Properties

Label 269.2.a.c.1.9
Level $269$
Weight $2$
Character 269.1
Self dual yes
Analytic conductor $2.148$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [269,2,Mod(1,269)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("269.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(269, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 269.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.14797581437\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} - 28 x^{14} + 27 x^{13} + 314 x^{12} - 283 x^{11} - 1803 x^{10} + 1435 x^{9} + \cdots + 172 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(0.282877\) of defining polynomial
Character \(\chi\) \(=\) 269.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.282877 q^{2} -1.37910 q^{3} -1.91998 q^{4} +1.97313 q^{5} -0.390116 q^{6} +2.44119 q^{7} -1.10887 q^{8} -1.09807 q^{9} +0.558153 q^{10} +3.43591 q^{11} +2.64785 q^{12} +4.69311 q^{13} +0.690556 q^{14} -2.72116 q^{15} +3.52629 q^{16} +1.90195 q^{17} -0.310618 q^{18} -1.23155 q^{19} -3.78838 q^{20} -3.36666 q^{21} +0.971939 q^{22} +6.50000 q^{23} +1.52925 q^{24} -1.10675 q^{25} +1.32757 q^{26} +5.65167 q^{27} -4.68704 q^{28} -5.54253 q^{29} -0.769751 q^{30} +4.88221 q^{31} +3.21525 q^{32} -4.73848 q^{33} +0.538017 q^{34} +4.81680 q^{35} +2.10827 q^{36} -10.2236 q^{37} -0.348377 q^{38} -6.47229 q^{39} -2.18795 q^{40} -5.60633 q^{41} -0.952349 q^{42} -2.85084 q^{43} -6.59688 q^{44} -2.16664 q^{45} +1.83870 q^{46} -1.80999 q^{47} -4.86312 q^{48} -1.04058 q^{49} -0.313073 q^{50} -2.62299 q^{51} -9.01068 q^{52} +2.04207 q^{53} +1.59872 q^{54} +6.77951 q^{55} -2.70697 q^{56} +1.69844 q^{57} -1.56785 q^{58} -1.02290 q^{59} +5.22457 q^{60} +12.6403 q^{61} +1.38106 q^{62} -2.68060 q^{63} -6.14306 q^{64} +9.26012 q^{65} -1.34041 q^{66} +1.65225 q^{67} -3.65171 q^{68} -8.96418 q^{69} +1.36256 q^{70} -4.59265 q^{71} +1.21762 q^{72} +5.17859 q^{73} -2.89202 q^{74} +1.52632 q^{75} +2.36455 q^{76} +8.38772 q^{77} -1.83086 q^{78} +13.5494 q^{79} +6.95784 q^{80} -4.50003 q^{81} -1.58590 q^{82} -13.9606 q^{83} +6.46392 q^{84} +3.75280 q^{85} -0.806435 q^{86} +7.64373 q^{87} -3.80998 q^{88} -9.64059 q^{89} -0.612891 q^{90} +11.4568 q^{91} -12.4799 q^{92} -6.73308 q^{93} -0.512003 q^{94} -2.43001 q^{95} -4.43416 q^{96} -16.2488 q^{97} -0.294355 q^{98} -3.77287 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + q^{2} + 5 q^{3} + 25 q^{4} - q^{5} - 2 q^{6} + 11 q^{7} + 21 q^{9} + 7 q^{10} + 16 q^{11} - 4 q^{12} - q^{13} - 9 q^{14} - 5 q^{15} + 39 q^{16} - 2 q^{17} - 8 q^{18} + 35 q^{19} - 16 q^{20} - 3 q^{22}+ \cdots + 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.282877 0.200024 0.100012 0.994986i \(-0.468112\pi\)
0.100012 + 0.994986i \(0.468112\pi\)
\(3\) −1.37910 −0.796227 −0.398113 0.917336i \(-0.630335\pi\)
−0.398113 + 0.917336i \(0.630335\pi\)
\(4\) −1.91998 −0.959990
\(5\) 1.97313 0.882412 0.441206 0.897406i \(-0.354551\pi\)
0.441206 + 0.897406i \(0.354551\pi\)
\(6\) −0.390116 −0.159264
\(7\) 2.44119 0.922684 0.461342 0.887222i \(-0.347368\pi\)
0.461342 + 0.887222i \(0.347368\pi\)
\(8\) −1.10887 −0.392045
\(9\) −1.09807 −0.366023
\(10\) 0.558153 0.176503
\(11\) 3.43591 1.03597 0.517983 0.855391i \(-0.326683\pi\)
0.517983 + 0.855391i \(0.326683\pi\)
\(12\) 2.64785 0.764370
\(13\) 4.69311 1.30163 0.650817 0.759235i \(-0.274427\pi\)
0.650817 + 0.759235i \(0.274427\pi\)
\(14\) 0.690556 0.184559
\(15\) −2.72116 −0.702600
\(16\) 3.52629 0.881572
\(17\) 1.90195 0.461291 0.230645 0.973038i \(-0.425916\pi\)
0.230645 + 0.973038i \(0.425916\pi\)
\(18\) −0.310618 −0.0732134
\(19\) −1.23155 −0.282537 −0.141269 0.989971i \(-0.545118\pi\)
−0.141269 + 0.989971i \(0.545118\pi\)
\(20\) −3.78838 −0.847107
\(21\) −3.36666 −0.734666
\(22\) 0.971939 0.207218
\(23\) 6.50000 1.35534 0.677672 0.735365i \(-0.262989\pi\)
0.677672 + 0.735365i \(0.262989\pi\)
\(24\) 1.52925 0.312157
\(25\) −1.10675 −0.221349
\(26\) 1.32757 0.260358
\(27\) 5.65167 1.08766
\(28\) −4.68704 −0.885768
\(29\) −5.54253 −1.02922 −0.514611 0.857424i \(-0.672064\pi\)
−0.514611 + 0.857424i \(0.672064\pi\)
\(30\) −0.769751 −0.140537
\(31\) 4.88221 0.876871 0.438436 0.898763i \(-0.355533\pi\)
0.438436 + 0.898763i \(0.355533\pi\)
\(32\) 3.21525 0.568380
\(33\) −4.73848 −0.824864
\(34\) 0.538017 0.0922692
\(35\) 4.81680 0.814187
\(36\) 2.10827 0.351379
\(37\) −10.2236 −1.68075 −0.840377 0.542003i \(-0.817666\pi\)
−0.840377 + 0.542003i \(0.817666\pi\)
\(38\) −0.348377 −0.0565142
\(39\) −6.47229 −1.03640
\(40\) −2.18795 −0.345945
\(41\) −5.60633 −0.875561 −0.437780 0.899082i \(-0.644235\pi\)
−0.437780 + 0.899082i \(0.644235\pi\)
\(42\) −0.952349 −0.146951
\(43\) −2.85084 −0.434749 −0.217374 0.976088i \(-0.569749\pi\)
−0.217374 + 0.976088i \(0.569749\pi\)
\(44\) −6.59688 −0.994518
\(45\) −2.16664 −0.322983
\(46\) 1.83870 0.271101
\(47\) −1.80999 −0.264014 −0.132007 0.991249i \(-0.542142\pi\)
−0.132007 + 0.991249i \(0.542142\pi\)
\(48\) −4.86312 −0.701931
\(49\) −1.04058 −0.148654
\(50\) −0.313073 −0.0442752
\(51\) −2.62299 −0.367292
\(52\) −9.01068 −1.24956
\(53\) 2.04207 0.280500 0.140250 0.990116i \(-0.455209\pi\)
0.140250 + 0.990116i \(0.455209\pi\)
\(54\) 1.59872 0.217559
\(55\) 6.77951 0.914149
