i 0.406240i
\(598\) 19285.1i 1.31877i
\(599\) 9638.90 0.657487 0.328744 0.944419i \(-0.393375\pi\)
0.328744 + 0.944419i \(0.393375\pi\)
\(600\) −34367.5 −2.33841
\(601\) 15042.9i 1.02099i 0.859882 + 0.510494i \(0.170537\pi\)
−0.859882 + 0.510494i \(0.829463\pi\)
\(602\) −16561.0 −1.12122
\(603\) 20982.5 1.41704
\(604\) −33631.3 −2.26562
\(605\) −20192.2 −1.35691
\(606\) 2137.25i 0.143267i
\(607\) 6015.15i 0.402220i 0.979569 + 0.201110i \(0.0644549\pi\)
−0.979569 + 0.201110i \(0.935545\pi\)
\(608\) 1012.68 0.0675486
\(609\) 295.022i 0.0196303i
\(610\) 57940.9i 3.84583i
\(611\) 944.462 0.0625349
\(612\) 45868.5i 3.02961i
\(613\) 21381.6i 1.40880i −0.709803 0.704400i \(-0.751216\pi\)
0.709803 0.704400i \(-0.248784\pi\)
\(614\) 39970.1i 2.62714i
\(615\) 20145.1i 1.32086i
\(616\) −844.257 −0.0552209
\(617\) −20117.5 −1.31264 −0.656320 0.754483i \(-0.727888\pi\)
−0.656320 + 0.754483i \(0.727888\pi\)
\(618\) 64543.3 4.20115
\(619\) 6554.83 0.425623 0.212812 0.977093i \(-0.431738\pi\)
0.212812 + 0.977093i \(0.431738\pi\)
\(620\) 50134.5i 3.24750i
\(621\) 3218.18i 0.207957i
\(622\) 14342.3 0.924558
\(623\) 7529.30i 0.484197i
\(624\) 22460.9i 1.44095i
\(625\) −17638.4 −1.12886
\(626\) 36923.4i 2.35744i
\(627\) −254.654 −0.0162199
\(628\) 18462.0i 1.17311i
\(629\) 33104.9i 2.09854i
\(630\) −29565.4 −1.86970
\(631\) 15300.6 0.965308 0.482654 0.875811i \(-0.339673\pi\)
0.482654 + 0.875811i \(0.339673\pi\)
\(632\) 25805.6i 1.62420i
\(633\) 22336.5i 1.40252i
\(634\) −4311.97 −0.270111
\(635\) −15401.1 −0.962481
\(636\) 72197.6i 4.50129i
\(637\) −6918.78 −0.430348
\(638\) 23.9128 0.00148388
\(639\) 23622.3i 1.46241i
\(640\) 35161.8i 2.17171i
\(641\) 18026.6 1.11078 0.555389 0.831591i \(-0.312570\pi\)
0.555389 + 0.831591i \(0.312570\pi\)
\(642\) 22100.0i 1.35859i
\(643\) 881.112 0.0540399 0.0270200 0.999635i \(-0.491398\pi\)
0.0270200 + 0.999635i \(0.491398\pi\)
\(644\) 21613.0i 1.32247i
\(645\) 30659.5i 1.87165i
\(646\) 9373.84i 0.570911i
\(647\) 8262.95i 0.502087i 0.967976 + 0.251043i \(0.0807737\pi\)
−0.967976 + 0.251043i \(0.919226\pi\)
\(648\) 25603.5i 1.55216i
\(649\) 22.5369i 0.00136310i
\(650\) 19792.9i 1.19437i
\(651\) 19137.0i 1.15213i
\(652\) 63860.7i 3.83585i
\(653\) −12517.5 −0.750147 −0.375074 0.926995i \(-0.622383\pi\)
−0.375074 + 0.926995i \(0.622383\pi\)
\(654\) 22710.3i 1.35786i
\(655\) 36966.1 2.20517
\(656\) 13608.6 0.809947
\(657\) −11073.5 −0.657562
\(658\) −1569.19 −0.0929690
\(659\) 6482.32 0.383180 0.191590 0.981475i \(-0.438636\pi\)
0.191590 + 0.981475i \(0.438636\pi\)
\(660\) 3020.34i 0.178131i
