Properties

Label 269.4.b.a.268.5
Level $269$
Weight $4$
Character 269.268
Analytic conductor $15.872$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [269,4,Mod(268,269)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("269.268"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(269, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 269.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(15.8715137915\)
Analytic rank: \(0\)
Dimension: \(66\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 268.5
Character \(\chi\) \(=\) 269.268
Dual form 269.4.b.a.268.62

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.09712i q^{2} +0.677318i q^{3} -17.9807 q^{4} +15.4092 q^{5} +3.45237 q^{6} -7.81953i q^{7} +50.8727i q^{8} +26.5412 q^{9} -78.5428i q^{10} -41.5692 q^{11} -12.1786i q^{12} +66.5794 q^{13} -39.8571 q^{14} +10.4370i q^{15} +115.459 q^{16} -108.686i q^{17} -135.284i q^{18} -102.065i q^{19} -277.068 q^{20} +5.29631 q^{21} +211.883i q^{22} -25.0644 q^{23} -34.4570 q^{24} +112.445 q^{25} -339.363i q^{26} +36.2644i q^{27} +140.600i q^{28} +58.5426i q^{29} +53.1984 q^{30} -43.6955i q^{31} -181.527i q^{32} -28.1556i q^{33} -553.984 q^{34} -120.493i q^{35} -477.229 q^{36} -130.004 q^{37} -520.237 q^{38} +45.0954i q^{39} +783.909i q^{40} -144.598 q^{41} -26.9959i q^{42} -236.138 q^{43} +747.442 q^{44} +408.980 q^{45} +127.756i q^{46} +70.9175 q^{47} +78.2024i q^{48} +281.855 q^{49} -573.144i q^{50} +73.6147 q^{51} -1197.14 q^{52} +579.852 q^{53} +184.844 q^{54} -640.550 q^{55} +397.800 q^{56} +69.1303 q^{57} +298.399 q^{58} +387.518i q^{59} -187.663i q^{60} +161.665 q^{61} -222.721 q^{62} -207.540i q^{63} -1.59520 q^{64} +1025.94 q^{65} -143.512 q^{66} -558.841 q^{67} +1954.24i q^{68} -16.9766i q^{69} -614.168 q^{70} -858.333i q^{71} +1350.22i q^{72} -13.2304 q^{73} +662.645i q^{74} +76.1607i q^{75} +1835.19i q^{76} +325.052i q^{77} +229.857 q^{78} -402.737 q^{79} +1779.14 q^{80} +692.051 q^{81} +737.033i q^{82} -245.757i q^{83} -95.2311 q^{84} -1674.76i q^{85} +1203.63i q^{86} -39.6520 q^{87} -2114.74i q^{88} -221.693 q^{89} -2084.62i q^{90} -520.619i q^{91} +450.675 q^{92} +29.5957 q^{93} -361.475i q^{94} -1572.74i q^{95} +122.952 q^{96} -1434.51 q^{97} -1436.65i q^{98} -1103.30 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 258 q^{4} - 34 q^{5} + 48 q^{6} - 564 q^{9} + 22 q^{11} + 118 q^{13} + 60 q^{14} + 1030 q^{16} + 144 q^{20} - 64 q^{21} - 80 q^{23} - 778 q^{24} + 1676 q^{25} - 1146 q^{30} + 308 q^{34} + 2030 q^{36}+ \cdots - 3982 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/269\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.09712i 1.80211i −0.433710 0.901053i \(-0.642796\pi\)
0.433710 0.901053i \(-0.357204\pi\)
\(3\) 0.677318i 0.130350i 0.997874 + 0.0651749i \(0.0207605\pi\)
−0.997874 + 0.0651749i \(0.979239\pi\)
\(4\) −17.9807 −2.24758
\(5\) 15.4092 1.37824 0.689122 0.724645i \(-0.257996\pi\)
0.689122 + 0.724645i \(0.257996\pi\)
\(6\) 3.45237 0.234904
\(7\) 7.81953i 0.422215i −0.977463 0.211107i \(-0.932293\pi\)
0.977463 0.211107i \(-0.0677070\pi\)
\(8\) 50.8727i 2.24828i
\(9\) 26.5412 0.983009
\(10\) 78.5428i 2.48374i
\(11\) −41.5692 −1.13942 −0.569708 0.821847i \(-0.692944\pi\)
−0.569708 + 0.821847i \(0.692944\pi\)
\(12\) 12.1786i 0.292972i
\(13\) 66.5794 1.42045 0.710223 0.703977i \(-0.248594\pi\)
0.710223 + 0.703977i \(0.248594\pi\)
\(14\) −39.8571 −0.760876
\(15\) 10.4370i 0.179654i
\(16\) 115.459 1.80405
\(17\) 108.686i 1.55060i −0.631596 0.775298i \(-0.717600\pi\)
0.631596 0.775298i \(-0.282400\pi\)
\(18\) 135.284i 1.77149i
\(19\) 102.065i 1.23238i −0.787597 0.616191i \(-0.788675\pi\)
0.787597 0.616191i \(-0.211325\pi\)
\(20\) −277.068 −3.09772
\(21\) 5.29631 0.0550357
\(22\) 211.883i 2.05335i
\(23\) −25.0644 −0.227230 −0.113615 0.993525i \(-0.536243\pi\)
−0.113615 + 0.993525i \(0.536243\pi\)
\(24\) −34.4570 −0.293062
\(25\) 112.445 0.899557
\(26\) 339.363i 2.55979i
\(27\) 36.2644i 0.258485i
\(28\) 140.600i 0.948963i
\(29\) 58.5426i 0.374865i 0.982277 + 0.187433i \(0.0600166\pi\)
−0.982277 + 0.187433i \(0.939983\pi\)
\(30\) 53.1984 0.323755
\(31\) 43.6955i 0.253159i −0.991956 0.126580i \(-0.959600\pi\)
0.991956 0.126580i \(-0.0403999\pi\)
\(32\) 181.527i 1.00281i
\(33\) 28.1556i 0.148523i
\(34\) −553.984 −2.79434
\(35\) 120.493i 0.581915i
\(36\) −477.229 −2.20939
\(37\) −130.004 −0.577635 −0.288817 0.957384i \(-0.593262\pi\)
−0.288817 + 0.957384i \(0.593262\pi\)
\(38\) −520.237 −2.22088
\(39\) 45.0954i 0.185155i
\(40\) 783.909i 3.09867i
\(41\) −144.598 −0.550790 −0.275395 0.961331i \(-0.588809\pi\)
−0.275395 + 0.961331i \(0.588809\pi\)
\(42\) 26.9959i 0.0991801i
\(43\) −236.138 −0.837459 −0.418729 0.908111i \(-0.637524\pi\)
−0.418729 + 0.908111i \(0.637524\pi\)
\(44\) 747.442 2.56093
\(45\) 408.980 1.35483
\(46\) 127.756i 0.409492i
\(47\) 70.9175 0.220093 0.110047 0.993926i \(-0.464900\pi\)
0.110047 + 0.993926i \(0.464900\pi\)
\(48\) 78.2024i 0.235157i
\(49\) 281.855 0.821735
\(50\) 573.144i 1.62110i
\(51\) 73.6147 0.202120
\(52\) −1197.14 −3.19257
\(53\) 579.852 1.50281 0.751403 0.659843i \(-0.229377\pi\)
0.751403 + 0.659843i \(0.229377\pi\)
\(54\) 184.844 0.465817
\(55\) −640.550 −1.57039
\(56\) 397.800 0.949256
\(57\) 69.1303 0.160641