\(56\) −2.70697 −0.361734
\(57\) 1.69844 0.224964
\(58\) −1.56785 −0.205869
\(59\) −1.02290 −0.133170 −0.0665850 0.997781i \(-0.521210\pi\)
−0.0665850 + 0.997781i \(0.521210\pi\)
\(60\) 5.22457 0.674489
\(61\) 12.6403 1.61843 0.809213 0.587515i \(-0.199894\pi\)
0.809213 + 0.587515i \(0.199894\pi\)
\(62\) 1.38106 0.175395
\(63\) −2.68060 −0.337724
\(64\) −6.14306 −0.767882
\(65\) 9.26012 1.14858
\(66\) −1.34041 −0.164992
\(67\) 1.65225 0.201854 0.100927 0.994894i \(-0.467819\pi\)
0.100927 + 0.994894i \(0.467819\pi\)
\(68\) −3.65171 −0.442835
\(69\) −8.96418 −1.07916
\(70\) 1.36256 0.162857
\(71\) −4.59265 −0.545047 −0.272523 0.962149i \(-0.587858\pi\)
−0.272523 + 0.962149i \(0.587858\pi\)
\(72\) 1.21762 0.143498
\(73\) 5.17859 0.606108 0.303054 0.952973i \(-0.401994\pi\)
0.303054 + 0.952973i \(0.401994\pi\)
\(74\) −2.89202 −0.336191
\(75\) 1.52632 0.176244
\(76\) 2.36455 0.271233
\(77\) 8.38772 0.955870
\(78\) −1.83086 −0.207304
\(79\) 13.5494 1.52443 0.762213 0.647326i \(-0.224113\pi\)
0.762213 + 0.647326i \(0.224113\pi\)
\(80\) 6.95784 0.777910
\(81\) −4.50003 −0.500004
\(82\) −1.58590 −0.175133
\(83\) −13.9606 −1.53237 −0.766187 0.642618i \(-0.777848\pi\)
−0.766187 + 0.642618i \(0.777848\pi\)
\(84\) 6.46392 0.705272
\(85\) 3.75280 0.407049
\(86\) −0.806435 −0.0869601
\(87\) 7.64373 0.819494
\(88\) −3.80998 −0.406145
\(89\) −9.64059 −1.02190 −0.510950 0.859610i \(-0.670706\pi\)
−0.510950 + 0.859610i \(0.670706\pi\)
\(90\) −0.612891 −0.0646044
\(91\) 11.4568 1.20100
\(92\) −12.4799 −1.30112
\(93\) −6.73308 −0.698188
\(94\) −0.512003 −0.0528090
\(95\) −2.43001 −0.249314
\(96\) −4.43416 −0.452560
\(97\) −16.2488 −1.64982 −0.824908 0.565267i \(-0.808773\pi\)
−0.824908 + 0.565267i \(0.808773\pi\)
\(98\) −0.294355 −0.0297344
\(99\) −3.77287 −0.379188
\(100\) 2.12493 0.212493
\(101\) 15.4748 1.53980 0.769900 0.638165i \(-0.220306\pi\)
0.769900 + 0.638165i \(0.220306\pi\)
\(102\) −0.741982 −0.0734672
\(103\) 11.6936 1.15220 0.576101 0.817379i \(-0.304574\pi\)
0.576101 + 0.817379i \(0.304574\pi\)
\(104\) −5.20405 −0.510299
\(105\) −6.64287 −0.648278
\(106\) 0.577654 0.0561067
\(107\) 0.0867365 0.00838514 0.00419257 0.999991i \(-0.498665\pi\)
0.00419257 + 0.999991i \(0.498665\pi\)
\(108\) −10.8511 −1.04415
\(109\) 3.18524 0.305091 0.152545 0.988296i \(-0.451253\pi\)
0.152545 + 0.988296i \(0.451253\pi\)
\(110\) 1.91776 0.182852
\(111\) 14.0994 1.33826
\(112\) 8.60835 0.813413
\(113\) −2.15866 −0.203070 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(114\) 0.480448 0.0449981
\(115\) 12.8254 1.19597
\(116\) 10.6416 0.988043
\(117\) −5.15336 −0.476428
\(118\) −0.289354 −0.0266372
\(119\) 4.64303 0.425626
\(120\) 3.01741 0.275451
\(121\) 0.805487 0.0732261
\(122\) 3.57565 0.323724
\(123\) 7.73171 0.697145
\(124\) −9.37375 −0.841788
\(125\) −12.0494 −1.07773
\(126\) −0.758279 −0.0675528
\(127\) 3.13665 0.278333 0.139166 0.990269i \(-0.455558\pi\)
0.139166 + 0.990269i \(0.455558\pi\)
\(128\) −8.16822 −0.721975
\(129\) 3.93160 0.346158
\(130\) 2.61947 0.229743
\(131\) −19.1069 −1.66938 −0.834689 0.550721i \(-0.814353\pi\)
−0.834689 + 0.550721i \(0.814353\pi\)
\(132\) 9.09779 0.791861
\(133\) −3.00645 −0.260693
\(134\) 0.467383 0.0403757
\(135\) 11.1515 0.959768
\(136\) −2.10902 −0.180847
\(137\) −7.77105 −0.663925 −0.331963 0.943293i \(-0.607711\pi\)
−0.331963 + 0.943293i \(0.607711\pi\)
\(138\) −2.53576 −0.215858
\(139\) 7.50884 0.636891 0.318446 0.947941i \(-0.396839\pi\)
0.318446 + 0.947941i \(0.396839\pi\)
\(140\) −9.24816 −0.781612
\(141\) 2.49616 0.210215
\(142\) −1.29915 −0.109022
\(143\) 16.1251 1.34845
\(144\) −3.87211 −0.322676
\(145\) −10.9361 −0.908198
\(146\) 1.46490 0.121236
\(147\) 1.43507 0.118362
\(148\) 19.6292 1.61351
\(149\) −21.5548 −1.76584 −0.882921 0.469522i \(-0.844426\pi\)
−0.882921 + 0.469522i \(0.844426\pi\)
\(150\) 0.431760 0.0352531
\(151\) −8.16873 −0.664762 −0.332381 0.943145i \(-0.607852\pi\)
−0.332381 + 0.943145i \(0.607852\pi\)
\(152\) 1.36563 0.110767
\(153\) −2.08848 −0.168843
\(154\) 2.37269 0.191197
\(155\) 9.63325 0.773761
\(156\) 12.4267 0.994930
\(157\) 19.5185 1.55774 0.778872 0.627183i \(-0.215792\pi\)
0.778872 + 0.627183i \(0.215792\pi\)
\(158\) 3.83281 0.304922
\(159\) −2.81623 −0.223342
\(160\) 6.34411 0.501546
\(161\) 15.8677 1.25055
\(162\) −1.27295 −0.100013
\(163\) 5.85613 0.458687 0.229344 0.973345i \(-0.426342\pi\)
0.229344 + 0.973345i \(0.426342\pi\)
\(164\) 10.7640 0.840530
\(165\) −9.34965 −0.727870
\(166\) −3.94912 −0.306511
\(167\) −16.1245 −1.24775 −0.623876 0.781523i \(-0.714443\pi\)
−0.623876 + 0.781523i \(0.714443\pi\)
\(168\) 3.73319 0.288022
\(169\) 9.02526 0.694251
\(170\) 1.06158 0.0814194
\(171\) 1.35233 0.103415
\(172\) 5.47355 0.417354
\(173\) −13.5232 −1.02815 −0.514074 0.857746i \(-0.671864\pi\)
−0.514074 + 0.857746i \(0.671864\pi\)
\(174\) 2.16223 0.163918
\(175\) −2.70178 −0.204236
\(176\) 12.1160 0.913279
\(177\) 1.41068 0.106034
\(178\) −2.72710 −0.204405
\(179\) 22.1712 1.65715 0.828577 0.559875i \(-0.189151\pi\)
0.828577 + 0.559875i \(0.189151\pi\)
\(180\) 4.15990 0.310061
\(181\) 3.61117 0.268416 0.134208 0.990953i \(-0.457151\pi\)
0.134208 + 0.990953i \(0.457151\pi\)
\(182\) 3.24085 0.240228
