Properties

Label 2421.2.a.i.1.8
Level $2421$
Weight $2$
Character 2421.1
Self dual yes
Analytic conductor $19.332$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2421,2,Mod(1,2421)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2421.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2421, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2421 = 3^{2} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2421.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-1,0,25,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(19.3317823294\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} - 28 x^{14} + 27 x^{13} + 314 x^{12} - 283 x^{11} - 1803 x^{10} + 1435 x^{9} + \cdots + 172 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 269)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(0.282877\) of defining polynomial
Character \(\chi\) \(=\) 2421.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.282877 q^{2} -1.91998 q^{4} -1.97313 q^{5} +2.44119 q^{7} +1.10887 q^{8} +0.558153 q^{10} -3.43591 q^{11} +4.69311 q^{13} -0.690556 q^{14} +3.52629 q^{16} -1.90195 q^{17} -1.23155 q^{19} +3.78838 q^{20} +0.971939 q^{22} -6.50000 q^{23} -1.10675 q^{25} -1.32757 q^{26} -4.68704 q^{28} +5.54253 q^{29} +4.88221 q^{31} -3.21525 q^{32} +0.538017 q^{34} -4.81680 q^{35} -10.2236 q^{37} +0.348377 q^{38} -2.18795 q^{40} +5.60633 q^{41} -2.85084 q^{43} +6.59688 q^{44} +1.83870 q^{46} +1.80999 q^{47} -1.04058 q^{49} +0.313073 q^{50} -9.01068 q^{52} -2.04207 q^{53} +6.77951 q^{55} +2.70697 q^{56} -1.56785 q^{58} +1.02290 q^{59} +12.6403 q^{61} -1.38106 q^{62} -6.14306 q^{64} -9.26012 q^{65} +1.65225 q^{67} +3.65171 q^{68} +1.36256 q^{70} +4.59265 q^{71} +5.17859 q^{73} +2.89202 q^{74} +2.36455 q^{76} -8.38772 q^{77} +13.5494 q^{79} -6.95784 q^{80} -1.58590 q^{82} +13.9606 q^{83} +3.75280 q^{85} +0.806435 q^{86} -3.80998 q^{88} +9.64059 q^{89} +11.4568 q^{91} +12.4799 q^{92} -0.512003 q^{94} +2.43001 q^{95} -16.2488 q^{97} +0.294355 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - q^{2} + 25 q^{4} + q^{5} + 11 q^{7} + 7 q^{10} - 16 q^{11} - q^{13} + 9 q^{14} + 39 q^{16} + 2 q^{17} + 35 q^{19} + 16 q^{20} - 3 q^{22} - q^{23} + 13 q^{25} + 14 q^{26} + 11 q^{28} - 2 q^{29}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.282877 −0.200024 −0.100012 0.994986i \(-0.531888\pi\)
−0.100012 + 0.994986i \(0.531888\pi\)
\(3\) 0 0
\(4\) −1.91998 −0.959990
\(5\) −1.97313 −0.882412 −0.441206 0.897406i \(-0.645449\pi\)
−0.441206 + 0.897406i \(0.645449\pi\)
\(6\) 0 0
\(7\) 2.44119 0.922684 0.461342 0.887222i \(-0.347368\pi\)
0.461342 + 0.887222i \(0.347368\pi\)
\(8\) 1.10887 0.392045
\(9\) 0 0
\(10\) 0.558153 0.176503
\(11\) −3.43591 −1.03597 −0.517983 0.855391i \(-0.673317\pi\)
−0.517983 + 0.855391i \(0.673317\pi\)
\(12\) 0 0
\(13\) 4.69311 1.30163 0.650817 0.759235i \(-0.274427\pi\)
0.650817 + 0.759235i \(0.274427\pi\)
\(14\) −0.690556 −0.184559
\(15\) 0 0
\(16\) 3.52629 0.881572
\(17\) −1.90195 −0.461291 −0.230645 0.973038i \(-0.574084\pi\)
−0.230645 + 0.973038i \(0.574084\pi\)
\(18\) 0 0
\(19\) −1.23155 −0.282537 −0.141269 0.989971i \(-0.545118\pi\)
−0.141269 + 0.989971i \(0.545118\pi\)
\(20\) 3.78838 0.847107
\(21\) 0 0
\(22\) 0.971939 0.207218
\(23\) −6.50000 −1.35534 −0.677672 0.735365i \(-0.737011\pi\)
−0.677672 + 0.735365i \(0.737011\pi\)
\(24\) 0 0
\(25\) −1.10675 −0.221349
\(26\) −1.32757 −0.260358
\(27\) 0 0
\(28\) −4.68704 −0.885768
\(29\) 5.54253 1.02922 0.514611 0.857424i \(-0.327936\pi\)
0.514611 + 0.857424i \(0.327936\pi\)
\(30\) 0 0
\(31\) 4.88221 0.876871 0.438436 0.898763i \(-0.355533\pi\)
0.438436 + 0.898763i \(0.355533\pi\)
\(32\) −3.21525 −0.568380
\(33\) 0 0
\(34\) 0.538017 0.0922692
\(35\) −4.81680 −0.814187
\(36\) 0 0
\(37\) −10.2236 −1.68075 −0.840377 0.542003i \(-0.817666\pi\)
−0.840377 + 0.542003i \(0.817666\pi\)
\(38\) 0.348377 0.0565142
\(39\) 0 0
\(40\) −2.18795 −0.345945
\(41\) 5.60633 0.875561 0.437780 0.899082i \(-0.355765\pi\)
0.437780 + 0.899082i \(0.355765\pi\)
\(42\) 0 0
\(43\) −2.85084 −0.434749 −0.217374 0.976088i \(-0.569749\pi\)
−0.217374 + 0.976088i \(0.569749\pi\)
\(44\) 6.59688 0.994518
\(45\) 0 0
\(46\) 1.83870 0.271101
\(47\) 1.80999 0.264014 0.132007 0.991249i \(-0.457858\pi\)
0.132007 + 0.991249i \(0.457858\pi\)
\(48\) 0 0
\(49\) −1.04058 −0.148654
\(50\) 0.313073 0.0442752
\(51\) 0 0
\(52\) −9.01068 −1.24956
\(53\) −2.04207 −0.280500 −0.140250 0.990116i \(-0.544791\pi\)
−0.140250 + 0.990116i \(0.544791\pi\)
\(54\) 0 0
\(55\) 6.77951 0.914149
\(56\) 2.70697 0.361734
\(57\) 0 0