\(58\) 298.399 0.675547
\(59\) 387.518i 0.855093i 0.903993 + 0.427547i \(0.140622\pi\)
−0.903993 + 0.427547i \(0.859378\pi\)
\(60\) 187.663i 0.403787i
\(61\) 161.665 0.339328 0.169664 0.985502i \(-0.445732\pi\)
0.169664 + 0.985502i \(0.445732\pi\)
\(62\) −222.721 −0.456220
\(63\) 207.540i 0.415041i
\(64\) −1.59520 −0.00311562
\(65\) 1025.94 1.95772
\(66\) −143.512 −0.267654
\(67\) −558.841 −1.01900 −0.509502 0.860469i \(-0.670171\pi\)
−0.509502 + 0.860469i \(0.670171\pi\)
\(68\) 1954.24i 3.48509i
\(69\) 16.9766i 0.0296194i
\(70\) −614.168 −1.04867
\(71\) 858.333i 1.43472i −0.696701 0.717362i \(-0.745350\pi\)
0.696701 0.717362i \(-0.254650\pi\)
\(72\) 1350.22i 2.21008i
\(73\) −13.2304 −0.0212124 −0.0106062 0.999944i \(-0.503376\pi\)
−0.0106062 + 0.999944i \(0.503376\pi\)
\(74\) 662.645i 1.04096i
\(75\) 76.1607i 0.117257i
\(76\) 1835.19i 2.76988i
\(77\) 325.052i 0.481079i
\(78\) 229.857 0.333669
\(79\) −402.737 −0.573562 −0.286781 0.957996i \(-0.592585\pi\)
−0.286781 + 0.957996i \(0.592585\pi\)
\(80\) 1779.14 2.48642
\(81\) 692.051 0.949315
\(82\) 737.033i 0.992581i
\(83\) 245.757i 0.325004i −0.986708 0.162502i \(-0.948044\pi\)
0.986708 0.162502i \(-0.0519564\pi\)
\(84\) −95.2311 −0.123697
\(85\) 1674.76i 2.13710i
\(86\) 1203.63i 1.50919i
\(87\) −39.6520 −0.0488636
\(88\) 2114.74i 2.56172i
\(89\) −221.693 −0.264039 −0.132019 0.991247i \(-0.542146\pi\)
−0.132019 + 0.991247i \(0.542146\pi\)
\(90\) 2084.62i 2.44154i
\(91\) 520.619i 0.599733i
\(92\) 450.675 0.510718
\(93\) 29.5957 0.0329993
\(94\) 361.475i 0.396631i
\(95\) 1572.74i 1.69852i
\(96\) 122.952 0.130716
\(97\) −1434.51 −1.50157 −0.750785 0.660547i \(-0.770325\pi\)
−0.750785 + 0.660547i \(0.770325\pi\)
\(98\) 1436.65i 1.48085i
\(99\) −1103.30 −1.12006
\(100\) −2021.83 −2.02183
\(101\) 1403.84i 1.38304i −0.722358 0.691519i \(-0.756942\pi\)
0.722358 0.691519i \(-0.243058\pi\)
\(102\) 375.223i 0.364241i
\(103\) 853.549 0.816531 0.408265 0.912863i \(-0.366134\pi\)
0.408265 + 0.912863i \(0.366134\pi\)
\(104\) 3387.07i 3.19355i
\(105\) 81.6121 0.0758526
\(106\) 2955.58i 2.70822i
\(107\) 1960.99i 1.77174i 0.463935 + 0.885869i \(0.346437\pi\)
−0.463935 + 0.885869i \(0.653563\pi\)
\(108\) 652.059i 0.580966i
\(109\) 703.837i 0.618490i −0.950982 0.309245i \(-0.899924\pi\)
0.950982 0.309245i \(-0.100076\pi\)
\(110\) 3264.96i 2.83002i
\(111\) 88.0539i 0.0752946i
\(112\) 902.835i 0.761696i
\(113\) 1091.27i 0.908479i 0.890880 + 0.454239i \(0.150089\pi\)
−0.890880 + 0.454239i \(0.849911\pi\)
\(114\) 352.365i 0.289492i
\(115\) −386.223 −0.313178
\(116\) 1052.64i 0.842541i
\(117\) 1767.10 1.39631
\(118\) 1975.23 1.54097
\(119\) −849.870 −0.654685
\(120\) −530.956 −0.403912
\(121\) 396.999 0.298271
\(122\) 824.024i 0.611506i
\(123\) 97.9387i 0.0717954i
\(124\) 785.674i 0.568997i
\(125\) −193.469 −0.138435
\(126\) −1057.86 −0.747948
\(127\) 2627.26 1.83568 0.917841 0.396948i \(-0.129931\pi\)
0.917841 + 0.396948i \(0.129931\pi\)
\(128\) 1444.09i 0.997192i
\(129\) 159.941i 0.109163i
\(130\) 5229.33i 3.52802i
\(131\) 1293.89 0.862956 0.431478 0.902123i \(-0.357992\pi\)
0.431478 + 0.902123i \(0.357992\pi\)
\(132\) 506.256i 0.333817i
\(133\) −798.098 −0.520330
\(134\) 2848.48i 1.83635i
\(135\) 558.807i 0.356255i
\(136\) 5529.13 3.48617
\(137\) 544.929i 0.339828i −0.985459 0.169914i \(-0.945651\pi\)
0.985459 0.169914i \(-0.0543489\pi\)
\(138\) −86.5316 −0.0533773
\(139\) 1537.32i 0.938087i 0.883175 + 0.469044i \(0.155401\pi\)
−0.883175 + 0.469044i \(0.844599\pi\)
\(140\) 2166.54i 1.30790i
\(141\) 48.0337i 0.0286891i
\(142\) −4375.03 −2.58552
\(143\) −2767.65 −1.61848
\(144\) 3064.43 1.77339
\(145\) 902.097i 0.516656i
\(146\) 67.4371i 0.0382270i
\(147\) 190.905i 0.107113i
\(148\) 2337.55 1.29828
\(149\) 3459.00 1.90183 0.950914 0.309454i \(-0.100146\pi\)
0.950914 + 0.309454i \(0.100146\pi\)
\(150\) 388.201 0.211310
\(151\) 1193.82 0.643389 0.321695 0.946843i \(-0.395748\pi\)
0.321695 + 0.946843i \(0.395748\pi\)
\(152\) 5192.31 2.77074
\(153\) 2884.65i 1.52425i
\(154\) 1656.83 0.866955
\(155\) 673.314i 0.348915i
\(156\) 810.845i 0.416151i
\(157\) 3037.73i 1.54419i 0.635508 + 0.772094i \(0.280791\pi\)
−0.635508 + 0.772094i \(0.719209\pi\)
\(158\) 2052.80i 1.03362i
\(159\) 392.744i 0.195891i
\(160\) 2797.20i 1.38211i
\(161\) 195.992i 0.0959399i
\(162\) 3527.47i 1.71077i
\(163\) 3303.68i 1.58751i −0.608236 0.793756i \(-0.708123\pi\)
0.608236 0.793756i \(-0.291877\pi\)
\(164\) 2599.96 1.23795
\(165\) 433.856i 0.204701i
\(166\) −1252.65 −0.585692
\(167\) 3101.92i 1.43733i 0.695357 + 0.718665i \(0.255246\pi\)
−0.695357 + 0.718665i \(0.744754\pi\)
\(168\) 269.437i 0.123735i
\(169\) 2235.81 1.01767
\(170\) −8536.47 −3.85128
\(171\) 2708.92i 1.21144i
\(172\) 4245.92 1.88226
\(173\) 1295.85 0.569488 0.284744 0.958604i \(-0.408091\pi\)
0.284744 + 0.958604i \(0.408091\pi\)
\(174\) 202.111i 0.0880574i
\(175\) 879.264i 0.379806i
\(176\) −4799.54 −2.05556
\(177\) −262.473 −0.111461
\(178\) 1130.00i 0.475826i
\(179\) 1699.81i 0.709774i 0.934909 + 0.354887i \(0.115481\pi\)
−0.934909 + 0.354887i \(0.884519\pi\)
\(180\) −7353.74 −3.04508
\(181\) 2446.01i 1.00448i 0.864729 + 0.502238i \(0.167490\pi\)
−0.864729 + 0.502238i \(0.832510\pi\)
\(182\) −2653.66 −1.08078