\(183\) −17.4323 −1.28863
\(184\) −7.20766 −0.531356
\(185\) −20.1726 −1.48312
\(186\) −1.90463 −0.139654
\(187\) 6.53494 0.477882
\(188\) 3.47514 0.253451
\(189\) 13.7968 1.00357
\(190\) −0.687394 −0.0498688
\(191\) −7.41632 −0.536626 −0.268313 0.963332i \(-0.586466\pi\)
−0.268313 + 0.963332i \(0.586466\pi\)
\(192\) 8.47192 0.611408
\(193\) −23.0099 −1.65629 −0.828145 0.560514i \(-0.810604\pi\)
−0.828145 + 0.560514i \(0.810604\pi\)
\(194\) −4.59640 −0.330003
\(195\) −12.7707 −0.914528
\(196\) 1.99789 0.142707
\(197\) 0.810204 0.0577247 0.0288623 0.999583i \(-0.490812\pi\)
0.0288623 + 0.999583i \(0.490812\pi\)
\(198\) −1.06726 −0.0758466
\(199\) 16.0676 1.13900 0.569500 0.821991i \(-0.307137\pi\)
0.569500 + 0.821991i \(0.307137\pi\)
\(200\) 1.22724 0.0867789
\(201\) −2.27863 −0.160722
\(202\) 4.37746 0.307997
\(203\) −13.5304 −0.949647
\(204\) 5.03609 0.352597
\(205\) −11.0620 −0.772605
\(206\) 3.30784 0.230468
\(207\) −7.13745 −0.496087
\(208\) 16.5493 1.14748
\(209\) −4.23150 −0.292699
\(210\) −1.87911 −0.129671
\(211\) −9.98098 −0.687119 −0.343559 0.939131i \(-0.611633\pi\)
−0.343559 + 0.939131i \(0.611633\pi\)
\(212\) −3.92074 −0.269278
\(213\) 6.33374 0.433981
\(214\) 0.0245357 0.00167723
\(215\) −5.62508 −0.383627
\(216\) −6.26697 −0.426413
\(217\) 11.9184 0.809075
\(218\) 0.901030 0.0610255
\(219\) −7.14182 −0.482599
\(220\) −13.0165 −0.877574
\(221\) 8.92606 0.600432
\(222\) 3.98840 0.267684
\(223\) −19.6088 −1.31310 −0.656550 0.754283i \(-0.727985\pi\)
−0.656550 + 0.754283i \(0.727985\pi\)
\(224\) 7.84903 0.524436
\(225\) 1.21529 0.0810191
\(226\) −0.610634 −0.0406188
\(227\) −11.4505 −0.759998 −0.379999 0.924987i \(-0.624076\pi\)
−0.379999 + 0.924987i \(0.624076\pi\)
\(228\) −3.26097 −0.215963
\(229\) 22.6433 1.49631 0.748156 0.663523i \(-0.230939\pi\)
0.748156 + 0.663523i \(0.230939\pi\)
\(230\) 3.62799 0.239223
\(231\) −11.5675 −0.761089
\(232\) 6.14595 0.403501
\(233\) −15.8879 −1.04085 −0.520427 0.853906i \(-0.674227\pi\)
−0.520427 + 0.853906i \(0.674227\pi\)
\(234\) −1.45776 −0.0952971
\(235\) −3.57134 −0.232969
\(236\) 1.96395 0.127842
\(237\) −18.6860 −1.21379
\(238\) 1.31340 0.0851353
\(239\) 7.35894 0.476010 0.238005 0.971264i \(-0.423507\pi\)
0.238005 + 0.971264i \(0.423507\pi\)
\(240\) −9.59558 −0.619392
\(241\) −13.1161 −0.844882 −0.422441 0.906390i \(-0.638827\pi\)
−0.422441 + 0.906390i \(0.638827\pi\)
\(242\) 0.227853 0.0146470
\(243\) −10.7490 −0.689548
\(244\) −24.2692 −1.55367
\(245\) −2.05320 −0.131174
\(246\) 2.18712 0.139446
\(247\) −5.77980 −0.367760
\(248\) −5.41374 −0.343773
\(249\) 19.2531 1.22012
\(250\) −3.40850 −0.215572
\(251\) −0.274032 −0.0172967 −0.00864837 0.999963i \(-0.502753\pi\)
−0.00864837 + 0.999963i \(0.502753\pi\)
\(252\) 5.14670 0.324212
\(253\) 22.3334 1.40409
\(254\) 0.887284 0.0556732
\(255\) −5.17551 −0.324103
\(256\) 9.97552 0.623470
\(257\) −5.65777 −0.352922 −0.176461 0.984308i \(-0.556465\pi\)
−0.176461 + 0.984308i \(0.556465\pi\)
\(258\) 1.11216 0.0692399
\(259\) −24.9578 −1.55080
\(260\) −17.7793 −1.10262
\(261\) 6.08609 0.376719
\(262\) −5.40490 −0.333916
\(263\) 18.5754 1.14541 0.572703 0.819763i \(-0.305895\pi\)
0.572703 + 0.819763i \(0.305895\pi\)
\(264\) 5.25436 0.323384
\(265\) 4.02928 0.247517
\(266\) −0.850455 −0.0521447
\(267\) 13.2954 0.813665
\(268\) −3.17229 −0.193778
\(269\) 1.00000 0.0609711
\(270\) 3.15449 0.191976
\(271\) −5.19643 −0.315661 −0.157830 0.987466i \(-0.550450\pi\)
−0.157830 + 0.987466i \(0.550450\pi\)
\(272\) 6.70683 0.406661
\(273\) −15.8001 −0.956266
\(274\) −2.19825 −0.132801
\(275\) −3.80269 −0.229311
\(276\) 17.2111 1.03598
\(277\) 6.13328 0.368513 0.184257 0.982878i \(-0.441012\pi\)
0.184257 + 0.982878i \(0.441012\pi\)
\(278\) 2.12407 0.127393
\(279\) −5.36101 −0.320955
\(280\) −5.34120 −0.319198
\(281\) 19.4792 1.16203 0.581017 0.813891i \(-0.302655\pi\)
0.581017 + 0.813891i \(0.302655\pi\)
\(282\) 0.706105 0.0420480
\(283\) 1.43510 0.0853076 0.0426538 0.999090i \(-0.486419\pi\)
0.0426538 + 0.999090i \(0.486419\pi\)
\(284\) 8.81780 0.523240
\(285\) 3.35124 0.198511
\(286\) 4.56141 0.269722
\(287\) −13.6861 −0.807866
\(288\) −3.53056 −0.208040
\(289\) −13.3826 −0.787211
\(290\) −3.09358 −0.181661
\(291\) 22.4088 1.31363
\(292\) −9.94279 −0.581858
\(293\) −29.8473 −1.74370 −0.871848 0.489776i \(-0.837078\pi\)
−0.871848 + 0.489776i \(0.837078\pi\)
\(294\) 0.405947 0.0236753
\(295\) −2.01832 −0.117511
\(296\) 11.3367 0.658931
\(297\) 19.4186 1.12678
\(298\) −6.09736 −0.353210
\(299\) 30.5052 1.76416
\(300\) −2.93051 −0.169193
\(301\) −6.95944 −0.401136
\(302\) −2.31074 −0.132968
\(303\) −21.3414 −1.22603
\(304\) −4.34280 −0.249077
\(305\) 24.9410 1.42812
\(306\) −0.590781 −0.0337727
\(307\) −14.6428 −0.835710 −0.417855 0.908514i \(-0.637218\pi\)
−0.417855 + 0.908514i \(0.637218\pi\)
\(308\) −16.1043 −0.917626
\(309\) −16.1267 −0.917413
\(310\) 2.72502 0.154771
\(311\) −14.9926 −0.850155 −0.425077 0.905157i \(-0.639753\pi\)
−0.425077 + 0.905157i \(0.639753\pi\)
\(312\) 7.17693 0.406314
\(313\) −14.3883 −0.813272 −0.406636 0.913590i \(-0.633298\pi\)
−0.406636 + 0.913590i \(0.633298\pi\)
\(314\) 5.52132 0.311586
\(315\) −5.28918 −0.298012
\(316\) −26.0146 −1.46344