\(58\) −1.56785 −0.205869
\(59\) 1.02290 0.133170 0.0665850 0.997781i \(-0.478790\pi\)
0.0665850 + 0.997781i \(0.478790\pi\)
\(60\) 0 0
\(61\) 12.6403 1.61843 0.809213 0.587515i \(-0.199894\pi\)
0.809213 + 0.587515i \(0.199894\pi\)
\(62\) −1.38106 −0.175395
\(63\) 0 0
\(64\) −6.14306 −0.767882
\(65\) −9.26012 −1.14858
\(66\) 0 0
\(67\) 1.65225 0.201854 0.100927 0.994894i \(-0.467819\pi\)
0.100927 + 0.994894i \(0.467819\pi\)
\(68\) 3.65171 0.442835
\(69\) 0 0
\(70\) 1.36256 0.162857
\(71\) 4.59265 0.545047 0.272523 0.962149i \(-0.412142\pi\)
0.272523 + 0.962149i \(0.412142\pi\)
\(72\) 0 0
\(73\) 5.17859 0.606108 0.303054 0.952973i \(-0.401994\pi\)
0.303054 + 0.952973i \(0.401994\pi\)
\(74\) 2.89202 0.336191
\(75\) 0 0
\(76\) 2.36455 0.271233
\(77\) −8.38772 −0.955870
\(78\) 0 0
\(79\) 13.5494 1.52443 0.762213 0.647326i \(-0.224113\pi\)
0.762213 + 0.647326i \(0.224113\pi\)
\(80\) −6.95784 −0.777910
\(81\) 0 0
\(82\) −1.58590 −0.175133
\(83\) 13.9606 1.53237 0.766187 0.642618i \(-0.222152\pi\)
0.766187 + 0.642618i \(0.222152\pi\)
\(84\) 0 0
\(85\) 3.75280 0.407049
\(86\) 0.806435 0.0869601
\(87\) 0 0
\(88\) −3.80998 −0.406145
\(89\) 9.64059 1.02190 0.510950 0.859610i \(-0.329294\pi\)
0.510950 + 0.859610i \(0.329294\pi\)
\(90\) 0 0
\(91\) 11.4568 1.20100
\(92\) 12.4799 1.30112
\(93\) 0 0
\(94\) −0.512003 −0.0528090
\(95\) 2.43001 0.249314
\(96\) 0 0
\(97\) −16.2488 −1.64982 −0.824908 0.565267i \(-0.808773\pi\)
−0.824908 + 0.565267i \(0.808773\pi\)
\(98\) 0.294355 0.0297344
\(99\) 0 0
\(100\) 2.12493 0.212493
\(101\) −15.4748 −1.53980 −0.769900 0.638165i \(-0.779694\pi\)
−0.769900 + 0.638165i \(0.779694\pi\)
\(102\) 0 0
\(103\) 11.6936 1.15220 0.576101 0.817379i \(-0.304574\pi\)
0.576101 + 0.817379i \(0.304574\pi\)
\(104\) 5.20405 0.510299
\(105\) 0 0
\(106\) 0.577654 0.0561067
\(107\) −0.0867365 −0.00838514 −0.00419257 0.999991i \(-0.501335\pi\)
−0.00419257 + 0.999991i \(0.501335\pi\)
\(108\) 0 0
\(109\) 3.18524 0.305091 0.152545 0.988296i \(-0.451253\pi\)
0.152545 + 0.988296i \(0.451253\pi\)
\(110\) −1.91776 −0.182852
\(111\) 0 0
\(112\) 8.60835 0.813413
\(113\) 2.15866 0.203070 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(114\) 0 0
\(115\) 12.8254 1.19597
\(116\) −10.6416 −0.988043
\(117\) 0 0
\(118\) −0.289354 −0.0266372
\(119\) −4.64303 −0.425626
\(120\) 0 0
\(121\) 0.805487 0.0732261
\(122\) −3.57565 −0.323724
\(123\) 0 0
\(124\) −9.37375 −0.841788
\(125\) 12.0494 1.07773
\(126\) 0 0
\(127\) 3.13665 0.278333 0.139166 0.990269i \(-0.455558\pi\)
0.139166 + 0.990269i \(0.455558\pi\)
\(128\) 8.16822 0.721975
\(129\) 0 0
\(130\) 2.61947 0.229743
\(131\) 19.1069 1.66938 0.834689 0.550721i \(-0.185647\pi\)
0.834689 + 0.550721i \(0.185647\pi\)
\(132\) 0 0
\(133\) −3.00645 −0.260693
\(134\) −0.467383 −0.0403757
\(135\) 0 0
\(136\) −2.10902 −0.180847
\(137\) 7.77105 0.663925 0.331963 0.943293i \(-0.392289\pi\)
0.331963 + 0.943293i \(0.392289\pi\)
\(138\) 0 0
\(139\) 7.50884 0.636891 0.318446 0.947941i \(-0.396839\pi\)
0.318446 + 0.947941i \(0.396839\pi\)
\(140\) 9.24816 0.781612
\(141\) 0 0
\(142\) −1.29915 −0.109022
\(143\) −16.1251 −1.34845
\(144\) 0 0
\(145\) −10.9361 −0.908198
\(146\) −1.46490 −0.121236
\(147\) 0 0
\(148\) 19.6292 1.61351
\(149\) 21.5548 1.76584 0.882921 0.469522i \(-0.155574\pi\)
0.882921 + 0.469522i \(0.155574\pi\)
\(150\) 0 0
\(151\) −8.16873 −0.664762 −0.332381 0.943145i \(-0.607852\pi\)
−0.332381 + 0.943145i \(0.607852\pi\)
\(152\) −1.36563 −0.110767
\(153\) 0 0
\(154\) 2.37269 0.191197
\(155\) −9.63325 −0.773761
\(156\) 0 0
\(157\) 19.5185 1.55774 0.778872 0.627183i \(-0.215792\pi\)
0.778872 + 0.627183i \(0.215792\pi\)
\(158\) −3.83281 −0.304922
\(159\) 0 0
\(160\) 6.34411 0.501546
\(161\) −15.8677 −1.25055
\(162\) 0 0
\(163\) 5.85613 0.458687 0.229344 0.973345i \(-0.426342\pi\)
0.229344 + 0.973345i \(0.426342\pi\)
\(164\) −10.7640 −0.840530
\(165\) 0 0
\(166\) −3.94912 −0.306511
\(167\) 16.1245 1.24775 0.623876 0.781523i \(-0.285557\pi\)
0.623876 + 0.781523i \(0.285557\pi\)
\(168\) 0 0
\(169\) 9.02526 0.694251
\(170\) −1.06158 −0.0814194
\(171\) 0 0
\(172\) 5.47355 0.417354
\(173\) 13.5232 1.02815 0.514074 0.857746i \(-0.328136\pi\)
0.514074 + 0.857746i \(0.328136\pi\)
\(174\) 0 0
\(175\) −2.70178 −0.204236
\(176\) −12.1160 −0.913279
\(177\) 0 0
\(178\) −2.72710 −0.204405
\(179\) −22.1712 −1.65715 −0.828577 0.559875i \(-0.810849\pi\)
−0.828577 + 0.559875i \(0.810849\pi\)
\(180\) 0 0
\(181\) 3.61117 0.268416 0.134208 0.990953i \(-0.457151\pi\)
0.134208 + 0.990953i \(0.457151\pi\)
\(182\) −3.24085 −0.240228