\(183\) 109.498i 0.0442314i
\(184\) 1275.09i 0.510876i
\(185\) −2003.26 −0.796122
\(186\) 150.853i 0.0594682i
\(187\) 4517.97i 1.76677i
\(188\) −1275.14 −0.494678
\(189\) 283.571 0.109136
\(190\) −8016.45 −3.06092
\(191\) 4277.64 1.62052 0.810259 0.586072i \(-0.199326\pi\)
0.810259 + 0.586072i \(0.199326\pi\)
\(192\) 1.08046i 0.000406121i
\(193\) 3756.34i 1.40097i 0.713666 + 0.700486i \(0.247033\pi\)
−0.713666 + 0.700486i \(0.752967\pi\)
\(194\) 7311.87i 2.70599i
\(195\) 694.886i 0.255189i
\(196\) −5067.94 −1.84692
\(197\) 749.442i 0.271043i 0.990774 + 0.135522i \(0.0432710\pi\)
−0.990774 + 0.135522i \(0.956729\pi\)
\(198\) 5623.65i 2.01846i
\(199\) 224.491 0.0799687 0.0399844 0.999200i \(-0.487269\pi\)
0.0399844 + 0.999200i \(0.487269\pi\)
\(200\) 5720.36i 2.02245i
\(201\) 378.513i 0.132827i
\(202\) −7155.52 −2.49238
\(203\) 457.776 0.158274
\(204\) −1323.64 −0.454281
\(205\) −2228.14 −0.759123
\(206\) 4350.64i 1.47147i
\(207\) −665.240 −0.223369
\(208\) 7687.19 2.56255
\(209\) 4242.75i 1.40420i
\(210\) 415.987i 0.136694i
\(211\) 695.385 0.226883 0.113441 0.993545i \(-0.463813\pi\)
0.113441 + 0.993545i \(0.463813\pi\)
\(212\) −10426.1 −3.37768
\(213\) 581.364 0.187016
\(214\) 9995.41 3.19286
\(215\) −3638.71 −1.15422
\(216\) −1844.87 −0.581146
\(217\) −341.678 −0.106888
\(218\) −3587.55 −1.11458
\(219\) 8.96121i 0.00276503i
\(220\) 11517.5 3.52959
\(221\) 7236.22i 2.20254i
\(222\) −448.821 −0.135689
\(223\) 3871.23i 1.16250i −0.813726 0.581248i \(-0.802565\pi\)
0.813726 0.581248i \(-0.197435\pi\)
\(224\) −1419.46 −0.423400
\(225\) 2984.42 0.884272
\(226\) 5562.34 1.63717
\(227\) 2281.57i 0.667107i 0.942731 + 0.333553i \(0.108248\pi\)
−0.942731 + 0.333553i \(0.891752\pi\)
\(228\) −1243.01 −0.361054
\(229\) 4583.75i 1.32272i 0.750069 + 0.661359i \(0.230020\pi\)
−0.750069 + 0.661359i \(0.769980\pi\)
\(230\) 1968.63i 0.564380i
\(231\) −220.163 −0.0627086
\(232\) −2978.22 −0.842801
\(233\) −5434.51 −1.52801 −0.764005 0.645210i \(-0.776770\pi\)
−0.764005 + 0.645210i \(0.776770\pi\)
\(234\) 9007.12i 2.51630i
\(235\) 1092.78 0.303342
\(236\) 6967.83i 1.92189i
\(237\) 272.781i 0.0747638i
\(238\) 4331.89i 1.17981i
\(239\) 1036.30 0.280471 0.140235 0.990118i \(-0.455214\pi\)
0.140235 + 0.990118i \(0.455214\pi\)
\(240\) 1205.04i 0.324104i
\(241\) 4515.54i 1.20694i −0.797387 0.603468i \(-0.793785\pi\)
0.797387 0.603468i \(-0.206215\pi\)
\(242\) 2023.55i 0.537516i
\(243\) 1447.88i 0.382228i
\(244\) −2906.84 −0.762669
\(245\) 4343.17 1.13255
\(246\) −499.205 −0.129383
\(247\) 6795.41i 1.75053i
\(248\) 2222.91 0.569172
\(249\) 166.456 0.0423643
\(250\) 986.135i 0.249475i
\(251\) 1320.42i 0.332048i −0.986122 0.166024i \(-0.946907\pi\)
0.986122 0.166024i \(-0.0530929\pi\)
\(252\) 3731.71i 0.932839i
\(253\) 1041.91 0.258910
\(254\) 13391.5i 3.30809i
\(255\) 1134.35 0.278571
\(256\) −7373.46 −1.80016
\(257\) 1607.46i 0.390157i −0.980788 0.195078i \(-0.937504\pi\)
0.980788 0.195078i \(-0.0624961\pi\)
\(258\) −815.237 −0.196723
\(259\) 1016.57i 0.243886i
\(260\) −18447.0 −4.40014
\(261\) 1553.79i 0.368496i
\(262\) 6595.09i 1.55514i
\(263\) 7501.82 1.75887 0.879434 0.476021i \(-0.157921\pi\)
0.879434 + 0.476021i \(0.157921\pi\)
\(264\) 1432.35 0.333920
\(265\) 8935.07 2.07123
\(266\) 4068.01i 0.937690i
\(267\) 150.157i 0.0344174i
\(268\) 10048.3 2.29030
\(269\) −4410.02 + 129.695i −0.999568 + 0.0293964i
\(270\) 2848.31 0.642010
\(271\) 2473.24i 0.554387i 0.960814 + 0.277193i \(0.0894043\pi\)
−0.960814 + 0.277193i \(0.910596\pi\)
\(272\) 12548.7i 2.79735i
\(273\) 352.625 0.0781752
\(274\) −2777.57 −0.612405
\(275\) −4674.23 −1.02497
\(276\) 305.250i 0.0665720i
\(277\) 7840.63i 1.70072i 0.526205 + 0.850358i \(0.323614\pi\)
−0.526205 + 0.850358i \(0.676386\pi\)
\(278\) 7835.93 1.69053
\(279\) 1159.73i 0.248858i
\(280\) 6129.80 1.30831
\(281\) 6850.05i 1.45423i 0.686513 + 0.727117i \(0.259140\pi\)
−0.686513 + 0.727117i \(0.740860\pi\)
\(282\) 244.834 0.0517008
\(283\) 3547.80 0.745212 0.372606 0.927990i \(-0.378464\pi\)
0.372606 + 0.927990i \(0.378464\pi\)
\(284\) 15433.4i 3.22466i
\(285\) 1065.24 0.221402
\(286\) 14107.1i 2.91667i
\(287\) 1130.69i 0.232552i
\(288\) 4817.96i 0.985768i
\(289\) −6899.55 −1.40435
\(290\) 4598.10 0.931068
\(291\) 971.618i 0.195729i
\(292\) 237.892 0.0476766
\(293\) 822.399 0.163976 0.0819881 0.996633i \(-0.473873\pi\)
0.0819881 + 0.996633i \(0.473873\pi\)
\(294\) 973.068 0.193029
\(295\) 5971.35i 1.17853i
\(296\) 6613.64i 1.29868i
\(297\) 1507.48i 0.294522i
\(298\) 17631.0i 3.42730i
\(299\) −1668.77 −0.322768
\(300\) 1369.42i 0.263545i
\(301\) 1846.49i 0.353588i
\(302\) 6085.05i 1.15946i
\(303\) 950.843 0.180279
\(304\) 11784.3i 2.22328i
\(305\) 2491.13 0.467677
\(306\) −14703.4 −2.74686
\(307\) −10587.9 −1.96835 −0.984175 0.177201i \(-0.943296\pi\)
−0.984175 + 0.177201i \(0.943296\pi\)
\(308\) 5844.65i 1.08126i
\(309\) 578.124i 0.106435i
\(310\) −3431.97 −0.628782
\(311\) 8778.06i 1.60051i 0.599661 + 0.800254i \(0.295302\pi\)
−0.599661 + 0.800254i \(0.704698\pi\)
\(312\) −2294.12 −0.416279
\(313\) 2996.88 0.541194 0.270597 0.962693i \(-0.412779\pi\)
0.270597 + 0.962693i \(0.412779\pi\)
\(314\) 15483.7 2.78279
\(315\) 3198.03i 0.572028i
\(316\) 7241.48 1.28913