\(317\) 18.4565 1.03662 0.518309 0.855193i \(-0.326562\pi\)
0.518309 + 0.855193i \(0.326562\pi\)
\(318\) −0.796646 −0.0446737
\(319\) −19.0436 −1.06624
\(320\) −12.1211 −0.677589
\(321\) −0.119619 −0.00667647
\(322\) 4.48861 0.250141
\(323\) −2.34235 −0.130332
\(324\) 8.63998 0.479999
\(325\) −5.19408 −0.288116
\(326\) 1.65656 0.0917484
\(327\) −4.39278 −0.242922
\(328\) 6.21669 0.343259
\(329\) −4.41853 −0.243601
\(330\) −2.64480 −0.145591
\(331\) 29.1435 1.60187 0.800935 0.598752i \(-0.204336\pi\)
0.800935 + 0.598752i \(0.204336\pi\)
\(332\) 26.8041 1.47106
\(333\) 11.2263 0.615195
\(334\) −4.56125 −0.249580
\(335\) 3.26011 0.178119
\(336\) −11.8718 −0.647661
\(337\) −13.3401 −0.726682 −0.363341 0.931656i \(-0.618364\pi\)
−0.363341 + 0.931656i \(0.618364\pi\)
\(338\) 2.55303 0.138867
\(339\) 2.97702 0.161689
\(340\) −7.20531 −0.390763
\(341\) 16.7748 0.908409
\(342\) 0.382542 0.0206855
\(343\) −19.6286 −1.05984
\(344\) 3.16121 0.170441
\(345\) −17.6875 −0.952264
\(346\) −3.82539 −0.205654
\(347\) 15.4841 0.831232 0.415616 0.909540i \(-0.363566\pi\)
0.415616 + 0.909540i \(0.363566\pi\)
\(348\) −14.6758 −0.786706
\(349\) 4.95774 0.265382 0.132691 0.991157i \(-0.457638\pi\)
0.132691 + 0.991157i \(0.457638\pi\)
\(350\) −0.764271 −0.0408520
\(351\) 26.5239 1.41574
\(352\) 11.0473 0.588823
\(353\) −19.7221 −1.04970 −0.524851 0.851194i \(-0.675879\pi\)
−0.524851 + 0.851194i \(0.675879\pi\)
\(354\) 0.399050 0.0212092
\(355\) −9.06190 −0.480956
\(356\) 18.5098 0.981015
\(357\) −6.40322 −0.338895
\(358\) 6.27172 0.331471
\(359\) 10.0142 0.528527 0.264263 0.964451i \(-0.414871\pi\)
0.264263 + 0.964451i \(0.414871\pi\)
\(360\) 2.40252 0.126624
\(361\) −17.4833 −0.920173
\(362\) 1.02152 0.0536897
\(363\) −1.11085 −0.0583046
\(364\) −21.9968 −1.15295
\(365\) 10.2180 0.534837
\(366\) −4.93119 −0.257758
\(367\) −1.28284 −0.0669637 −0.0334819 0.999439i \(-0.510660\pi\)
−0.0334819 + 0.999439i \(0.510660\pi\)
\(368\) 22.9209 1.19483
\(369\) 6.15614 0.320476
\(370\) −5.70634 −0.296659
\(371\) 4.98509 0.258813
\(372\) 12.9274 0.670254
\(373\) 33.4573 1.73235 0.866176 0.499739i \(-0.166571\pi\)
0.866176 + 0.499739i \(0.166571\pi\)
\(374\) 1.84858 0.0955878
\(375\) 16.6174 0.858120
\(376\) 2.00704 0.103505
\(377\) −26.0117 −1.33967
\(378\) 3.90279 0.200738
\(379\) 32.2690 1.65755 0.828775 0.559583i \(-0.189039\pi\)
0.828775 + 0.559583i \(0.189039\pi\)
\(380\) 4.66558 0.239339
\(381\) −4.32577 −0.221616
\(382\) −2.09790 −0.107338
\(383\) −13.8572 −0.708071 −0.354036 0.935232i \(-0.615191\pi\)
−0.354036 + 0.935232i \(0.615191\pi\)
\(384\) 11.2648 0.574856
\(385\) 16.5501 0.843471
\(386\) −6.50897 −0.331298
\(387\) 3.13042 0.159128
\(388\) 31.1974 1.58381
\(389\) 29.3155 1.48636 0.743178 0.669094i \(-0.233317\pi\)
0.743178 + 0.669094i \(0.233317\pi\)
\(390\) −3.61253 −0.182927
\(391\) 12.3627 0.625208
\(392\) 1.15387 0.0582791
\(393\) 26.3504 1.32920
\(394\) 0.229188 0.0115463
\(395\) 26.7348 1.34517
\(396\) 7.24384 0.364017
\(397\) −4.33222 −0.217428 −0.108714 0.994073i \(-0.534673\pi\)
−0.108714 + 0.994073i \(0.534673\pi\)
\(398\) 4.54514 0.227827
\(399\) 4.14621 0.207570
\(400\) −3.90271 −0.195135
\(401\) 11.9708 0.597794 0.298897 0.954285i \(-0.403381\pi\)
0.298897 + 0.954285i \(0.403381\pi\)
\(402\) −0.644570 −0.0321482
\(403\) 22.9127 1.14137
\(404\) −29.7113 −1.47819
\(405\) −8.87916 −0.441209
\(406\) −3.82743 −0.189952
\(407\) −35.1275 −1.74120
\(408\) 2.90856 0.143995
\(409\) 10.5969 0.523985 0.261992 0.965070i \(-0.415620\pi\)
0.261992 + 0.965070i \(0.415620\pi\)
\(410\) −3.12919 −0.154540
\(411\) 10.7171 0.528635
\(412\) −22.4514 −1.10610
\(413\) −2.49709 −0.122874
\(414\) −2.01902 −0.0992293
\(415\) −27.5461 −1.35218
\(416\) 15.0895 0.739823
\(417\) −10.3555 −0.507110
\(418\) −1.19699 −0.0585468
\(419\) 0.320387 0.0156519 0.00782595 0.999969i \(-0.497509\pi\)
0.00782595 + 0.999969i \(0.497509\pi\)
\(420\) 12.7542 0.622340
\(421\) 24.0501 1.17213 0.586064 0.810265i \(-0.300677\pi\)
0.586064 + 0.810265i \(0.300677\pi\)
\(422\) −2.82338 −0.137440
\(423\) 1.98749 0.0966352
\(424\) −2.26439 −0.109969
\(425\) −2.10498 −0.102106
\(426\) 1.79167 0.0868065
\(427\) 30.8574 1.49330
\(428\) −0.166532 −0.00804965
\(429\) −22.2382 −1.07367
\(430\) −1.59120 −0.0767346
\(431\) −22.7364 −1.09518 −0.547588 0.836748i \(-0.684454\pi\)
−0.547588 + 0.836748i \(0.684454\pi\)
\(432\) 19.9294 0.958854
\(433\) −26.8292 −1.28933 −0.644663 0.764467i \(-0.723002\pi\)
−0.644663 + 0.764467i \(0.723002\pi\)
\(434\) 3.37144 0.161834
\(435\) 15.0821 0.723131
\(436\) −6.11561 −0.292884
\(437\) −8.00508 −0.382935
\(438\) −2.02025 −0.0965314
\(439\) 26.3083 1.25562 0.627812 0.778365i \(-0.283951\pi\)
0.627812 + 0.778365i \(0.283951\pi\)
\(440\) −7.51760 −0.358387
\(441\) 1.14263 0.0544109
\(442\) 2.52497 0.120101
\(443\) 6.31703 0.300131 0.150066 0.988676i \(-0.452051\pi\)
0.150066 + 0.988676i \(0.452051\pi\)
\(444\) −27.0707 −1.28472
\(445\) −19.0222 −0.901737
\(446\) −5.54686 −0.262651
\(447\) 29.7264 1.40601
\(448\) −14.9964 −0.708513
\(449\) 23.1873 1.09428 0.547138 0.837042i \(-0.315717\pi\)
0.547138 + 0.837042i \(0.315717\pi\)
\(450\) 0.343776 0.0162057
\(451\) −19.2628 −0.907052
\(452\) 4.14459 0.194945