\(661\) 10969.5i 0.645485i 0.946487 + 0.322742i \(0.104605\pi\)
−0.946487 + 0.322742i \(0.895395\pi\)
\(662\) 1060.74i 0.0622760i
\(663\) 25542.8 1.49623
\(664\) −11081.5 −0.647661
\(665\) −4075.57 −0.237660
\(666\) 57337.2i 3.33599i
\(667\) 316.789i 0.0183900i
\(668\) 56563.6i 3.27621i
\(669\) 38407.2 2.21959
\(670\) 50858.8i 2.93261i
\(671\) 1209.21 0.0695693
\(672\) 4584.74i 0.263185i
\(673\) 9756.00i 0.558791i 0.960176 + 0.279395i \(0.0901340\pi\)
−0.960176 + 0.279395i \(0.909866\pi\)
\(674\) 42700.0 2.44027
\(675\) 3302.93i 0.188341i
\(676\) 12910.7 0.734563
\(677\) 15924.3i 0.904017i −0.892014 0.452009i \(-0.850708\pi\)
0.892014 0.452009i \(-0.149292\pi\)
\(678\) 47157.5i 2.67120i
\(679\) 10973.5i 0.620211i
\(680\) −57533.6 −3.24458
\(681\) −39393.4 −2.21668
\(682\) 1551.14 0.0870913
\(683\) 12104.3i 0.678120i −0.940765 0.339060i \(-0.889891\pi\)
0.940765 0.339060i \(-0.110109\pi\)
\(684\) 10951.2i 0.612179i
\(685\) 29326.8i 1.63580i
\(686\) 32957.4 1.83428
\(687\) 33519.2 1.86148
\(688\) −20711.3 −1.14769
\(689\) 21517.1 1.18975
\(690\) −59318.8 −3.27280
\(691\) 22889.9i 1.26016i 0.776530 + 0.630081i \(0.216978\pi\)
−0.776530 + 0.630081i \(0.783022\pi\)
\(692\) 57866.7 3.17885
\(693\) 617.021i 0.0338221i
\(694\) 54914.1i 3.00362i
\(695\) 36235.7i 1.97770i
\(696\) 994.342i 0.0541529i
\(697\) 15475.8i 0.841016i
\(698\) 9795.57i 0.531186i
\(699\) 26047.8i 1.40947i
\(700\) 22182.1i 1.19772i
\(701\) 12290.9i 0.662225i 0.943591 + 0.331112i \(0.107424\pi\)
−0.943591 + 0.331112i \(0.892576\pi\)
\(702\) 5817.53 0.312775
\(703\) 7903.89i 0.424041i
\(704\) 612.866 0.0328100
\(705\) 2905.07i 0.155193i
\(706\) 13437.7i 0.716337i
\(707\) −713.855 −0.0379735
\(708\) 1810.92 0.0961278
\(709\) 14451.0i 0.765472i 0.923858 + 0.382736i \(0.125018\pi\)
−0.923858 + 0.382736i \(0.874982\pi\)
\(710\) 57257.2 3.02651
\(711\) 18859.9 0.994798
\(712\) 25376.8i 1.33572i
\(713\) 20549.0i 1.07933i
\(714\) −42438.5 −2.22440
\(715\) −900.152 −0.0470822
\(716\) 8736.48i 0.456002i
\(717\) 40061.2i 2.08663i
\(718\) 13899.1 0.722439
\(719\) 11389.9i 0.590780i 0.955377 + 0.295390i \(0.0954496\pi\)
−0.955377 + 0.295390i \(0.904550\pi\)
\(720\) −36974.8 −1.91384
\(721\) 21557.9i 1.11353i
\(722\) 31767.6i 1.63749i
\(723\) 32661.7 1.68009
\(724\) 28137.6i 1.44437i
\(725\) 325.131i 0.0166553i
\(726\) −50200.0 −2.56625
\(727\) 31400.5 1.60190 0.800948 0.598734i \(-0.204329\pi\)
0.800948 + 0.598734i \(0.204329\pi\)
\(728\) 20218.1 1.02930
\(729\) 25123.9 1.27643
\(730\) 26840.7i 1.36085i
\(731\) 23553.1i 1.19171i
\(732\) 97164.4i 4.90615i