\(317\) 4960.67i 0.878924i 0.898261 + 0.439462i \(0.144831\pi\)
−0.898261 + 0.439462i \(0.855169\pi\)
\(318\) 2001.86 0.353016
\(319\) 2433.57i 0.427128i
\(320\) −24.5808 −0.00429409
\(321\) −1328.21 −0.230946
\(322\) 998.994 0.172894
\(323\) −11093.0 −1.91093
\(324\) −12443.5 −2.13367
\(325\) 7486.49 1.27777
\(326\) −16839.3 −2.86086
\(327\) 476.722 0.0806201
\(328\) 7356.08i 1.23833i
\(329\) 554.541i 0.0929266i
\(330\) −2211.42 −0.368892
\(331\) −5041.48 −0.837175 −0.418587 0.908177i \(-0.637475\pi\)
−0.418587 + 0.908177i \(0.637475\pi\)
\(332\) 4418.88i 0.730474i
\(333\) −3450.46 −0.567820
\(334\) 15810.9 2.59022
\(335\) −8611.32 −1.40444
\(336\) 611.506 0.0992869
\(337\) 9988.29i 1.61453i −0.590189 0.807265i \(-0.700947\pi\)
0.590189 0.807265i \(-0.299053\pi\)
\(338\) 11396.2i 1.83394i
\(339\) −739.137 −0.118420
\(340\) 30113.3i 4.80331i
\(341\) 1816.39i 0.288454i
\(342\) −13807.7 −2.18315
\(343\) 4886.07i 0.769164i
\(344\) 12013.0i 1.88284i
\(345\) 261.596i 0.0408227i
\(346\) 6605.09i 1.02628i
\(347\) 224.577 0.0347433 0.0173716 0.999849i \(-0.494470\pi\)
0.0173716 + 0.999849i \(0.494470\pi\)
\(348\) 712.969 0.109825
\(349\) 11624.4 1.78292 0.891458 0.453104i \(-0.149683\pi\)
0.891458 + 0.453104i \(0.149683\pi\)
\(350\) −4481.72 −0.684451
\(351\) 2414.46i 0.367164i
\(352\) 7545.95i 1.14261i
\(353\) −4505.08 −0.679267 −0.339634 0.940558i \(-0.610303\pi\)
−0.339634 + 0.940558i \(0.610303\pi\)
\(354\) 1337.86i 0.200865i
\(355\) 13226.3i 1.97740i
\(356\) 3986.20 0.593449
\(357\) 575.632i 0.0853380i
\(358\) 8664.13 1.27909
\(359\) 8129.66i 1.19517i 0.801804 + 0.597587i \(0.203874\pi\)
−0.801804 + 0.597587i \(0.796126\pi\)
\(360\) 20805.9i 3.04602i
\(361\) −3558.21 −0.518765
\(362\) 12467.6 1.81017
\(363\) 268.894i 0.0388796i
\(364\) 9361.08i 1.34795i
\(365\) −203.871 −0.0292359
\(366\) 558.126 0.0797097
\(367\) 11849.3i 1.68536i −0.538412 0.842681i \(-0.680976\pi\)
0.538412 0.842681i \(-0.319024\pi\)
\(368\) −2893.91 −0.409933
\(369\) −3837.80 −0.541431
\(370\) 10210.9i 1.43470i
\(371\) 4534.17i 0.634507i
\(372\) −532.151 −0.0741687
\(373\) 10732.7i 1.48986i −0.667142 0.744930i \(-0.732483\pi\)
0.667142 0.744930i \(-0.267517\pi\)
\(374\) 23028.7 3.18391
\(375\) 131.040i 0.0180450i
\(376\) 3607.76i 0.494830i
\(377\) 3897.73i 0.532476i
\(378\) 1445.40i 0.196675i
\(379\) 10431.4i 1.41378i 0.707322 + 0.706891i \(0.249903\pi\)
−0.707322 + 0.706891i \(0.750097\pi\)
\(380\) 28278.9i 3.81757i
\(381\) 1779.49i 0.239281i
\(382\) 21803.6i 2.92034i
\(383\) 13377.3i 1.78473i 0.451318 + 0.892363i \(0.350954\pi\)
−0.451318 + 0.892363i \(0.649046\pi\)
\(384\) 978.106 0.129984
\(385\) 5008.80i 0.663044i
\(386\) 19146.5 2.52470
\(387\) −6267.40 −0.823229
\(388\) 25793.4 3.37490
\(389\) −4353.71 −0.567460 −0.283730 0.958904i \(-0.591572\pi\)
−0.283730 + 0.958904i \(0.591572\pi\)
\(390\) 3541.92 0.459877
\(391\) 2724.14i 0.352342i
\(392\) 14338.7i 1.84749i
\(393\) 876.371i 0.112486i
\(394\) 3820.00 0.488449
\(395\) −6205.87 −0.790509
\(396\) 19838.0 2.51742
\(397\) 5809.96i 0.734492i −0.930124 0.367246i \(-0.880301\pi\)
0.930124 0.367246i \(-0.119699\pi\)
\(398\) 1144.26i 0.144112i
\(399\) 540.566i 0.0678250i
\(400\) 12982.7 1.62284
\(401\) 2811.31i 0.350100i 0.984560 + 0.175050i \(0.0560087\pi\)
−0.984560 + 0.175050i \(0.943991\pi\)
\(402\) −1929.33 −0.239369
\(403\) 2909.22i 0.359599i
\(404\) 25241.9i 3.10849i
\(405\) 10664.0 1.30839
\(406\) 2333.34i 0.285226i
\(407\) 5404.15 0.658167
\(408\) 3744.98i 0.454421i
\(409\) 9449.71i 1.14244i −0.820797 0.571220i \(-0.806470\pi\)
0.820797 0.571220i \(-0.193530\pi\)
\(410\) 11357.1i 1.36802i
\(411\) 369.090 0.0442965
\(412\) −15347.4 −1.83522
\(413\) 3030.21 0.361033
\(414\) 3390.81i 0.402534i
\(415\) 3786.93i 0.447935i
\(416\) 12086.0i 1.42443i
\(417\) −1041.26 −0.122280
\(418\) 21625.8 2.53051
\(419\) 2662.28 0.310408 0.155204 0.987882i \(-0.450396\pi\)
0.155204 + 0.987882i \(0.450396\pi\)
\(420\) −1467.44 −0.170485
\(421\) −13514.6 −1.56451 −0.782256 0.622957i \(-0.785931\pi\)
−0.782256 + 0.622957i \(0.785931\pi\)
\(422\) 3544.46i 0.408867i
\(423\) 1882.24 0.216354
\(424\) 29498.6i 3.37872i
\(425\) 12221.1i 1.39485i
\(426\) 2963.28i 0.337022i
\(427\) 1264.14i 0.143270i
\(428\) 35259.9i 3.98213i
\(429\) 1874.58i 0.210969i
\(430\) 18546.9i 2.08003i
\(431\) 3826.16i 0.427609i −0.976876 0.213805i \(-0.931414\pi\)
0.976876 0.213805i \(-0.0685856\pi\)
\(432\) 4187.06i 0.466319i
\(433\) −6199.10 −0.688013 −0.344007 0.938967i \(-0.611784\pi\)
−0.344007 + 0.938967i \(0.611784\pi\)
\(434\) 1741.58i 0.192623i
\(435\) −611.006 −0.0673460
\(436\) 12655.5i 1.39011i
\(437\) 2558.19i 0.280034i
\(438\) −45.6764 −0.00498288
\(439\) −5183.48 −0.563540 −0.281770 0.959482i \(-0.590922\pi\)
−0.281770 + 0.959482i \(0.590922\pi\)
\(440\) 32586.5i 3.53068i
\(441\) 7480.78 0.807772
\(442\) −36883.9 −3.96920
\(443\) 10577.0i 1.13437i 0.823590 + 0.567186i \(0.191968\pi\)
−0.823590 + 0.567186i \(0.808032\pi\)
\(444\) 1583.27i 0.169231i
\(445\) −3416.13 −0.363910
\(446\) −19732.1 −2.09494
\(447\) 2342.84i 0.247903i
\(448\) 12.4737i 0.00131546i
\(449\) 3242.68 0.340827 0.170414 0.985373i \(-0.445490\pi\)
0.170414 + 0.985373i \(0.445490\pi\)
\(450\) 15212.0i 1.59355i
\(451\) 6010.82 0.627579
\(452\) 19621.8i 2.04188i