\(183\) 0 0
\(184\) −7.20766 −0.531356
\(185\) 20.1726 1.48312
\(186\) 0 0
\(187\) 6.53494 0.477882
\(188\) −3.47514 −0.253451
\(189\) 0 0
\(190\) −0.687394 −0.0498688
\(191\) 7.41632 0.536626 0.268313 0.963332i \(-0.413534\pi\)
0.268313 + 0.963332i \(0.413534\pi\)
\(192\) 0 0
\(193\) −23.0099 −1.65629 −0.828145 0.560514i \(-0.810604\pi\)
−0.828145 + 0.560514i \(0.810604\pi\)
\(194\) 4.59640 0.330003
\(195\) 0 0
\(196\) 1.99789 0.142707
\(197\) −0.810204 −0.0577247 −0.0288623 0.999583i \(-0.509188\pi\)
−0.0288623 + 0.999583i \(0.509188\pi\)
\(198\) 0 0
\(199\) 16.0676 1.13900 0.569500 0.821991i \(-0.307137\pi\)
0.569500 + 0.821991i \(0.307137\pi\)
\(200\) −1.22724 −0.0867789
\(201\) 0 0
\(202\) 4.37746 0.307997
\(203\) 13.5304 0.949647
\(204\) 0 0
\(205\) −11.0620 −0.772605
\(206\) −3.30784 −0.230468
\(207\) 0 0
\(208\) 16.5493 1.14748
\(209\) 4.23150 0.292699
\(210\) 0 0
\(211\) −9.98098 −0.687119 −0.343559 0.939131i \(-0.611633\pi\)
−0.343559 + 0.939131i \(0.611633\pi\)
\(212\) 3.92074 0.269278
\(213\) 0 0
\(214\) 0.0245357 0.00167723
\(215\) 5.62508 0.383627
\(216\) 0 0
\(217\) 11.9184 0.809075
\(218\) −0.901030 −0.0610255
\(219\) 0 0
\(220\) −13.0165 −0.877574
\(221\) −8.92606 −0.600432
\(222\) 0 0
\(223\) −19.6088 −1.31310 −0.656550 0.754283i \(-0.727985\pi\)
−0.656550 + 0.754283i \(0.727985\pi\)
\(224\) −7.84903 −0.524436
\(225\) 0 0
\(226\) −0.610634 −0.0406188
\(227\) 11.4505 0.759998 0.379999 0.924987i \(-0.375924\pi\)
0.379999 + 0.924987i \(0.375924\pi\)
\(228\) 0 0
\(229\) 22.6433 1.49631 0.748156 0.663523i \(-0.230939\pi\)
0.748156 + 0.663523i \(0.230939\pi\)
\(230\) −3.62799 −0.239223
\(231\) 0 0
\(232\) 6.14595 0.403501
\(233\) 15.8879 1.04085 0.520427 0.853906i \(-0.325773\pi\)
0.520427 + 0.853906i \(0.325773\pi\)
\(234\) 0 0
\(235\) −3.57134 −0.232969
\(236\) −1.96395 −0.127842
\(237\) 0 0
\(238\) 1.31340 0.0851353
\(239\) −7.35894 −0.476010 −0.238005 0.971264i \(-0.576493\pi\)
−0.238005 + 0.971264i \(0.576493\pi\)
\(240\) 0 0
\(241\) −13.1161 −0.844882 −0.422441 0.906390i \(-0.638827\pi\)
−0.422441 + 0.906390i \(0.638827\pi\)
\(242\) −0.227853 −0.0146470
\(243\) 0 0
\(244\) −24.2692 −1.55367
\(245\) 2.05320 0.131174
\(246\) 0 0
\(247\) −5.77980 −0.367760
\(248\) 5.41374 0.343773
\(249\) 0 0
\(250\) −3.40850 −0.215572
\(251\) 0.274032 0.0172967 0.00864837 0.999963i \(-0.497247\pi\)
0.00864837 + 0.999963i \(0.497247\pi\)
\(252\) 0 0
\(253\) 22.3334 1.40409
\(254\) −0.887284 −0.0556732
\(255\) 0 0
\(256\) 9.97552 0.623470
\(257\) 5.65777 0.352922 0.176461 0.984308i \(-0.443535\pi\)
0.176461 + 0.984308i \(0.443535\pi\)
\(258\) 0 0
\(259\) −24.9578 −1.55080
\(260\) 17.7793 1.10262
\(261\) 0 0
\(262\) −5.40490 −0.333916
\(263\) −18.5754 −1.14541 −0.572703 0.819763i \(-0.694105\pi\)
−0.572703 + 0.819763i \(0.694105\pi\)
\(264\) 0 0
\(265\) 4.02928 0.247517
\(266\) 0.850455 0.0521447
\(267\) 0 0
\(268\) −3.17229 −0.193778
\(269\) −1.00000 −0.0609711
\(270\) 0 0
\(271\) −5.19643 −0.315661 −0.157830 0.987466i \(-0.550450\pi\)
−0.157830 + 0.987466i \(0.550450\pi\)
\(272\) −6.70683 −0.406661
\(273\) 0 0
\(274\) −2.19825 −0.132801
\(275\) 3.80269 0.229311
\(276\) 0 0
\(277\) 6.13328 0.368513 0.184257 0.982878i \(-0.441012\pi\)
0.184257 + 0.982878i \(0.441012\pi\)
\(278\) −2.12407 −0.127393
\(279\) 0 0
\(280\) −5.34120 −0.319198
\(281\) −19.4792 −1.16203 −0.581017 0.813891i \(-0.697345\pi\)
−0.581017 + 0.813891i \(0.697345\pi\)
\(282\) 0 0
\(283\) 1.43510 0.0853076 0.0426538 0.999090i \(-0.486419\pi\)
0.0426538 + 0.999090i \(0.486419\pi\)
\(284\) −8.81780 −0.523240
\(285\) 0 0
\(286\) 4.56141 0.269722
\(287\) 13.6861 0.807866
\(288\) 0 0
\(289\) −13.3826 −0.787211
\(290\) 3.09358 0.181661
\(291\) 0 0
\(292\) −9.94279 −0.581858
\(293\) 29.8473 1.74370 0.871848 0.489776i \(-0.162922\pi\)
0.871848 + 0.489776i \(0.162922\pi\)
\(294\) 0 0
\(295\) −2.01832 −0.117511
\(296\) −11.3367 −0.658931
\(297\) 0 0
\(298\) −6.09736 −0.353210
\(299\) −30.5052 −1.76416
\(300\) 0 0
\(301\) −6.95944 −0.401136
\(302\) 2.31074 0.132968
\(303\) 0 0
\(304\) −4.34280 −0.249077
\(305\) −24.9410 −1.42812
\(306\) 0 0
\(307\) −14.6428 −0.835710 −0.417855 0.908514i \(-0.637218\pi\)
−0.417855 + 0.908514i \(0.637218\pi\)
\(308\) 16.1043 0.917626
\(309\) 0 0
\(310\) 2.72502 0.154771
\(311\) 14.9926 0.850155 0.425077 0.905157i \(-0.360247\pi\)
0.425077 + 0.905157i \(0.360247\pi\)
\(312\) 0 0
\(313\) −14.3883 −0.813272 −0.406636 0.913590i \(-0.633298\pi\)
−0.406636 + 0.913590i \(0.633298\pi\)
\(314\) −5.52132 −0.311586
\(315\) 0 0
\(316\) −26.0146 −1.46344