\(733\) 17991.6i 0.906594i −0.891359 0.453297i \(-0.850248\pi\)
0.891359 0.453297i \(-0.149752\pi\)
\(734\) 33402.6 1.67972
\(735\) 21281.5i 1.06800i
\(736\) 4923.01i 0.246555i
\(737\) −1061.41 −0.0530494
\(738\) 26803.9i 1.33694i
\(739\) 21335.2i 1.06201i −0.847367 0.531007i \(-0.821814\pi\)
0.847367 0.531007i \(-0.178186\pi\)
\(740\) −93744.5 −4.65691
\(741\) 6098.40 0.302335
\(742\) −35750.0 −1.76876
\(743\) −17346.2 −0.856486 −0.428243 0.903664i \(-0.640867\pi\)
−0.428243 + 0.903664i \(0.640867\pi\)
\(744\) 64499.4i 3.17831i
\(745\) 1555.63 0.0765016
\(746\) 17791.0 0.873155
\(747\) 8098.88i 0.396683i
\(748\) 2320.27i 0.113419i
\(749\) 7381.53 0.360101
\(750\) −10907.7 −0.531057
\(751\) 15225.3 0.739785 0.369893 0.929074i \(-0.379394\pi\)
0.369893 + 0.929074i \(0.379394\pi\)
\(752\) −1962.45 −0.0951638
\(753\) −27170.1 −1.31492
\(754\) −572.660 −0.0276592
\(755\) 30830.1 1.48612
\(756\) −6519.77 −0.313653
\(757\) 4050.23i 0.194463i −0.995262 0.0972313i \(-0.969001\pi\)
0.995262 0.0972313i \(-0.0309987\pi\)
\(758\) 41824.6 2.00414
\(759\) 1237.97i 0.0592033i
\(760\) −13736.3 −0.655616
\(761\) 2021.92i 0.0963133i −0.998840 0.0481567i \(-0.984665\pi\)
0.998840 0.0481567i \(-0.0153347\pi\)
\(762\) −38288.9 −1.82029
\(763\) 7585.37 0.359907
\(764\) −76804.9 −3.63705
\(765\) 42048.1i 1.98726i
\(766\) −32323.8 −1.52468
\(767\) 539.709i 0.0254078i
\(768\) 63654.2i 2.99078i
\(769\) −17308.8 −0.811666 −0.405833 0.913947i \(-0.633019\pi\)
−0.405833 + 0.913947i \(0.633019\pi\)
\(770\) 1495.57 0.0699958
\(771\) −55607.5 −2.59748
\(772\) 45609.2i 2.12631i
\(773\) −27725.7 −1.29007 −0.645036 0.764153i \(-0.723157\pi\)
−0.645036 + 0.764153i \(0.723157\pi\)
\(774\) 40793.6i 1.89444i
\(775\) 21090.1i 0.977521i
\(776\) 36985.0i 1.71093i
\(777\) −35783.5 −1.65216
\(778\) 39394.5i 1.81538i
\(779\) 3694.89i 0.169940i
\(780\) 72330.5i 3.32032i
\(781\) 1194.94i 0.0547482i
\(782\) −45569.7 −2.08385
\(783\) 95.5624 0.00436159
\(784\) 14376.2 0.654891
\(785\) 16924.4i 0.769498i
\(786\) 91901.8 4.17052
\(787\) −37504.4 −1.69871 −0.849356 0.527821i \(-0.823009\pi\)
−0.849356 + 0.527821i \(0.823009\pi\)
\(788\) 20090.7i 0.908250i
\(789\) 21863.6i 0.986522i
\(790\) 45713.8i 2.05877i
\(791\) 15750.9 0.708012
\(792\) 2079.61i 0.0933026i
\(793\) −28957.9 −1.29675
\(794\) 33207.3 1.48423
\(795\) 66184.3i 2.95260i
\(796\) 12890.8 0.574000
\(797\) 7766.70i 0.345183i 0.984993 + 0.172591i \(0.0552140\pi\)
−0.984993 + 0.172591i \(0.944786\pi\)
\(798\) −10132.3 −0.449474
\(799\) 2231.72i 0.0988142i
\(800\) 5052.65i 0.223298i