\(453\) 808.596i 0.0838657i
\(454\) 11629.5 1.20220
\(455\) 8022.35i 0.826579i
\(456\) 3516.84i 0.361165i
\(457\) 10137.3 1.03764 0.518821 0.854883i \(-0.326371\pi\)
0.518821 + 0.854883i \(0.326371\pi\)
\(458\) 23363.9 2.38368
\(459\) 3941.42 0.400806
\(460\) 6944.55 0.703894
\(461\) 5616.18i 0.567400i −0.958913 0.283700i \(-0.908438\pi\)
0.958913 0.283700i \(-0.0915621\pi\)
\(462\) 1122.20i 0.113007i
\(463\) 13514.5i 1.35653i −0.734817 0.678266i \(-0.762732\pi\)
0.734817 0.678266i \(-0.237268\pi\)
\(464\) 6759.27i 0.676275i
\(465\) 456.048 0.0454811
\(466\) 27700.4i 2.75364i
\(467\) 12281.6i 1.21697i −0.793564 0.608486i \(-0.791777\pi\)
0.793564 0.608486i \(-0.208223\pi\)
\(468\) −31773.6 −3.13832
\(469\) 4369.88i 0.430239i
\(470\) 5570.06i 0.546654i
\(471\) −2057.51 −0.201285
\(472\) −19714.1 −1.92249
\(473\) 9816.07 0.954215
\(474\) −1390.40 −0.134732
\(475\) 11476.6i 1.10860i
\(476\) 15281.2 1.47146
\(477\) 15390.0 1.47727
\(478\) 5282.14i 0.505438i
\(479\) 13874.2i 1.32344i 0.749751 + 0.661720i \(0.230173\pi\)
−0.749751 + 0.661720i \(0.769827\pi\)
\(480\) 1894.59 0.180158
\(481\) −8655.57 −0.820499
\(482\) −23016.3 −2.17503
\(483\) −132.749 −0.0125057
\(484\) −7138.30 −0.670389
\(485\) −22104.7 −2.06953
\(486\) 7380.01 0.688815
\(487\) 3698.85 0.344170 0.172085 0.985082i \(-0.444950\pi\)
0.172085 + 0.985082i \(0.444950\pi\)
\(488\) 8224.31i 0.762904i
\(489\) 2237.64 0.206932
\(490\) 22137.7i 2.04098i
\(491\) 15768.7 1.44935 0.724676 0.689089i \(-0.241989\pi\)
0.724676 + 0.689089i \(0.241989\pi\)
\(492\) 1761.00i 0.161366i
\(493\) 6362.74 0.581264
\(494\) −34637.0 −3.15464
\(495\) −17001.0 −1.54371
\(496\) 5045.04i 0.456711i
\(497\) −6711.76 −0.605762
\(498\) 848.445i 0.0763449i
\(499\) 832.226i 0.0746604i 0.999303 + 0.0373302i \(0.0118853\pi\)
−0.999303 + 0.0373302i \(0.988115\pi\)
\(500\) 3478.70 0.311145
\(501\) −2100.99 −0.187356
\(502\) −6730.33 −0.598386
\(503\) 10011.5i 0.887454i −0.896162 0.443727i \(-0.853656\pi\)
0.896162 0.443727i \(-0.146344\pi\)
\(504\) 10558.1 0.933127
\(505\) 21632.0i 1.90616i
\(506\) 5310.73i 0.466582i
\(507\) 1514.36i 0.132653i
\(508\) −47239.9 −4.12585
\(509\) 932.375i 0.0811922i 0.999176 + 0.0405961i \(0.0129257\pi\)
−0.999176 + 0.0405961i \(0.987074\pi\)
\(510\) 5781.90i 0.502013i
\(511\) 103.456i 0.00895619i
\(512\) 26030.7i 2.24689i
\(513\) 3701.32 0.318552
\(514\) −8193.40 −0.703104
\(515\) 13152.5 1.12538
\(516\) 2875.84i 0.245352i
\(517\) −2947.98 −0.250778
\(518\) 5181.58 0.439508
\(519\) 877.700i 0.0742327i
\(520\) 52192.2i 4.40150i
\(521\) 630.658i 0.0530319i −0.999648 0.0265159i \(-0.991559\pi\)
0.999648 0.0265159i \(-0.00844128\pi\)
\(522\) 7919.88 0.664068
\(523\) 8471.02i 0.708245i −0.935199 0.354122i \(-0.884780\pi\)
0.935199 0.354122i \(-0.115220\pi\)
\(524\) −23264.9 −1.93957
\(525\) 595.541 0.0495077
\(526\) 38237.7i 3.16967i
\(527\) −4749.07 −0.392548
\(528\) 3250.81i 0.267942i
\(529\) −11538.8 −0.948367
\(530\) 45543.2i 3.73258i
\(531\) 10285.2i 0.840564i
\(532\) 14350.3 1.16949
\(533\) −9627.23 −0.782367
\(534\) −765.368 −0.0620238
\(535\) 30217.4i 2.44189i
\(536\) 28429.8i 2.29100i
\(537\) −1151.31 −0.0925190
\(538\) 661.070 + 22478.4i 0.0529754 + 1.80133i
\(539\) −11716.5 −0.936298
\(540\) 10047.7i 0.800714i
\(541\) 5435.69i 0.431975i 0.976396 + 0.215988i \(0.0692970\pi\)
−0.976396 + 0.215988i \(0.930703\pi\)
\(542\) 12606.4 0.999064
\(543\) −1656.72 −0.130933
\(544\) −19729.4 −1.55495
\(545\) 10845.6i 0.852430i
\(546\) 1797.37i 0.140880i
\(547\) 10733.2 0.838974 0.419487 0.907761i \(-0.362210\pi\)
0.419487 + 0.907761i \(0.362210\pi\)
\(548\) 9798.18i 0.763791i
\(549\) 4290.78 0.333563
\(550\) 23825.1i 1.84710i
\(551\) 5975.14 0.461977
\(552\) 863.643 0.0665926
\(553\) 3149.21i 0.242167i
\(554\) 39964.7 3.06487
\(555\) 1356.84i 0.103774i
\(556\) 27642.1i 2.10843i
\(557\) 10026.5i 0.762725i −0.924426 0.381362i \(-0.875455\pi\)
0.924426 0.381362i \(-0.124545\pi\)
\(558\) −5911.30 −0.448468
\(559\) −15721.9 −1.18956
\(560\) 13912.0i 1.04980i
\(561\) −3060.10 −0.230299
\(562\) 34915.6 2.62068
\(563\) 1992.43 0.149149 0.0745747 0.997215i \(-0.476240\pi\)
0.0745747 + 0.997215i \(0.476240\pi\)
\(564\) 863.677i 0.0644812i
\(565\) 16815.6i 1.25211i
\(566\) 18083.6i 1.34295i
\(567\) 5411.51i 0.400815i
\(568\) 43665.7 3.22565
\(569\) 12209.1i 0.899530i −0.893147 0.449765i \(-0.851508\pi\)
0.893147 0.449765i \(-0.148492\pi\)
\(570\) 5429.68i 0.398990i
\(571\) 1508.80i 0.110580i 0.998470 + 0.0552901i \(0.0176084\pi\)
−0.998470 + 0.0552901i \(0.982392\pi\)
\(572\) 49764.2 3.63767
\(573\) 2897.32i 0.211234i
\(574\) 5763.25 0.419083
\(575\) −2818.36 −0.204406
\(576\) −42.3386 −0.00306269
\(577\) 7099.70i 0.512244i 0.966645 + 0.256122i \(0.0824448\pi\)
−0.966645 + 0.256122i \(0.917555\pi\)
\(578\) 35167.9i 2.53078i
\(579\) −2544.24 −0.182616
\(580\) 16220.3i 1.16123i
\(581\) −1921.71 −0.137222
\(582\) −4952.46 −0.352725
\(583\) −24104.0 −1.71232
\(584\) 673.068i 0.0476913i
\(585\) 27229.6 1.92446
\(586\) 4191.87i 0.295502i
\(587\) −6377.02 −0.448395 −0.224198 0.974544i \(-0.571976\pi\)
−0.224198 + 0.974544i \(0.571976\pi\)
\(588\) 3432.61i 0.240745i
\(589\) −4459.77 −0.311989
\(590\) 30436.7 2.12383
\(591\) −507.610 −0.0353305