\(453\) 11.2655 0.529301
\(454\) −3.23908 −0.152018
\(455\) 22.6057 1.05977
\(456\) −1.88335 −0.0881958
\(457\) 28.8658 1.35029 0.675144 0.737686i \(-0.264082\pi\)
0.675144 + 0.737686i \(0.264082\pi\)
\(458\) 6.40526 0.299298
\(459\) 10.7492 0.501729
\(460\) −24.6244 −1.14812
\(461\) −9.40857 −0.438201 −0.219100 0.975702i \(-0.570312\pi\)
−0.219100 + 0.975702i \(0.570312\pi\)
\(462\) −3.27219 −0.152236
\(463\) 38.4998 1.78924 0.894618 0.446831i \(-0.147447\pi\)
0.894618 + 0.446831i \(0.147447\pi\)
\(464\) −19.5446 −0.907333
\(465\) −13.2853 −0.616089
\(466\) −4.49432 −0.208196
\(467\) 29.2898 1.35537 0.677686 0.735352i \(-0.262983\pi\)
0.677686 + 0.735352i \(0.262983\pi\)
\(468\) 9.89435 0.457367
\(469\) 4.03346 0.186248
\(470\) −1.01025 −0.0465993
\(471\) −26.9180 −1.24032
\(472\) 1.13426 0.0522087
\(473\) −9.79522 −0.450385
\(474\) −5.28584 −0.242787
\(475\) 1.36302 0.0625394
\(476\) −8.91453 −0.408597
\(477\) −2.24234 −0.102670
\(478\) 2.08167 0.0952134
\(479\) −14.2259 −0.650000 −0.325000 0.945714i \(-0.605364\pi\)
−0.325000 + 0.945714i \(0.605364\pi\)
\(480\) −8.74919 −0.399344
\(481\) −47.9806 −2.18773
\(482\) −3.71023 −0.168997
\(483\) −21.8833 −0.995724
\(484\) −1.54652 −0.0702964
\(485\) −32.0610 −1.45582
\(486\) −3.04064 −0.137926
\(487\) −34.8431 −1.57889 −0.789446 0.613820i \(-0.789632\pi\)
−0.789446 + 0.613820i \(0.789632\pi\)
\(488\) −14.0165 −0.634496
\(489\) −8.07622 −0.365219
\(490\) −0.580802 −0.0262380
\(491\) −29.5777 −1.33482 −0.667411 0.744689i \(-0.732598\pi\)
−0.667411 + 0.744689i \(0.732598\pi\)
\(492\) −14.8447 −0.669252
\(493\) −10.5416 −0.474771
\(494\) −1.63497 −0.0735608
\(495\) −7.44438 −0.334600
\(496\) 17.2161 0.773025
\(497\) −11.2115 −0.502906
\(498\) 5.44626 0.244053
\(499\) −22.3770 −1.00173 −0.500866 0.865525i \(-0.666985\pi\)
−0.500866 + 0.865525i \(0.666985\pi\)
\(500\) 23.1347 1.03461
\(501\) 22.2374 0.993494
\(502\) −0.0775172 −0.00345976
\(503\) 1.82300 0.0812836 0.0406418 0.999174i \(-0.487060\pi\)
0.0406418 + 0.999174i \(0.487060\pi\)
\(504\) 2.97244 0.132403
\(505\) 30.5338 1.35874
\(506\) 6.31760 0.280852
\(507\) −12.4468 −0.552781
\(508\) −6.02231 −0.267197
\(509\) −2.76277 −0.122458 −0.0612288 0.998124i \(-0.519502\pi\)
−0.0612288 + 0.998124i \(0.519502\pi\)
\(510\) −1.46403 −0.0648283
\(511\) 12.6419 0.559246
\(512\) 19.1583 0.846684
\(513\) −6.96032 −0.307305
\(514\) −1.60045 −0.0705928
\(515\) 23.0730 1.01672
\(516\) −7.54860 −0.332309
\(517\) −6.21895 −0.273509
\(518\) −7.05998 −0.310198
\(519\) 18.6499 0.818639
\(520\) −10.2683 −0.450294
\(521\) 14.7532 0.646352 0.323176 0.946339i \(-0.395249\pi\)
0.323176 + 0.946339i \(0.395249\pi\)
\(522\) 1.72161 0.0753529
\(523\) 3.00571 0.131431 0.0657154 0.997838i \(-0.479067\pi\)
0.0657154 + 0.997838i \(0.479067\pi\)
\(524\) 36.6849 1.60259
\(525\) 3.72604 0.162618
\(526\) 5.25454 0.229109
\(527\) 9.28573 0.404493
\(528\) −16.7093 −0.727177
\(529\) 19.2500 0.836956
\(530\) 1.13979 0.0495093
\(531\) 1.12321 0.0487434
\(532\) 5.77233 0.250262
\(533\) −26.3111 −1.13966
\(534\) 3.76095 0.162752
\(535\) 0.171143 0.00739914
\(536\) −1.83213 −0.0791360
\(537\) −30.5764 −1.31947
\(538\) 0.282877 0.0121957
\(539\) −3.57534 −0.154001
\(540\) −21.4106 −0.921368
\(541\) 22.5866 0.971076 0.485538 0.874216i \(-0.338624\pi\)
0.485538 + 0.874216i \(0.338624\pi\)
\(542\) −1.46995 −0.0631397
\(543\) −4.98018 −0.213720
\(544\) 6.11524 0.262189
\(545\) 6.28491 0.269216
\(546\) −4.46948 −0.191276
\(547\) 6.83246 0.292135 0.146067 0.989275i \(-0.453338\pi\)
0.146067 + 0.989275i \(0.453338\pi\)
\(548\) 14.9203 0.637362
\(549\) −13.8799 −0.592382
\(550\) −1.07569 −0.0458676
\(551\) 6.82591 0.290793
\(552\) 9.94011 0.423079
\(553\) 33.0767 1.40656
\(554\) 1.73496 0.0737114
\(555\) 27.8201 1.18090
\(556\) −14.4168 −0.611409
\(557\) 22.0266 0.933298 0.466649 0.884443i \(-0.345461\pi\)
0.466649 + 0.884443i \(0.345461\pi\)
\(558\) −1.51650 −0.0641987
\(559\) −13.3793 −0.565883
\(560\) 16.9854 0.717765
\(561\) −9.01236 −0.380502
\(562\) 5.51022 0.232435
\(563\) −36.1440 −1.52329 −0.761645 0.647995i \(-0.775608\pi\)
−0.761645 + 0.647995i \(0.775608\pi\)
\(564\) −4.79258 −0.201804
\(565\) −4.25932 −0.179191
\(566\) 0.405955 0.0170636
\(567\) −10.9854 −0.461345
\(568\) 5.09265 0.213683
\(569\) −4.48775 −0.188136 −0.0940682 0.995566i \(-0.529987\pi\)
−0.0940682 + 0.995566i \(0.529987\pi\)
\(570\) 0.947988 0.0397068
\(571\) −15.3385 −0.641896 −0.320948 0.947097i \(-0.604001\pi\)
−0.320948 + 0.947097i \(0.604001\pi\)
\(572\) −30.9599 −1.29450
\(573\) 10.2279 0.427276
\(574\) −3.87148 −0.161593
\(575\) −7.19386 −0.300005
\(576\) 6.74551 0.281063
\(577\) 25.5418 1.06332 0.531659 0.846958i \(-0.321569\pi\)
0.531659 + 0.846958i \(0.321569\pi\)
\(578\) −3.78562 −0.157461
\(579\) 31.7331 1.31878
\(580\) 20.9972 0.871861
\(581\) −34.0805 −1.41390
\(582\) 6.33892 0.262757
\(583\) 7.01638 0.290589
\(584\) −5.74239 −0.237622
\(585\) −10.1683 −0.420406
\(586\) −8.44309 −0.348781
\(587\) 6.30137 0.260085 0.130043 0.991508i \(-0.458489\pi\)
0.130043 + 0.991508i \(0.458489\pi\)
\(588\) −2.75530 −0.113627
\(589\) −6.01269 −0.247749
\(590\) −0.570934 −0.0235050
\(591\) −1.11736 −0.0459619
\(592\) −36.0514 −1.48171