\(801\) −18546.5 −0.818111
\(802\) 13103.2 0.576918
\(803\) 560.156 0.0246170
\(804\) 85288.0i 3.74114i
\(805\) 19812.8i 0.867467i
\(806\) −37146.4 −1.62336
\(807\) 20127.3 + 26936.6i 0.877962 + 1.17499i
\(808\) −2405.98 −0.104755
\(809\) 24390.6i 1.05998i −0.848003 0.529992i \(-0.822195\pi\)
0.848003 0.529992i \(-0.177805\pi\)
\(810\) 45355.8i 1.96746i
\(811\) −3547.50 −0.153600 −0.0767999 0.997047i \(-0.524470\pi\)
−0.0767999 + 0.997047i \(0.524470\pi\)
\(812\) 641.787 0.0277368
\(813\) 4030.04 0.173849
\(814\) 2900.42i 0.124889i
\(815\) 58541.7i 2.51611i
\(816\) −53074.0 −2.27691
\(817\) 5623.37i 0.240804i
\(818\) 56616.3 2.41998
\(819\) 14776.3i 0.630435i
\(820\) −43823.5 −1.86632
\(821\) 3546.45 0.150758 0.0753788 0.997155i \(-0.475983\pi\)
0.0753788 + 0.997155i \(0.475983\pi\)
\(822\) 72909.7i 3.09369i
\(823\) −46466.1 −1.96805 −0.984027 0.178020i \(-0.943031\pi\)
−0.984027 + 0.178020i \(0.943031\pi\)
\(824\) 72658.7i 3.07183i
\(825\) 1270.57i 0.0536188i
\(826\) 896.709i 0.0377730i
\(827\) −25300.0 −1.06381 −0.531903 0.846806i \(-0.678523\pi\)
−0.531903 + 0.846806i \(0.678523\pi\)
\(828\) −53237.9 −2.23448
\(829\) 32621.9i 1.36671i 0.730086 + 0.683356i \(0.239480\pi\)
−0.730086 + 0.683356i \(0.760520\pi\)
\(830\) 19630.6 0.820949
\(831\) 9427.50 0.393546
\(832\) −14676.8 −0.611571
\(833\) 16348.8i 0.680013i
\(834\) 90086.0i 3.74031i
\(835\) 51852.5i 2.14902i
\(836\) 553.971i 0.0229181i
\(837\) 6198.79 0.255988
\(838\) 76601.5i 3.15770i
\(839\) 24155.3i 0.993962i −0.867762 0.496981i \(-0.834442\pi\)
0.867762 0.496981i \(-0.165558\pi\)
\(840\) 62188.9i 2.55443i
\(841\) 24379.6 0.999614
\(842\) 12028.0i 0.492295i
\(843\) −16922.0 −0.691371
\(844\) −48590.6 −1.98170
\(845\) −11835.4 −0.481833
\(846\) 3865.30i 0.157083i
\(847\) 16767.1i 0.680194i
\(848\) −44709.2 −1.81052
\(849\) 13963.9i 0.564476i
\(850\) 46769.7 1.88728
\(851\) −38423.7 −1.54776
\(852\) 96017.8 3.86093
\(853\) 2537.26i 0.101846i 0.998703 + 0.0509228i \(0.0162162\pi\)
−0.998703 + 0.0509228i \(0.983784\pi\)
\(854\) 48112.7 1.92785
\(855\) 10039.1i 0.401556i
\(856\) 24878.7 0.993385
\(857\) 46754.8i 1.86361i −0.362958 0.931806i \(-0.618233\pi\)
0.362958 0.931806i \(-0.381767\pi\)
\(858\) −2237.88 −0.0890441
\(859\) 16319.3 0.648206 0.324103 0.946022i \(-0.394938\pi\)
0.324103 + 0.946022i \(0.394938\pi\)
\(860\) 66696.3 2.64456
\(861\) −16728.0 −0.662125
\(862\) 105.268 0.00415945
\(863\) 47353.7 1.86783 0.933916 0.357491i \(-0.116368\pi\)
0.933916 + 0.357491i \(0.116368\pi\)
\(864\) −1485.07 −0.0584760
\(865\) −53047.0 −2.08515