\(592\) −15010.1 −1.04208
\(593\) −1396.62 −0.0967159 −0.0483579 0.998830i \(-0.515399\pi\)
−0.0483579 + 0.998830i \(0.515399\pi\)
\(594\) −7683.83 −0.530760
\(595\) −13095.9 −0.902315
\(596\) −62195.2 −4.27452
\(597\) 152.052i 0.0104239i
\(598\) 8505.94i 0.581661i
\(599\) −15726.6 −1.07274 −0.536371 0.843982i \(-0.680205\pi\)
−0.536371 + 0.843982i \(0.680205\pi\)
\(600\) −3874.50 −0.263626
\(601\) 14651.8i 0.994438i 0.867625 + 0.497219i \(0.165645\pi\)
−0.867625 + 0.497219i \(0.834355\pi\)
\(602\) 9411.78 0.637202
\(603\) −14832.3 −1.00169
\(604\) −21465.7 −1.44607
\(605\) 6117.45 0.411090
\(606\) 4846.56i 0.324881i
\(607\) 15145.2i 1.01272i −0.862321 0.506362i \(-0.830990\pi\)
0.862321 0.506362i \(-0.169010\pi\)
\(608\) −18527.5 −1.23584
\(609\) 310.060i 0.0206310i
\(610\) 12697.6i 0.842804i
\(611\) 4721.64 0.312630
\(612\) 51867.9i 3.42588i
\(613\) 25710.9i 1.69405i 0.531553 + 0.847025i \(0.321609\pi\)
−0.531553 + 0.847025i \(0.678391\pi\)
\(614\) 53967.8i 3.54717i
\(615\) 1509.16i 0.0989516i
\(616\) −16536.3 −1.08160
\(617\) 4469.96 0.291659 0.145830 0.989310i \(-0.453415\pi\)
0.145830 + 0.989310i \(0.453415\pi\)
\(618\) 2946.77 0.191807
\(619\) −24081.5 −1.56368 −0.781840 0.623480i \(-0.785718\pi\)
−0.781840 + 0.623480i \(0.785718\pi\)
\(620\) 12106.6i 0.784217i
\(621\) 908.946i 0.0587355i
\(622\) 44742.8 2.88428
\(623\) 1733.54i 0.111481i
\(624\) 5206.67i 0.334028i
\(625\) −17036.8 −1.09035
\(626\) 15275.5i 0.975288i
\(627\) −2873.69 −0.183037
\(628\) 54620.5i 3.47069i
\(629\) 14129.5i 0.895678i
\(630\) −16300.8 −1.03085
\(631\) 12820.1 0.808809 0.404404 0.914580i \(-0.367479\pi\)
0.404404 + 0.914580i \(0.367479\pi\)
\(632\) 20488.3i 1.28953i
\(633\) 470.997i 0.0295742i
\(634\) 25285.1 1.58391
\(635\) 40484.1 2.53002
\(636\) 7061.80i 0.440281i
\(637\) 18765.7 1.16723
\(638\) −12404.2 −0.769729
\(639\) 22781.2i 1.41035i
\(640\) 22252.3i 1.37437i
\(641\) 25892.1 1.59544 0.797718 0.603031i \(-0.206040\pi\)
0.797718 + 0.603031i \(0.206040\pi\)
\(642\) 6770.07i 0.416189i
\(643\) −27862.2 −1.70883 −0.854414 0.519593i \(-0.826084\pi\)
−0.854414 + 0.519593i \(0.826084\pi\)
\(644\) 3524.06i 0.215633i
\(645\) 2464.56i 0.150453i
\(646\) 56542.2i 3.44369i
\(647\) 13612.2i 0.827124i −0.910476 0.413562i \(-0.864284\pi\)
0.910476 0.413562i \(-0.135716\pi\)
\(648\) 35206.5i 2.13432i
\(649\) 16108.8i 0.974308i
\(650\) 38159.6i 2.30268i
\(651\) 231.425i 0.0139328i
\(652\) 59402.4i 3.56807i
\(653\) −30330.7 −1.81766 −0.908830 0.417167i \(-0.863023\pi\)
−0.908830 + 0.417167i \(0.863023\pi\)
\(654\) 2429.91i 0.145286i
\(655\) 19937.8 1.18936
\(656\) −16695.1 −0.993651
\(657\) −351.152 −0.0208520
\(658\) −2826.57 −0.167464
\(659\) −16832.2 −0.994978 −0.497489 0.867470i \(-0.665745\pi\)
−0.497489 + 0.867470i \(0.665745\pi\)
\(660\) 7801.01i 0.460082i
\(661\) 26370.5i 1.55173i −0.630900 0.775864i \(-0.717314\pi\)
0.630900 0.775864i \(-0.282686\pi\)
\(662\) 25697.1i 1.50868i
\(663\) 4901.22 0.287100
\(664\) 12502.3 0.730699
\(665\) −12298.1 −0.717142
\(666\) 17587.4i 1.02327i
\(667\) 1467.34i 0.0851806i
\(668\) 55774.6i 3.23052i
\(669\) 2622.05 0.151531
\(670\) 43893.0i 2.53094i
\(671\) −6720.27 −0.386637
\(672\) 961.425i 0.0551901i
\(673\) 22178.3i 1.27030i 0.772390 + 0.635148i \(0.219061\pi\)
−0.772390 + 0.635148i \(0.780939\pi\)
\(674\) −50911.5 −2.90955
\(675\) 4077.74i 0.232522i
\(676\) −40201.4 −2.28729
\(677\) 13773.6i 0.781926i −0.920406 0.390963i \(-0.872142\pi\)
0.920406 0.390963i \(-0.127858\pi\)
\(678\) 3767.47i 0.213405i
\(679\) 11217.2i 0.633985i
\(680\) 85199.6 4.80479
\(681\) −1545.35 −0.0869573
\(682\) 9258.35 0.519825
\(683\) 355.239i 0.0199017i 0.999950 + 0.00995085i \(0.00316751\pi\)
−0.999950 + 0.00995085i \(0.996832\pi\)
\(684\) 48708.3i 2.72282i
\(685\) 8396.93i 0.468365i
\(686\) −24904.9 −1.38611
\(687\) −3104.65 −0.172416
\(688\) −27264.3 −1.51082
\(689\) 38606.2 2.13466
\(690\) −1333.39 −0.0735669
\(691\) 8750.55i 0.481746i −0.970557 0.240873i \(-0.922566\pi\)
0.970557 0.240873i \(-0.0774337\pi\)
\(692\) −23300.2 −1.27997
\(693\) 8627.27i 0.472905i
\(694\) 1144.70i 0.0626111i
\(695\) 23689.0i 1.29291i
\(696\) 2017.20i 0.109859i
\(697\) 15715.7i 0.854052i
\(698\) 59250.8i 3.21300i
\(699\) 3680.89i 0.199176i
\(700\) 15809.8i 0.853646i
\(701\) 29541.3i 1.59167i 0.605515 + 0.795834i \(0.292967\pi\)
−0.605515 + 0.795834i \(0.707033\pi\)
\(702\) 12306.8 0.661668
\(703\) 13268.8i 0.711867i
\(704\) 66.3112 0.00355000
\(705\) 740.162i 0.0395406i
\(706\) 22963.0i 1.22411i
\(707\) −10977.3 −0.583939
\(708\) 4719.43 0.250519
\(709\) 18072.1i 0.957282i −0.878011 0.478641i \(-0.841130\pi\)
0.878011 0.478641i \(-0.158870\pi\)
\(710\) −67415.8 −3.56348
\(711\) −10689.1 −0.563817
\(712\) 11278.1i 0.593632i
\(713\) 1095.20i 0.0575254i
\(714\) −2934.07 −0.153788
\(715\) −42647.4 −2.23066
\(716\) 30563.7i 1.59528i
\(717\) 701.903i 0.0365593i
\(718\) 41437.9 2.15383
\(719\) 22330.3i 1.15825i 0.815240 + 0.579123i \(0.196605\pi\)
−0.815240 + 0.579123i \(0.803395\pi\)
\(720\) 47220.5 2.44417
\(721\) 6674.35i 0.344752i
\(722\) 18136.6i 0.934870i
\(723\) 3058.46 0.157324
\(724\) 43980.8i 2.25764i
\(725\) 6582.80i 0.337213i
\(726\) 1370.59 0.0700651
\(727\) 12108.4 0.617712 0.308856 0.951109i \(-0.400054\pi\)