\(593\) −11.9031 −0.488801 −0.244400 0.969674i \(-0.578591\pi\)
−0.244400 + 0.969674i \(0.578591\pi\)
\(594\) 5.49307 0.225384
\(595\) 9.16131 0.375577
\(596\) 41.3849 1.69519
\(597\) −22.1589 −0.906902
\(598\) 8.62920 0.352874
\(599\) −44.5084 −1.81856 −0.909282 0.416180i \(-0.863368\pi\)
−0.909282 + 0.416180i \(0.863368\pi\)
\(600\) −1.69249 −0.0690957
\(601\) 18.3848 0.749930 0.374965 0.927039i \(-0.377655\pi\)
0.374965 + 0.927039i \(0.377655\pi\)
\(602\) −1.96866 −0.0802367
\(603\) −1.81429 −0.0738834
\(604\) 15.6838 0.638165
\(605\) 1.58933 0.0646156
\(606\) −6.03697 −0.245235
\(607\) −21.1238 −0.857389 −0.428694 0.903450i \(-0.641026\pi\)
−0.428694 + 0.903450i \(0.641026\pi\)
\(608\) −3.95974 −0.160589
\(609\) 18.6598 0.756134
\(610\) 7.05523 0.285658
\(611\) −8.49446 −0.343649
\(612\) 4.00983 0.162088
\(613\) 2.99053 0.120786 0.0603931 0.998175i \(-0.480765\pi\)
0.0603931 + 0.998175i \(0.480765\pi\)
\(614\) −4.14211 −0.167162
\(615\) 15.2557 0.615169
\(616\) −9.30090 −0.374744
\(617\) −10.4767 −0.421775 −0.210888 0.977510i \(-0.567635\pi\)
−0.210888 + 0.977510i \(0.567635\pi\)
\(618\) −4.56185 −0.183505
\(619\) −9.34147 −0.375465 −0.187733 0.982220i \(-0.560114\pi\)
−0.187733 + 0.982220i \(0.560114\pi\)
\(620\) −18.4957 −0.742804
\(621\) 36.7358 1.47416
\(622\) −4.24107 −0.170051
\(623\) −23.5345 −0.942892
\(624\) −22.8232 −0.913657
\(625\) −18.2414 −0.729655
\(626\) −4.07010 −0.162674
\(627\) 5.83568 0.233055
\(628\) −37.4751 −1.49542
\(629\) −19.4448 −0.775316
\(630\) −1.49618 −0.0596094
\(631\) −21.8463 −0.869688 −0.434844 0.900506i \(-0.643196\pi\)
−0.434844 + 0.900506i \(0.643196\pi\)
\(632\) −15.0245 −0.597644
\(633\) 13.7648 0.547102
\(634\) 5.22090 0.207348
\(635\) 6.18902 0.245604
\(636\) 5.40711 0.214406
\(637\) −4.88355 −0.193493
\(638\) −5.38700 −0.213273
\(639\) 5.04305 0.199500
\(640\) −16.1170 −0.637079
\(641\) 39.9747 1.57891 0.789453 0.613811i \(-0.210364\pi\)
0.789453 + 0.613811i \(0.210364\pi\)
\(642\) −0.0338373 −0.00133545
\(643\) −15.1256 −0.596495 −0.298247 0.954489i \(-0.596402\pi\)
−0.298247 + 0.954489i \(0.596402\pi\)
\(644\) −30.4658 −1.20052
\(645\) 7.75757 0.305454
\(646\) −0.662596 −0.0260695
\(647\) 43.0209 1.69133 0.845664 0.533716i \(-0.179205\pi\)
0.845664 + 0.533716i \(0.179205\pi\)
\(648\) 4.98995 0.196024
\(649\) −3.51459 −0.137960
\(650\) −1.46928 −0.0576301
\(651\) −16.4368 −0.644207
\(652\) −11.2437 −0.440336
\(653\) 33.2486 1.30112 0.650559 0.759455i \(-0.274534\pi\)
0.650559 + 0.759455i \(0.274534\pi\)
\(654\) −1.24262 −0.0485901
\(655\) −37.7005 −1.47308
\(656\) −19.7695 −0.771870
\(657\) −5.68645 −0.221850
\(658\) −1.24990 −0.0487261
\(659\) 42.2827 1.64710 0.823549 0.567245i \(-0.191991\pi\)
0.823549 + 0.567245i \(0.191991\pi\)
\(660\) 17.9512 0.698748
\(661\) −16.5817 −0.644955 −0.322477 0.946577i \(-0.604516\pi\)
−0.322477 + 0.946577i \(0.604516\pi\)
\(662\) 8.24400 0.320412
\(663\) −12.3100 −0.478080
\(664\) 15.4805 0.600759
\(665\) −5.93213 −0.230038
\(666\) 3.17564 0.123054
\(667\) −36.0264 −1.39495
\(668\) 30.9588 1.19783
\(669\) 27.0425 1.04552
\(670\) 0.922208 0.0356280
\(671\) 43.4310 1.67663
\(672\) −10.8246 −0.417569
\(673\) 12.5066 0.482096 0.241048 0.970513i \(-0.422509\pi\)
0.241048 + 0.970513i \(0.422509\pi\)
\(674\) −3.77361 −0.145354
\(675\) −6.25497 −0.240754
\(676\) −17.3283 −0.666474
\(677\) 41.3779 1.59028 0.795141 0.606424i \(-0.207397\pi\)
0.795141 + 0.606424i \(0.207397\pi\)
\(678\) 0.842129 0.0323418
\(679\) −39.6664 −1.52226
\(680\) −4.16137 −0.159581
\(681\) 15.7915 0.605130
\(682\) 4.74521 0.181703
\(683\) −12.2490 −0.468694 −0.234347 0.972153i \(-0.575295\pi\)
−0.234347 + 0.972153i \(0.575295\pi\)
\(684\) −2.59645 −0.0992776
\(685\) −15.3333 −0.585856
\(686\) −5.55247 −0.211994
\(687\) −31.2275 −1.19140
\(688\) −10.0529 −0.383262
\(689\) 9.58367 0.365109
\(690\) −5.00338 −0.190476
\(691\) −29.4843 −1.12164 −0.560819 0.827939i \(-0.689514\pi\)
−0.560819 + 0.827939i \(0.689514\pi\)
\(692\) 25.9643 0.987013
\(693\) −9.21030 −0.349871
\(694\) 4.38010 0.166266
\(695\) 14.8159 0.562000
\(696\) −8.47591 −0.321278
\(697\) −10.6630 −0.403888
\(698\) 1.40243 0.0530827
\(699\) 21.9111 0.828755
\(700\) 5.18737 0.196064
\(701\) −16.4542 −0.621465 −0.310733 0.950497i \(-0.600574\pi\)
−0.310733 + 0.950497i \(0.600574\pi\)
\(702\) 7.50298 0.283182
\(703\) 12.5909 0.474875
\(704\) −21.1070 −0.795500
\(705\) 4.92526 0.185496
\(706\) −5.57892 −0.209966
\(707\) 37.7770 1.42075
\(708\) −2.70849 −0.101791
\(709\) −46.2347 −1.73638 −0.868190 0.496232i \(-0.834717\pi\)
−0.868190 + 0.496232i \(0.834717\pi\)
\(710\) −2.56340 −0.0962027
\(711\) −14.8782 −0.557976
\(712\) 10.6902 0.400631
\(713\) 31.7344 1.18846
\(714\) −1.81132 −0.0677870
\(715\) 31.8170 1.18989
\(716\) −42.5683 −1.59085
\(717\) −10.1487 −0.379012
\(718\) 2.83277 0.105718
\(719\) −23.8436 −0.889218 −0.444609 0.895725i \(-0.646657\pi\)
−0.444609 + 0.895725i \(0.646657\pi\)
\(720\) −7.64019 −0.284733
\(721\) 28.5462 1.06312
\(722\) −4.94561 −0.184057
\(723\) 18.0885 0.672717
\(724\) −6.93338 −0.257677
\(725\) 6.13418 0.227818
\(726\) −0.314234 −0.0116623
\(727\) 38.1659 1.41549 0.707747 0.706466i \(-0.249712\pi\)
0.707747 + 0.706466i \(0.249712\pi\)