\(317\) −18.4565 −1.03662 −0.518309 0.855193i \(-0.673438\pi\)
−0.518309 + 0.855193i \(0.673438\pi\)
\(318\) 0 0
\(319\) −19.0436 −1.06624
\(320\) 12.1211 0.677589
\(321\) 0 0
\(322\) 4.48861 0.250141
\(323\) 2.34235 0.130332
\(324\) 0 0
\(325\) −5.19408 −0.288116
\(326\) −1.65656 −0.0917484
\(327\) 0 0
\(328\) 6.21669 0.343259
\(329\) 4.41853 0.243601
\(330\) 0 0
\(331\) 29.1435 1.60187 0.800935 0.598752i \(-0.204336\pi\)
0.800935 + 0.598752i \(0.204336\pi\)
\(332\) −26.8041 −1.47106
\(333\) 0 0
\(334\) −4.56125 −0.249580
\(335\) −3.26011 −0.178119
\(336\) 0 0
\(337\) −13.3401 −0.726682 −0.363341 0.931656i \(-0.618364\pi\)
−0.363341 + 0.931656i \(0.618364\pi\)
\(338\) −2.55303 −0.138867
\(339\) 0 0
\(340\) −7.20531 −0.390763
\(341\) −16.7748 −0.908409
\(342\) 0 0
\(343\) −19.6286 −1.05984
\(344\) −3.16121 −0.170441
\(345\) 0 0
\(346\) −3.82539 −0.205654
\(347\) −15.4841 −0.831232 −0.415616 0.909540i \(-0.636434\pi\)
−0.415616 + 0.909540i \(0.636434\pi\)
\(348\) 0 0
\(349\) 4.95774 0.265382 0.132691 0.991157i \(-0.457638\pi\)
0.132691 + 0.991157i \(0.457638\pi\)
\(350\) 0.764271 0.0408520
\(351\) 0 0
\(352\) 11.0473 0.588823
\(353\) 19.7221 1.04970 0.524851 0.851194i \(-0.324121\pi\)
0.524851 + 0.851194i \(0.324121\pi\)
\(354\) 0 0
\(355\) −9.06190 −0.480956
\(356\) −18.5098 −0.981015
\(357\) 0 0
\(358\) 6.27172 0.331471
\(359\) −10.0142 −0.528527 −0.264263 0.964451i \(-0.585129\pi\)
−0.264263 + 0.964451i \(0.585129\pi\)
\(360\) 0 0
\(361\) −17.4833 −0.920173
\(362\) −1.02152 −0.0536897
\(363\) 0 0
\(364\) −21.9968 −1.15295
\(365\) −10.2180 −0.534837
\(366\) 0 0
\(367\) −1.28284 −0.0669637 −0.0334819 0.999439i \(-0.510660\pi\)
−0.0334819 + 0.999439i \(0.510660\pi\)
\(368\) −22.9209 −1.19483
\(369\) 0 0
\(370\) −5.70634 −0.296659
\(371\) −4.98509 −0.258813
\(372\) 0 0
\(373\) 33.4573 1.73235 0.866176 0.499739i \(-0.166571\pi\)
0.866176 + 0.499739i \(0.166571\pi\)
\(374\) −1.84858 −0.0955878
\(375\) 0 0
\(376\) 2.00704 0.103505
\(377\) 26.0117 1.33967
\(378\) 0 0
\(379\) 32.2690 1.65755 0.828775 0.559583i \(-0.189039\pi\)
0.828775 + 0.559583i \(0.189039\pi\)
\(380\) −4.66558 −0.239339
\(381\) 0 0
\(382\) −2.09790 −0.107338
\(383\) 13.8572 0.708071 0.354036 0.935232i \(-0.384809\pi\)
0.354036 + 0.935232i \(0.384809\pi\)
\(384\) 0 0
\(385\) 16.5501 0.843471
\(386\) 6.50897 0.331298
\(387\) 0 0
\(388\) 31.1974 1.58381
\(389\) −29.3155 −1.48636 −0.743178 0.669094i \(-0.766683\pi\)
−0.743178 + 0.669094i \(0.766683\pi\)
\(390\) 0 0
\(391\) 12.3627 0.625208
\(392\) −1.15387 −0.0582791
\(393\) 0 0
\(394\) 0.229188 0.0115463
\(395\) −26.7348 −1.34517
\(396\) 0 0
\(397\) −4.33222 −0.217428 −0.108714 0.994073i \(-0.534673\pi\)
−0.108714 + 0.994073i \(0.534673\pi\)
\(398\) −4.54514 −0.227827
\(399\) 0 0
\(400\) −3.90271 −0.195135
\(401\) −11.9708 −0.597794 −0.298897 0.954285i \(-0.596619\pi\)
−0.298897 + 0.954285i \(0.596619\pi\)
\(402\) 0 0
\(403\) 22.9127 1.14137
\(404\) 29.7113 1.47819
\(405\) 0 0
\(406\) −3.82743 −0.189952
\(407\) 35.1275 1.74120
\(408\) 0 0
\(409\) 10.5969 0.523985 0.261992 0.965070i \(-0.415620\pi\)
0.261992 + 0.965070i \(0.415620\pi\)
\(410\) 3.12919 0.154540
\(411\) 0 0
\(412\) −22.4514 −1.10610
\(413\) 2.49709 0.122874
\(414\) 0 0
\(415\) −27.5461 −1.35218
\(416\) −15.0895 −0.739823
\(417\) 0 0
\(418\) −1.19699 −0.0585468
\(419\) −0.320387 −0.0156519 −0.00782595 0.999969i \(-0.502491\pi\)
−0.00782595 + 0.999969i \(0.502491\pi\)
\(420\) 0 0
\(421\) 24.0501 1.17213 0.586064 0.810265i \(-0.300677\pi\)
0.586064 + 0.810265i \(0.300677\pi\)
\(422\) 2.82338 0.137440
\(423\) 0 0
\(424\) −2.26439 −0.109969
\(425\) 2.10498 0.102106
\(426\) 0 0
\(427\) 30.8574 1.49330
\(428\) 0.166532 0.00804965
\(429\) 0 0
\(430\) −1.59120 −0.0767346
\(431\) 22.7364 1.09518 0.547588 0.836748i \(-0.315546\pi\)
0.547588 + 0.836748i \(0.315546\pi\)
\(432\) 0 0
\(433\) −26.8292 −1.28933 −0.644663 0.764467i \(-0.723002\pi\)
−0.644663 + 0.764467i \(0.723002\pi\)
\(434\) −3.37144 −0.161834
\(435\) 0 0
\(436\) −6.11561 −0.292884
\(437\) 8.00508 0.382935
\(438\) 0 0
\(439\) 26.3083 1.25562 0.627812 0.778365i \(-0.283951\pi\)
0.627812 + 0.778365i \(0.283951\pi\)
\(440\) 7.51760 0.358387
\(441\) 0 0
\(442\) 2.52497 0.120101
\(443\) −6.31703 −0.300131 −0.150066 0.988676i \(-0.547949\pi\)
−0.150066 + 0.988676i \(0.547949\pi\)
\(444\) 0 0
\(445\) −19.0222 −0.901737
\(446\) 5.54686 0.262651
\(447\) 0 0
\(448\) −14.9964 −0.708513
\(449\) −23.1873 −1.09428 −0.547138 0.837042i \(-0.684283\pi\)
−0.547138 + 0.837042i \(0.684283\pi\)
\(450\) 0 0