0.308856 + 0.951109i \(0.400054\pi\)
\(728\) 26485.3 1.34837
\(729\) 17704.7 0.899492
\(730\) 1039.16i 0.0526861i
\(731\) 25664.8i 1.29856i
\(732\) 1968.85i 0.0994138i
\(733\) 24849.3i 1.25215i −0.779762 0.626076i \(-0.784660\pi\)
0.779762 0.626076i \(-0.215340\pi\)
\(734\) −60397.3 −3.03720
\(735\) 2941.71i 0.147628i
\(736\) 4549.87i 0.227868i
\(737\) 23230.6 1.16107
\(738\) 19561.8i 0.975716i
\(739\) 8940.00i 0.445011i 0.974931 + 0.222505i \(0.0714235\pi\)
−0.974931 + 0.222505i \(0.928576\pi\)
\(740\) 36019.9 1.78935
\(741\) 4602.65 0.228182
\(742\) −23111.2 −1.14345
\(743\) −9931.87 −0.490397 −0.245199 0.969473i \(-0.578853\pi\)
−0.245199 + 0.969473i \(0.578853\pi\)
\(744\) 1505.61i 0.0741915i
\(745\) 53300.6 2.62118
\(746\) −54705.9 −2.68489
\(747\) 6522.70i 0.319482i
\(748\) 81236.2i 3.97097i
\(749\) 15334.0 0.748055
\(750\) −667.927 −0.0325190
\(751\) −18900.4 −0.918358 −0.459179 0.888344i \(-0.651856\pi\)
−0.459179 + 0.888344i \(0.651856\pi\)
\(752\) 8188.06 0.397058
\(753\) 894.343 0.0432824
\(754\) 19867.2 0.959577
\(755\) 18395.9 0.886747
\(756\) −5098.79 −0.245293
\(757\) 2063.85i 0.0990910i 0.998772 + 0.0495455i \(0.0157773\pi\)
−0.998772 + 0.0495455i \(0.984223\pi\)
\(758\) 53170.0 2.54779
\(759\) 705.702i 0.0337488i
\(760\) 80009.5 3.81875
\(761\) 13649.0i 0.650165i −0.945686 0.325082i \(-0.894608\pi\)
0.945686 0.325082i \(-0.105392\pi\)
\(762\) 9070.28 0.431209
\(763\) −5503.68 −0.261136
\(764\) −76914.8 −3.64225
\(765\) 44450.3i 2.10079i
\(766\) 68186.0 3.21626
\(767\) 25800.7i 1.21461i
\(768\) 4994.17i 0.234651i
\(769\) −16289.4 −0.763865 −0.381933 0.924190i \(-0.624741\pi\)
−0.381933 + 0.924190i \(0.624741\pi\)
\(770\) 25530.5 1.19488
\(771\) 1088.76 0.0508569
\(772\) 67541.5i 3.14880i
\(773\) 28653.4 1.33324 0.666618 0.745400i \(-0.267741\pi\)
0.666618 + 0.745400i \(0.267741\pi\)
\(774\) 31945.7i 1.48355i
\(775\) 4913.32i 0.227731i
\(776\) 72977.3i 3.37594i
\(777\) −688.540 −0.0317905
\(778\) 22191.4i 1.02262i
\(779\) 14758.3i 0.678783i
\(780\) 12494.5i 0.573558i
\(781\) 35680.2i 1.63475i
\(782\) 13885.3 0.634957
\(783\) −2123.01 −0.0968970
\(784\) 32542.7 1.48245
\(785\) 46809.2i 2.12827i
\(786\) 4466.97 0.202712
\(787\) −28719.4 −1.30081 −0.650404 0.759588i \(-0.725400\pi\)
−0.650404 + 0.759588i \(0.725400\pi\)
\(788\) 13475.5i 0.609192i
\(789\) 5081.12i 0.229268i
\(790\) 31632.1i 1.42458i
\(791\) 8533.22 0.383573
\(792\) 56127.7i 2.51820i
\(793\) 10763.5 0.481998
\(794\) −29614.1 −1.32363
\(795\) 6051.88i 0.269985i
\(796\) −4036.51 −0.179736
\(797\) 22525.3i 1.00111i 0.865703 + 0.500557i \(0.166872\pi\)
−0.865703 + 0.500557i \(0.833128\pi\)
\(798\) −2755.33 −0.122228
\(799\) 7707.71i 0.341275i
\(800\) 20411.8i 0.902081i
\(801\) −5884.02 −0.259553
\(802\) 14329.6 0.630916
\(803\) 549.979 0.0241698
\(804\) 6805.92i 0.298540i
\(805\) 3020.08i 0.132229i
\(806\) −14828.6 −0.648036
\(807\) −87.8446 2986.99i −0.00383182 0.130294i
\(808\) 71416.9 3.10945
\(809\) 4044.63i 0.175775i 0.996130 + 0.0878873i \(0.0280115\pi\)
−0.996130 + 0.0878873i \(0.971988\pi\)
\(810\) 54355.6i 2.35785i
\(811\) −8135.01 −0.352230 −0.176115 0.984370i \(-0.556353\pi\)
−0.176115 + 0.984370i \(0.556353\pi\)
\(812\) −8231.11 −0.355733
\(813\) −1675.17 −0.0722643
\(814\) 27545.6i 1.18609i
\(815\) 50907.3i 2.18798i
\(816\) 8499.48 0.364634
\(817\) 24101.4i 1.03207i
\(818\) −48166.4 −2.05880
\(819\) 13817.9i 0.589543i
\(820\) 40063.5 1.70619
\(821\) 2756.41 0.117174 0.0585868 0.998282i \(-0.481341\pi\)
0.0585868 + 0.998282i \(0.481341\pi\)
\(822\) 1881.30i 0.0798269i
\(823\) 37015.1 1.56776 0.783879 0.620914i \(-0.213238\pi\)
0.783879 + 0.620914i \(0.213238\pi\)
\(824\) 43422.3i 1.83579i
\(825\) 3165.94i 0.133605i
\(826\) 15445.3i 0.650620i
\(827\) 8809.10 0.370402 0.185201 0.982701i \(-0.440706\pi\)
0.185201 + 0.982701i \(0.440706\pi\)
\(828\) 11961.5 0.502040
\(829\) 9637.79i 0.403781i −0.979408 0.201890i \(-0.935292\pi\)
0.979408 0.201890i \(-0.0647085\pi\)
\(830\) −19302.5 −0.807227
\(831\) −5310.60 −0.221688
\(832\) −106.207 −0.00442558
\(833\) 30633.6i 1.27418i
\(834\) 5307.42i 0.220361i
\(835\) 47798.3i 1.98099i
\(836\) 76287.5i 3.15605i
\(837\) 1584.59 0.0654379
\(838\) 13570.0i 0.559389i
\(839\) 38850.4i 1.59865i 0.600901 + 0.799324i \(0.294809\pi\)
−0.600901 + 0.799324i \(0.705191\pi\)
\(840\) 4151.82i 0.170538i
\(841\) 20961.8 0.859476
\(842\) 68885.4i 2.81942i
\(843\) −4639.66 −0.189559
\(844\) −12503.5 −0.509938
\(845\) 34452.2 1.40259
\(846\) 9594.00i 0.389892i
\(847\) 3104.34i 0.125935i
\(848\) 66949.1 2.71113
\(849\) 2402.99i 0.0971383i
\(850\) −62292.5 −2.51366
\(851\) 3258.47 0.131256
\(852\) −10453.3 −0.420334
\(853\) 7506.03i 0.301291i −0.988588 0.150646i \(-0.951865\pi\)
0.988588 0.150646i \(-0.0481353\pi\)
\(854\) −6443.48 −0.258187
\(855\) 41742.5i 1.66966i
\(856\) −99760.8 −3.98336
\(857\) 3395.38i 0.135337i 0.997708 + 0.0676687i \(0.0215561\pi\)
−0.997708 + 0.0676687i \(0.978444\pi\)
\(858\) −9554.96 −0.380188
\(859\) 3604.39 0.143167 0.0715834 0.997435i \(-0.477195\pi\)
0.0715834 + 0.997435i \(0.477195\pi\)
\(860\) 65426.4 2.59421
\(861\) −765.834 −0.0303131
\(862\) −19502.4 −0.770596
\(863\) −5377.53 −0.212113 −0.106056 0.994360i \(-0.533822\pi\)