\(728\) −12.7041 −0.470845
\(729\) 28.3241 1.04904
\(730\) 2.89045 0.106980
\(731\) −5.42215 −0.200546
\(732\) 33.4697 1.23708
\(733\) −50.9077 −1.88032 −0.940159 0.340737i \(-0.889323\pi\)
−0.940159 + 0.340737i \(0.889323\pi\)
\(734\) −0.362885 −0.0133943
\(735\) 2.83158 0.104444
\(736\) 20.8991 0.770351
\(737\) 5.67698 0.209114
\(738\) 1.74143 0.0641028
\(739\) 48.7104 1.79184 0.895920 0.444216i \(-0.146518\pi\)
0.895920 + 0.444216i \(0.146518\pi\)
\(740\) 38.7309 1.42378
\(741\) 7.97095 0.292820
\(742\) 1.41017 0.0517688
\(743\) 0.675629 0.0247864 0.0123932 0.999923i \(-0.496055\pi\)
0.0123932 + 0.999923i \(0.496055\pi\)
\(744\) 7.46612 0.273721
\(745\) −42.5306 −1.55820
\(746\) 9.46428 0.346512
\(747\) 15.3297 0.560885
\(748\) −12.5470 −0.458762
\(749\) 0.211741 0.00773683
\(750\) 4.70068 0.171644
\(751\) 20.4428 0.745967 0.372983 0.927838i \(-0.378335\pi\)
0.372983 + 0.927838i \(0.378335\pi\)
\(752\) −6.38253 −0.232747
\(753\) 0.377919 0.0137721
\(754\) −7.35810 −0.267966
\(755\) −16.1180 −0.586594
\(756\) −26.4896 −0.963418
\(757\) −21.5003 −0.781441 −0.390720 0.920509i \(-0.627774\pi\)
−0.390720 + 0.920509i \(0.627774\pi\)
\(758\) 9.12815 0.331549
\(759\) −30.8001 −1.11797
\(760\) 2.69457 0.0977423
\(761\) 29.7165 1.07722 0.538612 0.842554i \(-0.318949\pi\)
0.538612 + 0.842554i \(0.318949\pi\)
\(762\) −1.22366 −0.0443285
\(763\) 7.77579 0.281503
\(764\) 14.2392 0.515156
\(765\) −4.12084 −0.148989
\(766\) −3.91988 −0.141631
\(767\) −4.80057 −0.173339
\(768\) −13.7573 −0.496423
\(769\) 1.14904 0.0414355 0.0207178 0.999785i \(-0.493405\pi\)
0.0207178 + 0.999785i \(0.493405\pi\)
\(770\) 4.68163 0.168714
\(771\) 7.80266 0.281006
\(772\) 44.1786 1.59002
\(773\) 3.89004 0.139915 0.0699576 0.997550i \(-0.477714\pi\)
0.0699576 + 0.997550i \(0.477714\pi\)
\(774\) 0.885522 0.0318294
\(775\) −5.40337 −0.194095
\(776\) 18.0178 0.646802
\(777\) 34.4195 1.23479
\(778\) 8.29268 0.297307
\(779\) 6.90448 0.247379
\(780\) 24.5195 0.877938
\(781\) −15.7799 −0.564650
\(782\) 3.49711 0.125056
\(783\) −31.3245 −1.11945
\(784\) −3.66938 −0.131049
\(785\) 38.5126 1.37457
\(786\) 7.45392 0.265872
\(787\) 19.9603 0.711508 0.355754 0.934580i \(-0.384224\pi\)
0.355754 + 0.934580i \(0.384224\pi\)
\(788\) −1.55558 −0.0554151
\(789\) −25.6174 −0.912003
\(790\) 7.56264 0.269067
\(791\) −5.26970 −0.187369
\(792\) 4.18363 0.148659
\(793\) 59.3223 2.10660
\(794\) −1.22548 −0.0434907
\(795\) −5.55680 −0.197079
\(796\) −30.8494 −1.09343
\(797\) −42.9686 −1.52203 −0.761014 0.648736i \(-0.775298\pi\)
−0.761014 + 0.648736i \(0.775298\pi\)
\(798\) 1.17287 0.0415190
\(799\) −3.44251 −0.121787
\(800\) −3.55846 −0.125811
\(801\) 10.5860 0.374040
\(802\) 3.38626 0.119573
\(803\) 17.7932 0.627908
\(804\) 4.37492 0.154291
\(805\) 31.3092 1.10350
\(806\) 6.48148 0.228300
\(807\) −1.37910 −0.0485468
\(808\) −17.1595 −0.603671
\(809\) 28.0766 0.987119 0.493560 0.869712i \(-0.335695\pi\)
0.493560 + 0.869712i \(0.335695\pi\)
\(810\) −2.51171 −0.0882524
\(811\) −1.23855 −0.0434915 −0.0217458 0.999764i \(-0.506922\pi\)
−0.0217458 + 0.999764i \(0.506922\pi\)
\(812\) 25.9781 0.911652
\(813\) 7.16642 0.251337
\(814\) −9.93673 −0.348282
\(815\) 11.5549 0.404751
\(816\) −9.24942 −0.323794
\(817\) 3.51095 0.122833
\(818\) 2.99762 0.104809
\(819\) −12.5803 −0.439593
\(820\) 21.2389 0.741694
\(821\) 9.91227 0.345941 0.172970 0.984927i \(-0.444664\pi\)
0.172970 + 0.984927i \(0.444664\pi\)
\(822\) 3.03161 0.105740
\(823\) 4.82339 0.168133 0.0840663 0.996460i \(-0.473209\pi\)
0.0840663 + 0.996460i \(0.473209\pi\)
\(824\) −12.9667 −0.451715
\(825\) 5.24430 0.182583
\(826\) −0.706369 −0.0245777
\(827\) 24.6328 0.856566 0.428283 0.903645i \(-0.359119\pi\)
0.428283 + 0.903645i \(0.359119\pi\)
\(828\) 13.7038 0.476239
\(829\) 14.6300 0.508122 0.254061 0.967188i \(-0.418234\pi\)
0.254061 + 0.967188i \(0.418234\pi\)
\(830\) −7.79215 −0.270469
\(831\) −8.45844 −0.293420
\(832\) −28.8300 −0.999502
\(833\) −1.97913 −0.0685728
\(834\) −2.92932 −0.101434
\(835\) −31.8158 −1.10103
\(836\) 8.12440 0.280988
\(837\) 27.5926 0.953741
\(838\) 0.0906298 0.00313076
\(839\) −42.5008 −1.46729 −0.733645 0.679533i \(-0.762182\pi\)
−0.733645 + 0.679533i \(0.762182\pi\)
\(840\) 7.36608 0.254154
\(841\) 1.71964 0.0592979
\(842\) 6.80320 0.234454
\(843\) −26.8639 −0.925243
\(844\) 19.1633 0.659627
\(845\) 17.8080 0.612615
\(846\) 0.562215 0.0193293
\(847\) 1.96635 0.0675646
\(848\) 7.20094 0.247281
\(849\) −1.97915 −0.0679242
\(850\) −0.595449 −0.0204237
\(851\) −66.4535 −2.27800
\(852\) −12.1607 −0.416617
\(853\) 27.8087 0.952153 0.476077 0.879404i \(-0.342058\pi\)
0.476077 + 0.879404i \(0.342058\pi\)
\(854\) 8.72884 0.298695
\(855\) 2.66832 0.0912548
\(856\) −0.0961796 −0.00328735
\(857\) −25.9123 −0.885149 −0.442574 0.896732i \(-0.645935\pi\)
−0.442574 + 0.896732i \(0.645935\pi\)
\(858\) −6.29067 −0.214760
\(859\) 53.1905 1.81484 0.907418 0.420229i \(-0.138050\pi\)
0.907418 + 0.420229i \(0.138050\pi\)
\(860\) 10.8000 0.368278
\(861\) 18.8746 0.643244
\(862\) −6.43160 −0.219061
\(863\) −27.3604 −0.931360 −0.465680 0.884953i \(-0.654190\pi\)
−0.465680 + 0.884953i \(0.654190\pi\)
\(864\) 18.1715 0.618207
\(865\) −26.6830 −0.907251