\(451\) −19.2628 −0.907052
\(452\) −4.14459 −0.194945
\(453\) 0 0
\(454\) −3.23908 −0.152018
\(455\) −22.6057 −1.05977
\(456\) 0 0
\(457\) 28.8658 1.35029 0.675144 0.737686i \(-0.264082\pi\)
0.675144 + 0.737686i \(0.264082\pi\)
\(458\) −6.40526 −0.299298
\(459\) 0 0
\(460\) −24.6244 −1.14812
\(461\) 9.40857 0.438201 0.219100 0.975702i \(-0.429688\pi\)
0.219100 + 0.975702i \(0.429688\pi\)
\(462\) 0 0
\(463\) 38.4998 1.78924 0.894618 0.446831i \(-0.147447\pi\)
0.894618 + 0.446831i \(0.147447\pi\)
\(464\) 19.5446 0.907333
\(465\) 0 0
\(466\) −4.49432 −0.208196
\(467\) −29.2898 −1.35537 −0.677686 0.735352i \(-0.737017\pi\)
−0.677686 + 0.735352i \(0.737017\pi\)
\(468\) 0 0
\(469\) 4.03346 0.186248
\(470\) 1.01025 0.0465993
\(471\) 0 0
\(472\) 1.13426 0.0522087
\(473\) 9.79522 0.450385
\(474\) 0 0
\(475\) 1.36302 0.0625394
\(476\) 8.91453 0.408597
\(477\) 0 0
\(478\) 2.08167 0.0952134
\(479\) 14.2259 0.650000 0.325000 0.945714i \(-0.394636\pi\)
0.325000 + 0.945714i \(0.394636\pi\)
\(480\) 0 0
\(481\) −47.9806 −2.18773
\(482\) 3.71023 0.168997
\(483\) 0 0
\(484\) −1.54652 −0.0702964
\(485\) 32.0610 1.45582
\(486\) 0 0
\(487\) −34.8431 −1.57889 −0.789446 0.613820i \(-0.789632\pi\)
−0.789446 + 0.613820i \(0.789632\pi\)
\(488\) 14.0165 0.634496
\(489\) 0 0
\(490\) −0.580802 −0.0262380
\(491\) 29.5777 1.33482 0.667411 0.744689i \(-0.267402\pi\)
0.667411 + 0.744689i \(0.267402\pi\)
\(492\) 0 0
\(493\) −10.5416 −0.474771
\(494\) 1.63497 0.0735608
\(495\) 0 0
\(496\) 17.2161 0.773025
\(497\) 11.2115 0.502906
\(498\) 0 0
\(499\) −22.3770 −1.00173 −0.500866 0.865525i \(-0.666985\pi\)
−0.500866 + 0.865525i \(0.666985\pi\)
\(500\) −23.1347 −1.03461
\(501\) 0 0
\(502\) −0.0775172 −0.00345976
\(503\) −1.82300 −0.0812836 −0.0406418 0.999174i \(-0.512940\pi\)
−0.0406418 + 0.999174i \(0.512940\pi\)
\(504\) 0 0
\(505\) 30.5338 1.35874
\(506\) −6.31760 −0.280852
\(507\) 0 0
\(508\) −6.02231 −0.267197
\(509\) 2.76277 0.122458 0.0612288 0.998124i \(-0.480498\pi\)
0.0612288 + 0.998124i \(0.480498\pi\)
\(510\) 0 0
\(511\) 12.6419 0.559246
\(512\) −19.1583 −0.846684
\(513\) 0 0
\(514\) −1.60045 −0.0705928
\(515\) −23.0730 −1.01672
\(516\) 0 0
\(517\) −6.21895 −0.273509
\(518\) 7.05998 0.310198
\(519\) 0 0
\(520\) −10.2683 −0.450294
\(521\) −14.7532 −0.646352 −0.323176 0.946339i \(-0.604751\pi\)
−0.323176 + 0.946339i \(0.604751\pi\)
\(522\) 0 0
\(523\) 3.00571 0.131431 0.0657154 0.997838i \(-0.479067\pi\)
0.0657154 + 0.997838i \(0.479067\pi\)
\(524\) −36.6849 −1.60259
\(525\) 0 0
\(526\) 5.25454 0.229109
\(527\) −9.28573 −0.404493
\(528\) 0 0
\(529\) 19.2500 0.836956
\(530\) −1.13979 −0.0495093
\(531\) 0 0
\(532\) 5.77233 0.250262
\(533\) 26.3111 1.13966
\(534\) 0 0
\(535\) 0.171143 0.00739914
\(536\) 1.83213 0.0791360
\(537\) 0 0
\(538\) 0.282877 0.0121957
\(539\) 3.57534 0.154001
\(540\) 0 0
\(541\) 22.5866 0.971076 0.485538 0.874216i \(-0.338624\pi\)
0.485538 + 0.874216i \(0.338624\pi\)
\(542\) 1.46995 0.0631397
\(543\) 0 0
\(544\) 6.11524 0.262189
\(545\) −6.28491 −0.269216
\(546\) 0 0
\(547\) 6.83246 0.292135 0.146067 0.989275i \(-0.453338\pi\)
0.146067 + 0.989275i \(0.453338\pi\)
\(548\) −14.9203 −0.637362
\(549\) 0 0
\(550\) −1.07569 −0.0458676
\(551\) −6.82591 −0.290793
\(552\) 0 0
\(553\) 33.0767 1.40656
\(554\) −1.73496 −0.0737114
\(555\) 0 0
\(556\) −14.4168 −0.611409
\(557\) −22.0266 −0.933298 −0.466649 0.884443i \(-0.654539\pi\)
−0.466649 + 0.884443i \(0.654539\pi\)
\(558\) 0 0
\(559\) −13.3793 −0.565883
\(560\) −16.9854 −0.717765
\(561\) 0 0
\(562\) 5.51022 0.232435
\(563\) 36.1440 1.52329 0.761645 0.647995i \(-0.224392\pi\)
0.761645 + 0.647995i \(0.224392\pi\)
\(564\) 0 0
\(565\) −4.25932 −0.179191
\(566\) −0.405955 −0.0170636
\(567\) 0 0
\(568\) 5.09265 0.213683
\(569\) 4.48775 0.188136 0.0940682 0.995566i \(-0.470013\pi\)
0.0940682 + 0.995566i \(0.470013\pi\)
\(570\) 0 0
\(571\) −15.3385 −0.641896 −0.320948 0.947097i \(-0.604001\pi\)
−0.320948 + 0.947097i \(0.604001\pi\)
\(572\) 30.9599 1.29450
\(573\) 0 0
\(574\) −3.87148 −0.161593
\(575\) 7.19386 0.300005
\(576\) 0 0
\(577\) 25.5418 1.06332 0.531659 0.846958i \(-0.321569\pi\)
0.531659 + 0.846958i \(0.321569\pi\)
\(578\) 3.78562 0.157461
\(579\) 0 0
\(580\) 20.9972 0.871861
\(581\) 34.0805 1.41390
\(582\) 0 0
\(583\) 7.01638 0.290589
\(584\) 5.74239 0.237622
\(585\) 0 0
\(586\) −8.44309 −0.348781
\(587\) −6.30137 −0.260085 −0.130043 0.991508i \(-0.541511\pi\)
−0.130043 + 0.991508i \(0.541511\pi\)
\(588\) 0 0
\(589\) −6.01269 −0.247749
\(590\) 0.570934 0.0235050
\(591\) 0 0
\(592\) −36.0514 −1.48171