−0.106056 + 0.994360i \(0.533822\pi\)
\(864\) 6582.99 0.259210
\(865\) 19968.0 0.784893
\(866\) 31597.6i 1.23987i
\(867\) 4673.19i 0.183056i
\(868\) 6143.60 0.240239
\(869\) 16741.4 0.653527
\(870\) 3114.38i 0.121365i
\(871\) −37207.3 −1.44744
\(872\) 35806.1 1.39054
\(873\) −38073.6 −1.47606
\(874\) 13039.4 0.504651
\(875\) 1512.84i 0.0584494i
\(876\) 161.128i 0.00621464i
\(877\) 18306.9 0.704880 0.352440 0.935834i \(-0.385352\pi\)
0.352440 + 0.935834i \(0.385352\pi\)
\(878\) 26420.9i 1.01556i
\(879\) 557.025i 0.0213743i
\(880\) −73957.2 −2.83307
\(881\) 42005.1i 1.60634i 0.595747 + 0.803172i \(0.296856\pi\)
−0.595747 + 0.803172i \(0.703144\pi\)
\(882\) 38130.5i 1.45569i
\(883\) 25784.3i 0.982684i 0.870967 + 0.491342i \(0.163494\pi\)
−0.870967 + 0.491342i \(0.836506\pi\)
\(884\) 130112.i 4.95038i
\(885\) −4044.50 −0.153621
\(886\) 53912.1 2.04426
\(887\) −5342.41 −0.202233 −0.101116 0.994875i \(-0.532241\pi\)
−0.101116 + 0.994875i \(0.532241\pi\)
\(888\) 4479.54 0.169283
\(889\) 20543.9i 0.775052i
\(890\) 17412.4i 0.655804i
\(891\) −28768.0 −1.08167
\(892\) 69607.3i 2.61281i
\(893\) 7238.17i 0.271239i
\(894\) 11941.8 0.446747
\(895\) 26192.7i 0.978242i
\(896\) −11292.1 −0.421029
\(897\) 1130.29i 0.0420727i
\(898\) 16528.3i 0.614207i
\(899\) 2558.05 0.0949007
\(900\) −53661.8 −1.98748
\(901\) 63021.5i 2.33025i
\(902\) 30637.9i 1.13096i
\(903\) −1250.66 −0.0460901
\(904\) −55515.8 −2.04251
\(905\) 37691.1i 1.38441i
\(906\) 4121.51 0.151135
\(907\) −28927.6 −1.05901 −0.529506 0.848306i \(-0.677623\pi\)
−0.529506 + 0.848306i \(0.677623\pi\)
\(908\) 41024.2i 1.49938i
\(909\) 37259.5i 1.35954i
\(910\) −40890.9 −1.48958
\(911\) 15428.8i 0.561120i −0.959836 0.280560i \(-0.909480\pi\)
0.959836 0.280560i \(-0.0905202\pi\)
\(912\) 7981.71 0.289804
\(913\) 10215.9i 0.370315i
\(914\) 51671.0i 1.86994i
\(915\) 1687.29i 0.0609617i
\(916\) 82418.8i 2.97292i
\(917\) 10117.6i 0.364353i
\(918\) 20089.9i 0.722294i
\(919\) 37179.4i 1.33453i −0.744819 0.667267i \(-0.767464\pi\)
0.744819 0.667267i \(-0.232536\pi\)
\(920\) 19648.2i 0.704111i
\(921\) 7171.37i 0.256574i
\(922\) −28626.4 −1.02252
\(923\) 57147.2i 2.03795i
\(924\) 3958.68 0.140943
\(925\) −14618.2 −0.519615
\(926\) −68885.3 −2.44461
\(927\) 22654.3 0.802657
\(928\) 10627.1 0.375917
\(929\) 12319.5i 0.435081i −0.976051 0.217541i \(-0.930197\pi\)
0.976051 0.217541i \(-0.0698035\pi\)
\(930\) 2324.53i 0.0819617i
\(931\) 28767.5i 1.01269i
\(932\) 97716.1 3.43433
\(933\) −5945.53 −0.208626
\(934\) −62601.0 −2.19311
\(935\) 69618.5i 2.43505i
\(936\) 89897.1i 3.13929i
\(937\) 16507.4i 0.575533i 0.957701 + 0.287766i \(0.0929126\pi\)
−0.957701 + 0.287766i \(0.907087\pi\)
\(938\) 22273.8 0.775336
\(939\) 2029.84i 0.0705445i
\(940\) −19649.0 −0.681787
\(941\) 36816.2i 1.27542i 0.770276 + 0.637711i \(0.220119\pi\)
−0.770276 + 0.637711i \(0.779881\pi\)
\(942\) 10487.4i 0.362736i
\(943\) 3624.26 0.125156
\(944\) 44742.4i 1.54263i
\(945\) 4369.61 0.150416
\(946\) 50033.7i 1.71960i
\(947\) 1698.89i 0.0582962i 0.999575 + 0.0291481i \(0.00927944\pi\)
−0.999575 + 0.0291481i \(0.990721\pi\)
\(948\) 4904.78i 0.168038i
\(949\) −880.874 −0.0301311
\(950\) −58497.8 −1.99781
\(951\) −3359.95 −0.114568
\(952\) 43235.2i 1.47191i
\(953\) 29295.2i 0.995764i −0.867245 0.497882i \(-0.834111\pi\)
0.867245 0.497882i \(-0.165889\pi\)
\(954\) 78444.6i 2.66220i
\(955\) 65915.1 2.23347
\(956\) −18633.3 −0.630381
\(957\) 1648.30 0.0556761
\(958\) 70718.4 2.38498
\(959\) −4261.09 −0.143480
\(960\) 16.6490i 0.000559734i
\(961\) 27881.7 0.935910
\(962\) 44118.5i 1.47863i
\(963\) 52047.1i 1.74164i
\(964\) 81192.5i 2.71269i
\(965\) 57882.4i 1.93088i
\(966\) 676.637i 0.0225367i
\(967\) 43061.2i 1.43201i −0.698095 0.716005i \(-0.745969\pi\)
0.698095 0.716005i \(-0.254031\pi\)
\(968\) 20196.4i 0.670596i
\(969\) 7513.46i 0.249089i
\(970\) 112670.i 3.72951i
\(971\) −28750.2 −0.950193 −0.475097 0.879934i \(-0.657587\pi\)
−0.475097 + 0.879934i \(0.657587\pi\)
\(972\) 26033.8i 0.859089i
\(973\) 12021.2 0.396075
\(974\) 18853.5i 0.620230i
\(975\) 5070.73i 0.166557i
\(976\) 18665.6 0.612164
\(977\) −36131.7 −1.18317 −0.591584 0.806243i \(-0.701497\pi\)
−0.591584 + 0.806243i \(0.701497\pi\)
\(978\) 11405.5i 0.372913i
\(979\) 9215.62 0.300850
\(980\) −78093.1 −2.54550
\(981\) 18680.7i 0.607981i
\(982\) 80375.1i 2.61189i
\(983\) 25454.0 0.825895 0.412948 0.910755i \(-0.364499\pi\)
0.412948 + 0.910755i \(0.364499\pi\)
\(984\) 4982.40 0.161416
\(985\) 11548.3i 0.373564i
\(986\) 32431.7i 1.04750i
\(987\) 375.601 0.0121130
\(988\) 122186.i 3.93447i
\(989\) 5918.66 0.190296
\(990\) 86656.1i 2.78193i
\(991\) 23080.3i 0.739829i −0.929066 0.369914i \(-0.879387\pi\)
0.929066 0.369914i \(-0.120613\pi\)
\(992\) −7931.93 −0.253870
\(993\) 3414.68i 0.109126i
\(994\) 34210.7i 1.09165i
\(995\) 3459.24 0.110216
\(996\) −2992.98 −0.0952172
\(997\) 9046.47 0.287367 0.143683 0.989624i \(-0.454105\pi\)
0.143683 + 0.989624i \(0.454105\pi\)
\(998\) 4241.96 0.134546
\(999\) 4714.51i 0.149310i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 269.4.b.a.268.5 66
269.268 even 2 inner 269.4.b.a.268.62 yes 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
269.4.b.a.268.5 66 1.1 even 1 trivial
269.4.b.a.268.62 yes 66 269.268 even 2 inner