\(866\) −7.58934 −0.257896
\(867\) 18.4560 0.626798
\(868\) −22.8831 −0.776704
\(869\) 46.5545 1.57925
\(870\) 4.26637 0.144643
\(871\) 7.75419 0.262741
\(872\) −3.53202 −0.119609
\(873\) 17.8423 0.603871
\(874\) −2.26445 −0.0765961
\(875\) −29.4150 −0.994407
\(876\) 13.7122 0.463291
\(877\) −58.1170 −1.96247 −0.981235 0.192813i \(-0.938239\pi\)
−0.981235 + 0.192813i \(0.938239\pi\)
\(878\) 7.44199 0.251155
\(879\) 41.1625 1.38838
\(880\) 23.9065 0.805888
\(881\) −46.7912 −1.57644 −0.788218 0.615396i \(-0.788996\pi\)
−0.788218 + 0.615396i \(0.788996\pi\)
\(882\) 0.323223 0.0108835
\(883\) 25.8997 0.871593 0.435797 0.900045i \(-0.356467\pi\)
0.435797 + 0.900045i \(0.356467\pi\)
\(884\) −17.1379 −0.576409
\(885\) 2.78347 0.0935653
\(886\) 1.78694 0.0600334
\(887\) 47.8720 1.60738 0.803692 0.595046i \(-0.202866\pi\)
0.803692 + 0.595046i \(0.202866\pi\)
\(888\) −15.6345 −0.524658
\(889\) 7.65716 0.256813
\(890\) −5.38092 −0.180369
\(891\) −15.4617 −0.517987
\(892\) 37.6484 1.26056
\(893\) 2.22909 0.0745937
\(894\) 8.40890 0.281236
\(895\) 43.7468 1.46229
\(896\) −19.9402 −0.666155
\(897\) −42.0699 −1.40467
\(898\) 6.55915 0.218882
\(899\) −27.0598 −0.902495
\(900\) −2.33333 −0.0777775
\(901\) 3.88392 0.129392
\(902\) −5.44900 −0.181432
\(903\) 9.59780 0.319395
\(904\) 2.39367 0.0796124
\(905\) 7.12532 0.236854
\(906\) 3.18675 0.105873
\(907\) −55.0189 −1.82687 −0.913437 0.406980i \(-0.866582\pi\)
−0.913437 + 0.406980i \(0.866582\pi\)
\(908\) 21.9848 0.729591
\(909\) −16.9924 −0.563603
\(910\) 6.39463 0.211980
\(911\) −46.9311 −1.55490 −0.777448 0.628947i \(-0.783486\pi\)
−0.777448 + 0.628947i \(0.783486\pi\)
\(912\) 5.98918 0.198322
\(913\) −47.9674 −1.58749
\(914\) 8.16547 0.270090
\(915\) −34.3963 −1.13711
\(916\) −43.4747 −1.43645
\(917\) −46.6436 −1.54031
\(918\) 3.04069 0.100358
\(919\) −10.0327 −0.330948 −0.165474 0.986214i \(-0.552915\pi\)
−0.165474 + 0.986214i \(0.552915\pi\)
\(920\) −14.2217 −0.468874
\(921\) 20.1940 0.665415
\(922\) −2.66146 −0.0876506
\(923\) −21.5538 −0.709452
\(924\) 22.2095 0.730638
\(925\) 11.3150 0.372034
\(926\) 10.8907 0.357890
\(927\) −12.8404 −0.421733
\(928\) −17.8206 −0.584990
\(929\) −24.5291 −0.804773 −0.402387 0.915470i \(-0.631819\pi\)
−0.402387 + 0.915470i \(0.631819\pi\)
\(930\) −3.75809 −0.123233
\(931\) 1.28153 0.0420003
\(932\) 30.5045 0.999209
\(933\) 20.6764 0.676916
\(934\) 8.28540 0.271107
\(935\) 12.8943 0.421689
\(936\) 5.71441 0.186781
\(937\) 8.89765 0.290673 0.145337 0.989382i \(-0.453573\pi\)
0.145337 + 0.989382i \(0.453573\pi\)
\(938\) 1.14097 0.0372540
\(939\) 19.8429 0.647549
\(940\) 6.85691 0.223648
\(941\) −36.1992 −1.18006 −0.590030 0.807381i \(-0.700884\pi\)
−0.590030 + 0.807381i \(0.700884\pi\)
\(942\) −7.61448 −0.248093
\(943\) −36.4411 −1.18669
\(944\) −3.60704 −0.117399
\(945\) 27.2229 0.885562
\(946\) −2.77084 −0.0900877
\(947\) 15.3584 0.499081 0.249541 0.968364i \(-0.419720\pi\)
0.249541 + 0.968364i \(0.419720\pi\)
\(948\) 35.8768 1.16523
\(949\) 24.3037 0.788931
\(950\) 0.385565 0.0125094
\(951\) −25.4534 −0.825383
\(952\) −5.14852 −0.166864
\(953\) −5.78646 −0.187442 −0.0937209 0.995599i \(-0.529876\pi\)
−0.0937209 + 0.995599i \(0.529876\pi\)
\(954\) −0.634305 −0.0205364
\(955\) −14.6334 −0.473525
\(956\) −14.1290 −0.456965
\(957\) 26.2632 0.848968
\(958\) −4.02418 −0.130015
\(959\) −18.9706 −0.612593
\(960\) 16.7162 0.539514
\(961\) −7.16401 −0.231097
\(962\) −13.5726 −0.437597
\(963\) −0.0952428 −0.00306916
\(964\) 25.1826 0.811079
\(965\) −45.4016 −1.46153
\(966\) −6.19027 −0.199169
\(967\) −27.8199 −0.894629 −0.447315 0.894377i \(-0.647620\pi\)
−0.447315 + 0.894377i \(0.647620\pi\)
\(968\) −0.893181 −0.0287079
\(969\) 3.23035 0.103774
\(970\) −9.06931 −0.291198
\(971\) −26.2776 −0.843290 −0.421645 0.906761i \(-0.638547\pi\)
−0.421645 + 0.906761i \(0.638547\pi\)
\(972\) 20.6379 0.661959
\(973\) 18.3305 0.587649
\(974\) −9.85630 −0.315816
\(975\) 7.16319 0.229406
\(976\) 44.5734 1.42676
\(977\) −38.8447 −1.24275 −0.621377 0.783512i \(-0.713426\pi\)
−0.621377 + 0.783512i \(0.713426\pi\)
\(978\) −2.28457 −0.0730525
\(979\) −33.1242 −1.05865
\(980\) 3.94210 0.125926
\(981\) −3.49762 −0.111670
\(982\) −8.36684 −0.266996
\(983\) 15.9632 0.509147 0.254574 0.967053i \(-0.418065\pi\)
0.254574 + 0.967053i \(0.418065\pi\)
\(984\) −8.57347 −0.273312
\(985\) 1.59864 0.0509369
\(986\) −2.98198 −0.0949655
\(987\) 6.09361 0.193962
\(988\) 11.0971 0.353046
\(989\) −18.5304 −0.589234
\(990\) −2.10584 −0.0669280
\(991\) 14.6111 0.464138 0.232069 0.972699i \(-0.425450\pi\)
0.232069 + 0.972699i \(0.425450\pi\)
\(992\) 15.6975 0.498396
\(993\) −40.1919 −1.27545
\(994\) −3.17148 −0.100593
\(995\) 31.7035 1.00507
\(996\) −36.9656 −1.17130
\(997\) 44.1438 1.39805 0.699024 0.715098i \(-0.253618\pi\)
0.699024 + 0.715098i \(0.253618\pi\)
\(998\) −6.32992 −0.200370
\(999\) −57.7805 −1.82809
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 269.2.a.c.1.9 16
3.2 odd 2 2421.2.a.i.1.8 16
4.3 odd 2 4304.2.a.l.1.12 16
5.4 even 2 6725.2.a.i.1.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
269.2.a.c.1.9 16 1.1 even 1 trivial
2421.2.a.i.1.8 16 3.2 odd 2
4304.2.a.l.1.12 16 4.3 odd 2
6725.2.a.i.1.8 16 5.4 even 2