\(593\) 11.9031 0.488801 0.244400 0.969674i \(-0.421409\pi\)
0.244400 + 0.969674i \(0.421409\pi\)
\(594\) 0 0
\(595\) 9.16131 0.375577
\(596\) −41.3849 −1.69519
\(597\) 0 0
\(598\) 8.62920 0.352874
\(599\) 44.5084 1.81856 0.909282 0.416180i \(-0.136632\pi\)
0.909282 + 0.416180i \(0.136632\pi\)
\(600\) 0 0
\(601\) 18.3848 0.749930 0.374965 0.927039i \(-0.377655\pi\)
0.374965 + 0.927039i \(0.377655\pi\)
\(602\) 1.96866 0.0802367
\(603\) 0 0
\(604\) 15.6838 0.638165
\(605\) −1.58933 −0.0646156
\(606\) 0 0
\(607\) −21.1238 −0.857389 −0.428694 0.903450i \(-0.641026\pi\)
−0.428694 + 0.903450i \(0.641026\pi\)
\(608\) 3.95974 0.160589
\(609\) 0 0
\(610\) 7.05523 0.285658
\(611\) 8.49446 0.343649
\(612\) 0 0
\(613\) 2.99053 0.120786 0.0603931 0.998175i \(-0.480765\pi\)
0.0603931 + 0.998175i \(0.480765\pi\)
\(614\) 4.14211 0.167162
\(615\) 0 0
\(616\) −9.30090 −0.374744
\(617\) 10.4767 0.421775 0.210888 0.977510i \(-0.432365\pi\)
0.210888 + 0.977510i \(0.432365\pi\)
\(618\) 0 0
\(619\) −9.34147 −0.375465 −0.187733 0.982220i \(-0.560114\pi\)
−0.187733 + 0.982220i \(0.560114\pi\)
\(620\) 18.4957 0.742804
\(621\) 0 0
\(622\) −4.24107 −0.170051
\(623\) 23.5345 0.942892
\(624\) 0 0
\(625\) −18.2414 −0.729655
\(626\) 4.07010 0.162674
\(627\) 0 0
\(628\) −37.4751 −1.49542
\(629\) 19.4448 0.775316
\(630\) 0 0
\(631\) −21.8463 −0.869688 −0.434844 0.900506i \(-0.643196\pi\)
−0.434844 + 0.900506i \(0.643196\pi\)
\(632\) 15.0245 0.597644
\(633\) 0 0
\(634\) 5.22090 0.207348
\(635\) −6.18902 −0.245604
\(636\) 0 0
\(637\) −4.88355 −0.193493
\(638\) 5.38700 0.213273
\(639\) 0 0
\(640\) −16.1170 −0.637079
\(641\) −39.9747 −1.57891 −0.789453 0.613811i \(-0.789636\pi\)
−0.789453 + 0.613811i \(0.789636\pi\)
\(642\) 0 0
\(643\) −15.1256 −0.596495 −0.298247 0.954489i \(-0.596402\pi\)
−0.298247 + 0.954489i \(0.596402\pi\)
\(644\) 30.4658 1.20052
\(645\) 0 0
\(646\) −0.662596 −0.0260695
\(647\) −43.0209 −1.69133 −0.845664 0.533716i \(-0.820795\pi\)
−0.845664 + 0.533716i \(0.820795\pi\)
\(648\) 0 0
\(649\) −3.51459 −0.137960
\(650\) 1.46928 0.0576301
\(651\) 0 0
\(652\) −11.2437 −0.440336
\(653\) −33.2486 −1.30112 −0.650559 0.759455i \(-0.725466\pi\)
−0.650559 + 0.759455i \(0.725466\pi\)
\(654\) 0 0
\(655\) −37.7005 −1.47308
\(656\) 19.7695 0.771870
\(657\) 0 0
\(658\) −1.24990 −0.0487261
\(659\) −42.2827 −1.64710 −0.823549 0.567245i \(-0.808009\pi\)
−0.823549 + 0.567245i \(0.808009\pi\)
\(660\) 0 0
\(661\) −16.5817 −0.644955 −0.322477 0.946577i \(-0.604516\pi\)
−0.322477 + 0.946577i \(0.604516\pi\)
\(662\) −8.24400 −0.320412
\(663\) 0 0
\(664\) 15.4805 0.600759
\(665\) 5.93213 0.230038
\(666\) 0 0
\(667\) −36.0264 −1.39495
\(668\) −30.9588 −1.19783
\(669\) 0 0
\(670\) 0.922208 0.0356280
\(671\) −43.4310 −1.67663
\(672\) 0 0
\(673\) 12.5066 0.482096 0.241048 0.970513i \(-0.422509\pi\)
0.241048 + 0.970513i \(0.422509\pi\)
\(674\) 3.77361 0.145354
\(675\) 0 0
\(676\) −17.3283 −0.666474
\(677\) −41.3779 −1.59028 −0.795141 0.606424i \(-0.792603\pi\)
−0.795141 + 0.606424i \(0.792603\pi\)
\(678\) 0 0
\(679\) −39.6664 −1.52226
\(680\) 4.16137 0.159581
\(681\) 0 0
\(682\) 4.74521 0.181703
\(683\) 12.2490 0.468694 0.234347 0.972153i \(-0.424705\pi\)
0.234347 + 0.972153i \(0.424705\pi\)
\(684\) 0 0
\(685\) −15.3333 −0.585856
\(686\) 5.55247 0.211994
\(687\) 0 0
\(688\) −10.0529 −0.383262
\(689\) −9.58367 −0.365109
\(690\) 0 0
\(691\) −29.4843 −1.12164 −0.560819 0.827939i \(-0.689514\pi\)
−0.560819 + 0.827939i \(0.689514\pi\)
\(692\) −25.9643 −0.987013
\(693\) 0 0
\(694\) 4.38010 0.166266
\(695\) −14.8159 −0.562000
\(696\) 0 0
\(697\) −10.6630 −0.403888
\(698\) −1.40243 −0.0530827
\(699\) 0 0
\(700\) 5.18737 0.196064
\(701\) 16.4542 0.621465 0.310733 0.950497i \(-0.399426\pi\)
0.310733 + 0.950497i \(0.399426\pi\)
\(702\) 0 0
\(703\) 12.5909 0.474875
\(704\) 21.1070 0.795500
\(705\) 0 0
\(706\) −5.57892 −0.209966
\(707\) −37.7770 −1.42075
\(708\) 0 0
\(709\) −46.2347 −1.73638 −0.868190 0.496232i \(-0.834717\pi\)
−0.868190 + 0.496232i \(0.834717\pi\)
\(710\) 2.56340 0.0962027
\(711\) 0 0
\(712\) 10.6902 0.400631
\(713\) −31.7344 −1.18846
\(714\) 0 0
\(715\) 31.8170 1.18989
\(716\) 42.5683 1.59085
\(717\) 0 0
\(718\) 2.83277 0.105718
\(719\) 23.8436 0.889218 0.444609 0.895725i \(-0.353343\pi\)
0.444609 + 0.895725i \(0.353343\pi\)
\(720\) 0 0
\(721\) 28.5462 1.06312
\(722\) 4.94561 0.184057
\(723\) 0 0
\(724\) −6.93338 −0.257677
\(725\) −6.13418 −0.227818
\(726\) 0 0
\(727\) 38.1659 1.41549 0.707747 0.706466i \(-0.249712\pi\)
0.707747 + 0.706466i \(0.249712\pi\)