\(866\) 21242.7i 0.833554i
\(867\) 22911.7i 0.897487i
\(868\) 41630.4 1.62791
\(869\) −954.034 −0.0372421
\(870\) 1761.44i 0.0686420i
\(871\) 25418.4 0.988828
\(872\) 25565.8 0.992851
\(873\) −27030.3 −1.04792
\(874\) −10879.9 −0.421073
\(875\) 3643.24i 0.140759i
\(876\) 45010.6i 1.73604i
\(877\) −10575.0 −0.407176 −0.203588 0.979057i \(-0.565260\pi\)
−0.203588 + 0.979057i \(0.565260\pi\)
\(878\) 60534.7i 2.32682i
\(879\) 33899.1i 1.30078i
\(880\) 1870.38 0.0716483
\(881\) 17895.8i 0.684363i 0.939634 + 0.342181i \(0.111166\pi\)
−0.939634 + 0.342181i \(0.888834\pi\)
\(882\) 28315.8i 1.08100i
\(883\) 27973.4i 1.06612i 0.846078 + 0.533059i \(0.178957\pi\)
−0.846078 + 0.533059i \(0.821043\pi\)
\(884\) 55565.5i 2.11410i
\(885\) −1660.09 −0.0630545
\(886\) 58465.6 2.21692
\(887\) −45094.1 −1.70700 −0.853501 0.521091i \(-0.825525\pi\)
−0.853501 + 0.521091i \(0.825525\pi\)
\(888\) −120605. −4.55770
\(889\) 12788.7i 0.482475i
\(890\) 44954.1i 1.69311i
\(891\) −946.563 −0.0355904
\(892\) 83550.6i 3.13619i
\(893\) 532.829i 0.0199669i
\(894\) 3867.46 0.144684
\(895\) 8008.83i 0.299112i
\(896\) 29197.5 1.08864
\(897\) 29646.6i 1.10354i
\(898\) 7262.99i 0.269899i
\(899\) −610.191 −0.0226374
\(900\) 54639.9 2.02370
\(901\) 50843.9i 1.87997i
\(902\) 1355.88i 0.0500509i
\(903\) 25458.9 0.938227
\(904\) 53086.9 1.95314
\(905\) 25794.0i 0.947429i
\(906\) 76647.1 2.81063
\(907\) 11487.3 0.420540 0.210270 0.977643i \(-0.432566\pi\)
0.210270 + 0.977643i \(0.432566\pi\)
\(908\) 85695.9i 3.13207i
\(909\) 1758.40i 0.0641610i
\(910\) −35815.8 −1.30470
\(911\) 47182.7i 1.71595i −0.513688 0.857977i \(-0.671721\pi\)
0.513688 0.857977i \(-0.328279\pi\)
\(912\) −12671.6 −0.460085
\(913\) 409.684i 0.0148506i
\(914\) 35286.7i 1.27700i
\(915\) 89071.6i 3.21816i
\(916\) 72917.3i 2.63019i
\(917\) 30695.7i 1.10541i
\(918\) 13746.5i 0.494230i
\(919\) 13554.8i 0.486542i −0.969958 0.243271i \(-0.921780\pi\)
0.969958 0.243271i \(-0.0782204\pi\)
\(920\) 66777.3i 2.39302i
\(921\) 61445.4i 2.19836i
\(922\) −49127.5 −1.75480
\(923\) 28616.2i 1.02049i
\(924\) 2508.01 0.0892939
\(925\) 39435.6 1.40177
\(926\) 58355.0 2.07091
\(927\) −53102.2 −1.88145
\(928\) 146.186 0.00517112
\(929\) 20410.2i 0.720813i −0.932795 0.360407i \(-0.882638\pi\)
0.932795 0.360407i \(-0.117362\pi\)
\(930\) 114259.i 4.02870i
\(931\) 3903.31i 0.137407i
\(932\) −56664.0 −1.99151
\(933\) −22048.2 −0.773662
\(934\) −40618.6 −1.42300
\(935\) 2127.02i 0.0743967i
\(936\) 49802.1i 1.73914i
\(937\) 18184.7i 0.634011i 0.948424 + 0.317005i \(0.102677\pi\)
−0.948424 + 0.317005i \(0.897323\pi\)