\(728\) 12.7041 0.470845
\(729\) 0 0
\(730\) 2.89045 0.106980
\(731\) 5.42215 0.200546
\(732\) 0 0
\(733\) −50.9077 −1.88032 −0.940159 0.340737i \(-0.889323\pi\)
−0.940159 + 0.340737i \(0.889323\pi\)
\(734\) 0.362885 0.0133943
\(735\) 0 0
\(736\) 20.8991 0.770351
\(737\) −5.67698 −0.209114
\(738\) 0 0
\(739\) 48.7104 1.79184 0.895920 0.444216i \(-0.146518\pi\)
0.895920 + 0.444216i \(0.146518\pi\)
\(740\) −38.7309 −1.42378
\(741\) 0 0
\(742\) 1.41017 0.0517688
\(743\) −0.675629 −0.0247864 −0.0123932 0.999923i \(-0.503945\pi\)
−0.0123932 + 0.999923i \(0.503945\pi\)
\(744\) 0 0
\(745\) −42.5306 −1.55820
\(746\) −9.46428 −0.346512
\(747\) 0 0
\(748\) −12.5470 −0.458762
\(749\) −0.211741 −0.00773683
\(750\) 0 0
\(751\) 20.4428 0.745967 0.372983 0.927838i \(-0.378335\pi\)
0.372983 + 0.927838i \(0.378335\pi\)
\(752\) 6.38253 0.232747
\(753\) 0 0
\(754\) −7.35810 −0.267966
\(755\) 16.1180 0.586594
\(756\) 0 0
\(757\) −21.5003 −0.781441 −0.390720 0.920509i \(-0.627774\pi\)
−0.390720 + 0.920509i \(0.627774\pi\)
\(758\) −9.12815 −0.331549
\(759\) 0 0
\(760\) 2.69457 0.0977423
\(761\) −29.7165 −1.07722 −0.538612 0.842554i \(-0.681051\pi\)
−0.538612 + 0.842554i \(0.681051\pi\)
\(762\) 0 0
\(763\) 7.77579 0.281503
\(764\) −14.2392 −0.515156
\(765\) 0 0
\(766\) −3.91988 −0.141631
\(767\) 4.80057 0.173339
\(768\) 0 0
\(769\) 1.14904 0.0414355 0.0207178 0.999785i \(-0.493405\pi\)
0.0207178 + 0.999785i \(0.493405\pi\)
\(770\) −4.68163 −0.168714
\(771\) 0 0
\(772\) 44.1786 1.59002
\(773\) −3.89004 −0.139915 −0.0699576 0.997550i \(-0.522286\pi\)
−0.0699576 + 0.997550i \(0.522286\pi\)
\(774\) 0 0
\(775\) −5.40337 −0.194095
\(776\) −18.0178 −0.646802
\(777\) 0 0
\(778\) 8.29268 0.297307
\(779\) −6.90448 −0.247379
\(780\) 0 0
\(781\) −15.7799 −0.564650
\(782\) −3.49711 −0.125056
\(783\) 0 0
\(784\) −3.66938 −0.131049
\(785\) −38.5126 −1.37457
\(786\) 0 0
\(787\) 19.9603 0.711508 0.355754 0.934580i \(-0.384224\pi\)
0.355754 + 0.934580i \(0.384224\pi\)
\(788\) 1.55558 0.0554151
\(789\) 0 0
\(790\) 7.56264 0.269067
\(791\) 5.26970 0.187369
\(792\) 0 0
\(793\) 59.3223 2.10660
\(794\) 1.22548 0.0434907
\(795\) 0 0
\(796\) −30.8494 −1.09343
\(797\) 42.9686 1.52203 0.761014 0.648736i \(-0.224702\pi\)
0.761014 + 0.648736i \(0.224702\pi\)
\(798\) 0 0
\(799\) −3.44251 −0.121787
\(800\) 3.55846 0.125811
\(801\) 0 0
\(802\) 3.38626 0.119573
\(803\) −17.7932 −0.627908
\(804\) 0 0
\(805\) 31.3092 1.10350
\(806\) −6.48148 −0.228300
\(807\) 0 0
\(808\) −17.1595 −0.603671
\(809\) −28.0766 −0.987119 −0.493560 0.869712i \(-0.664305\pi\)
−0.493560 + 0.869712i \(0.664305\pi\)
\(810\) 0 0
\(811\) −1.23855 −0.0434915 −0.0217458 0.999764i \(-0.506922\pi\)
−0.0217458 + 0.999764i \(0.506922\pi\)
\(812\) −25.9781 −0.911652
\(813\) 0 0
\(814\) −9.93673 −0.348282
\(815\) −11.5549 −0.404751
\(816\) 0 0
\(817\) 3.51095 0.122833
\(818\) −2.99762 −0.104809
\(819\) 0 0
\(820\) 21.2389 0.741694
\(821\) −9.91227 −0.345941 −0.172970 0.984927i \(-0.555336\pi\)
−0.172970 + 0.984927i \(0.555336\pi\)
\(822\) 0 0
\(823\) 4.82339 0.168133 0.0840663 0.996460i \(-0.473209\pi\)
0.0840663 + 0.996460i \(0.473209\pi\)
\(824\) 12.9667 0.451715
\(825\) 0 0
\(826\) −0.706369 −0.0245777
\(827\) −24.6328 −0.856566 −0.428283 0.903645i \(-0.640881\pi\)
−0.428283 + 0.903645i \(0.640881\pi\)
\(828\) 0 0
\(829\) 14.6300 0.508122 0.254061 0.967188i \(-0.418234\pi\)
0.254061 + 0.967188i \(0.418234\pi\)
\(830\) 7.79215 0.270469
\(831\) 0 0
\(832\) −28.8300 −0.999502
\(833\) 1.97913 0.0685728
\(834\) 0 0
\(835\) −31.8158 −1.10103
\(836\) −8.12440 −0.280988
\(837\) 0 0
\(838\) 0.0906298 0.00313076
\(839\) 42.5008 1.46729 0.733645 0.679533i \(-0.237818\pi\)
0.733645 + 0.679533i \(0.237818\pi\)
\(840\) 0 0
\(841\) 1.71964 0.0592979
\(842\) −6.80320 −0.234454
\(843\) 0 0
\(844\) 19.1633 0.659627
\(845\) −17.8080 −0.612615
\(846\) 0 0
\(847\) 1.96635 0.0675646
\(848\) −7.20094 −0.247281
\(849\) 0 0
\(850\) −0.595449 −0.0204237
\(851\) 66.4535 2.27800
\(852\) 0 0
\(853\) 27.8087 0.952153 0.476077 0.879404i \(-0.342058\pi\)
0.476077 + 0.879404i \(0.342058\pi\)
\(854\) −8.72884 −0.298695
\(855\) 0 0
\(856\) −0.0961796 −0.00328735
\(857\) 25.9123 0.885149 0.442574 0.896732i \(-0.354065\pi\)
0.442574 + 0.896732i \(0.354065\pi\)
\(858\) 0 0
\(859\) 53.1905 1.81484 0.907418 0.420229i \(-0.138050\pi\)
0.907418 + 0.420229i \(0.138050\pi\)
\(860\) −10.8000 −0.368278
\(861\) 0 0
\(862\) −6.43160 −0.219061
\(863\) 27.3604 0.931360 0.465680 0.884953i \(-0.345810\pi\)
0.465680 + 0.884953i \(0.345810\pi\)
\(864\) 0 0
\(865\) −26.6830 −0.907251
\(866\) 7.58934 0.257896
\(867\) 0 0
\(868\) −22.8831 −0.776704
\(869\) −46.5545 −1.57925
\(870\) 0 0
\(871\) 7.75419 0.262741
\(872\) 3.53202 0.119609
\(873\) 0 0
\(874\) −2.26445 −0.0765961
\(875\) 29.4150 0.994407
\(876\) 0 0
\(877\) −58.1170 −1.96247 −0.981235 0.192813i \(-0.938239\pi\)
−0.981235 + 0.192813i \(0.938239\pi\)
\(878\) −7.44199 −0.251155
\(879\) 0 0
\(880\) 23.9065 0.805888
\(881\) 46.7912 1.57644 0.788218 0.615396i \(-0.211004\pi\)
0.788218 + 0.615396i \(0.211004\pi\)
\(882\) 0 0
\(883\) 25.8997 0.871593 0.435797 0.900045i \(-0.356467\pi\)
0.435797 + 0.900045i \(0.356467\pi\)
\(884\) 17.1379 0.576409
\(885\) 0 0
\(886\) 1.78694 0.0600334
\(887\) −47.8720 −1.60738 −0.803692 0.595046i \(-0.797134\pi\)
−0.803692 + 0.595046i \(0.797134\pi\)
\(888\) 0 0
\(889\) 7.65716 0.256813
\(890\) 5.38092 0.180369
\(891\) 0 0
\(892\) 37.6484 1.26056
\(893\) −2.22909 −0.0745937
\(894\) 0 0
\(895\) 43.7468 1.46229
\(896\) 19.9402 0.666155
\(897\) 0 0
\(898\) 6.55915 0.218882
\(899\) 27.0598 0.902495
\(900\) 0 0
\(901\) 3.88392 0.129392
\(902\) 5.44900 0.181432
\(903\) 0 0
\(904\) 2.39367 0.0796124
\(905\) −7.12532 −0.236854
\(906\) 0 0
\(907\) −55.0189 −1.82687 −0.913437 0.406980i \(-0.866582\pi\)
−0.913437 + 0.406980i \(0.866582\pi\)
\(908\) −21.9848 −0.729591
\(909\) 0 0
\(910\) 6.39463 0.211980
\(911\) 46.9311 1.55490 0.777448 0.628947i \(-0.216514\pi\)
0.777448 + 0.628947i \(0.216514\pi\)
\(912\) 0 0
\(913\) −47.9674 −1.58749
\(914\) −8.16547 −0.270090
\(915\) 0 0
\(916\) −43.4747 −1.43645
\(917\) 46.6436 1.54031
\(918\) 0 0
\(919\) −10.0327 −0.330948 −0.165474 0.986214i \(-0.552915\pi\)
−0.165474 + 0.986214i \(0.552915\pi\)
\(920\) 14.2217 0.468874
\(921\) 0 0
\(922\) −2.66146 −0.0876506
\(923\) 21.5538 0.709452
\(924\) 0 0
\(925\) 11.3150 0.372034
\(926\) −10.8907 −0.357890
\(927\) 0 0
\(928\) −17.8206 −0.584990
\(929\) 24.5291 0.804773 0.402387 0.915470i \(-0.368181\pi\)
0.402387 + 0.915470i \(0.368181\pi\)
\(930\) 0 0
\(931\) 1.28153 0.0420003
\(932\) −30.5045 −0.999209
\(933\) 0 0
\(934\) 8.28540 0.271107
\(935\) −12.8943 −0.421689
\(936\) 0 0
\(937\) 8.89765 0.290673 0.145337 0.989382i \(-0.453573\pi\)
0.145337 + 0.989382i \(0.453573\pi\)
\(938\) −1.14097 −0.0372540
\(939\) 0 0
\(940\) 6.85691 0.223648
\(941\) 36.1992 1.18006 0.590030 0.807381i \(-0.299116\pi\)
0.590030 + 0.807381i \(0.299116\pi\)
\(942\) 0 0
\(943\) −36.4411 −1.18669
\(944\) 3.60704 0.117399
\(945\) 0 0
\(946\) −2.77084 −0.0900877
\(947\) −15.3584 −0.499081 −0.249541 0.968364i \(-0.580280\pi\)
−0.249541 + 0.968364i \(0.580280\pi\)
\(948\) 0 0
\(949\) 24.3037 0.788931
\(950\) −0.385565 −0.0125094
\(951\) 0 0
\(952\) −5.14852 −0.166864
\(953\) 5.78646 0.187442 0.0937209 0.995599i \(-0.470124\pi\)
0.0937209 + 0.995599i \(0.470124\pi\)
\(954\) 0 0
\(955\) −14.6334 −0.473525
\(956\) 14.1290 0.456965
\(957\) 0 0
\(958\) −4.02418 −0.130015
\(959\) 18.9706 0.612593
\(960\) 0 0
\(961\) −7.16401 −0.231097
\(962\) 13.5726 0.437597
\(963\) 0 0
\(964\) 25.1826 0.811079
\(965\) 45.4016 1.46153
\(966\) 0 0
\(967\) −27.8199 −0.894629 −0.447315 0.894377i \(-0.647620\pi\)
−0.447315 + 0.894377i \(0.647620\pi\)
\(968\) 0.893181 0.0287079
\(969\) 0 0
\(970\) −9.06931 −0.291198
\(971\) 26.2776 0.843290 0.421645 0.906761i \(-0.361453\pi\)
0.421645 + 0.906761i \(0.361453\pi\)
\(972\) 0 0
\(973\) 18.3305 0.587649
\(974\) 9.85630 0.315816
\(975\) 0 0
\(976\) 44.5734 1.42676
\(977\) 38.8447 1.24275 0.621377 0.783512i \(-0.286574\pi\)
0.621377 + 0.783512i \(0.286574\pi\)
\(978\) 0 0
\(979\) −33.1242 −1.05865
\(980\) −3.94210 −0.125926
\(981\) 0 0
\(982\) −8.36684 −0.266996
\(983\) −15.9632 −0.509147 −0.254574 0.967053i \(-0.581935\pi\)
−0.254574 + 0.967053i \(0.581935\pi\)
\(984\) 0 0
\(985\) 1.59864 0.0509369
\(986\) 2.98198 0.0949655
\(987\) 0 0
\(988\) 11.0971 0.353046
\(989\) 18.5304 0.589234
\(990\) 0 0
\(991\) 14.6111 0.464138 0.232069 0.972699i \(-0.425450\pi\)
0.232069 + 0.972699i \(0.425450\pi\)
\(992\) −15.6975 −0.498396
\(993\) 0 0
\(994\) −3.17148 −0.100593
\(995\) −31.7035 −1.00507
\(996\) 0 0
\(997\) 44.1438 1.39805 0.699024 0.715098i \(-0.253618\pi\)
0.699024 + 0.715098i \(0.253618\pi\)
\(998\) 6.32992 0.200370
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2421.2.a.i.1.8 16
3.2 odd 2 269.2.a.c.1.9 16
12.11 even 2 4304.2.a.l.1.12 16
15.14 odd 2 6725.2.a.i.1.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
269.2.a.c.1.9 16 3.2 odd 2
2421.2.a.i.1.8 16 1.1 even 1 trivial
4304.2.a.l.1.12 16 12.11 even 2
6725.2.a.i.1.8 16 15.14 odd 2