\(938\) −42231.9 −1.47006
\(939\) 56761.8i 1.97268i
\(940\) 6319.65 0.219281
\(941\) 43923.7i 1.52165i −0.648957 0.760825i \(-0.724795\pi\)
0.648957 0.760825i \(-0.275205\pi\)
\(942\) 42075.8i 1.45531i
\(943\) −17962.2 −0.620288
\(944\) 1121.43i 0.0386648i
\(945\) 5976.74 0.205739
\(946\) 2063.56i 0.0709218i
\(947\) 42431.9i 1.45602i −0.685567 0.728010i \(-0.740446\pi\)
0.685567 0.728010i \(-0.259554\pi\)
\(948\) 76660.1i 2.62638i
\(949\) −13414.5 −0.458855
\(950\) 11166.4 0.381354
\(951\) 6628.72 0.226026
\(952\) 47774.5i 1.62645i
\(953\) 27182.9i 0.923968i 0.886888 + 0.461984i \(0.152862\pi\)
−0.886888 + 0.461984i \(0.847138\pi\)
\(954\) 88060.8i 2.98855i
\(955\) 70407.8 2.38570
\(956\) 87148.6 2.94831
\(957\) −36.7608 −0.00124170
\(958\) 3141.88 0.105960
\(959\) 24352.3 0.819995
\(960\) 45144.4i 1.51774i
\(961\) −9789.95 −0.328621
\(962\) 69458.7i 2.32790i
\(963\) 18182.5i 0.608435i
\(964\) 71052.0i 2.37389i
\(965\) 41810.4i 1.39474i
\(966\) 49256.9i 1.64060i
\(967\) 18215.0i 0.605743i −0.953031 0.302871i \(-0.902055\pi\)
0.953031 0.302871i \(-0.0979453\pi\)
\(968\) 56511.8i 1.87640i
\(969\) 14410.2i 0.477734i
\(970\) 65517.8i 2.16871i
\(971\) 10719.6 0.354281 0.177141 0.984186i \(-0.443315\pi\)
0.177141 + 0.984186i \(0.443315\pi\)
\(972\) 90007.6i 2.97016i
\(973\) −30089.3 −0.991384
\(974\) 6156.72i 0.202540i
\(975\) 30427.3i 0.999440i
\(976\) 60170.2 1.97336
\(977\) −10526.5 −0.344701 −0.172350 0.985036i \(-0.555136\pi\)
−0.172350 + 0.985036i \(0.555136\pi\)
\(978\) 145541.i 4.75858i
\(979\) 938.179 0.0306275
\(980\) −46295.4 −1.50903
\(981\) 18684.6i 0.608107i
\(982\) 21232.5i 0.689977i
\(983\) 58312.0 1.89203 0.946015 0.324124i \(-0.105070\pi\)
0.946015 + 0.324124i \(0.105070\pi\)
\(984\) −56380.2 −1.82656
\(985\) 18417.3i 0.595762i
\(986\) 1353.17i 0.0437056i
\(987\) 2412.30 0.0777956
\(988\) 13266.4i 0.427187i
\(989\) 27337.3 0.878943
\(990\) 3683.96i 0.118267i
\(991\) 3595.96i 0.115267i 0.998338 + 0.0576335i \(0.0183555\pi\)
−0.998338 + 0.0576335i \(0.981645\pi\)
\(992\) 9482.59 0.303501
\(993\) 1630.65i 0.0521120i
\(994\) 47545.0i 1.51714i
\(995\) −11817.2 −0.376512
\(996\) 32919.6 1.04729
\(997\) −6659.93 −0.211557 −0.105778 0.994390i \(-0.533733\pi\)
−0.105778 + 0.994390i \(0.533733\pi\)
\(998\) −43307.0 −1.37361
\(999\) 11590.9i 0.367087i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 269.4.b.a.268.6 66
269.268 even 2 inner 269.4.b.a.268.61 yes 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
269.4.b.a.268.6 66 1.1 even 1 trivial
269.4.b.a.268.61 yes 66 269.268 even 2 inner