Properties

Label 2667.2.a.q.1.8
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $19$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [19,4,19,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(19\)
Coefficient field: \(\mathbb{Q}[x]/(x^{19} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{19} - 4 x^{18} - 22 x^{17} + 101 x^{16} + 178 x^{15} - 1035 x^{14} - 583 x^{13} + 5572 x^{12} + \cdots + 210 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-0.407951\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.407951 q^{2} +1.00000 q^{3} -1.83358 q^{4} -1.08992 q^{5} -0.407951 q^{6} +1.00000 q^{7} +1.56391 q^{8} +1.00000 q^{9} +0.444635 q^{10} +2.30086 q^{11} -1.83358 q^{12} -1.28207 q^{13} -0.407951 q^{14} -1.08992 q^{15} +3.02915 q^{16} +3.85945 q^{17} -0.407951 q^{18} -5.48075 q^{19} +1.99845 q^{20} +1.00000 q^{21} -0.938637 q^{22} +5.15478 q^{23} +1.56391 q^{24} -3.81207 q^{25} +0.523023 q^{26} +1.00000 q^{27} -1.83358 q^{28} -3.35002 q^{29} +0.444635 q^{30} -0.261843 q^{31} -4.36357 q^{32} +2.30086 q^{33} -1.57447 q^{34} -1.08992 q^{35} -1.83358 q^{36} +4.76674 q^{37} +2.23588 q^{38} -1.28207 q^{39} -1.70454 q^{40} +4.53932 q^{41} -0.407951 q^{42} +3.17008 q^{43} -4.21880 q^{44} -1.08992 q^{45} -2.10290 q^{46} +0.491884 q^{47} +3.02915 q^{48} +1.00000 q^{49} +1.55514 q^{50} +3.85945 q^{51} +2.35078 q^{52} -11.3199 q^{53} -0.407951 q^{54} -2.50775 q^{55} +1.56391 q^{56} -5.48075 q^{57} +1.36664 q^{58} +1.96040 q^{59} +1.99845 q^{60} +0.0291708 q^{61} +0.106819 q^{62} +1.00000 q^{63} -4.27818 q^{64} +1.39736 q^{65} -0.938637 q^{66} +13.7705 q^{67} -7.07659 q^{68} +5.15478 q^{69} +0.444635 q^{70} +1.95435 q^{71} +1.56391 q^{72} +10.9732 q^{73} -1.94460 q^{74} -3.81207 q^{75} +10.0494 q^{76} +2.30086 q^{77} +0.523023 q^{78} +1.31077 q^{79} -3.30154 q^{80} +1.00000 q^{81} -1.85182 q^{82} -9.68361 q^{83} -1.83358 q^{84} -4.20649 q^{85} -1.29324 q^{86} -3.35002 q^{87} +3.59834 q^{88} +13.3023 q^{89} +0.444635 q^{90} -1.28207 q^{91} -9.45169 q^{92} -0.261843 q^{93} -0.200664 q^{94} +5.97359 q^{95} -4.36357 q^{96} -2.44284 q^{97} -0.407951 q^{98} +2.30086 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 19 q + 4 q^{2} + 19 q^{3} + 22 q^{4} + 5 q^{5} + 4 q^{6} + 19 q^{7} + 9 q^{8} + 19 q^{9} - 9 q^{11} + 22 q^{12} + 24 q^{13} + 4 q^{14} + 5 q^{15} + 20 q^{16} + 17 q^{17} + 4 q^{18} + 23 q^{19} + 5 q^{20}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.407951 −0.288465 −0.144232 0.989544i \(-0.546071\pi\)
−0.144232 + 0.989544i \(0.546071\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.83358 −0.916788
\(5\) −1.08992 −0.487428 −0.243714 0.969847i \(-0.578366\pi\)
−0.243714 + 0.969847i \(0.578366\pi\)
\(6\) −0.407951 −0.166545
\(7\) 1.00000 0.377964
\(8\) 1.56391 0.552926
\(9\) 1.00000 0.333333
\(10\) 0.444635 0.140606
\(11\) 2.30086 0.693734 0.346867 0.937914i \(-0.387245\pi\)
0.346867 + 0.937914i \(0.387245\pi\)
\(12\) −1.83358 −0.529308
\(13\) −1.28207 −0.355583 −0.177791 0.984068i \(-0.556895\pi\)
−0.177791 + 0.984068i \(0.556895\pi\)
\(14\) −0.407951 −0.109030
\(15\) −1.08992 −0.281417
\(16\) 3.02915 0.757288
\(17\) 3.85945 0.936053 0.468027 0.883714i \(-0.344965\pi\)
0.468027 + 0.883714i \(0.344965\pi\)
\(18\) −0.407951 −0.0961550
\(19\) −5.48075 −1.25737 −0.628685 0.777660i \(-0.716406\pi\)
−0.628685 + 0.777660i \(0.716406\pi\)
\(20\) 1.99845 0.446868
\(21\) 1.00000 0.218218
\(22\) −0.938637 −0.200118
\(23\) 5.15478 1.07485 0.537423 0.843313i \(-0.319398\pi\)
0.537423 + 0.843313i \(0.319398\pi\)
\(24\) 1.56391 0.319232
\(25\) −3.81207 −0.762414
\(26\) 0.523023 0.102573
\(27\) 1.00000 0.192450
\(28\) −1.83358 −0.346513
\(29\) −3.35002 −0.622082 −0.311041 0.950396i \(-0.600678\pi\)
−0.311041 + 0.950396i \(0.600678\pi\)
\(30\) 0.444635 0.0811788
\(31\) −0.261843 −0.0470284 −0.0235142 0.999724i \(-0.507485\pi\)
−0.0235142 + 0.999724i \(0.507485\pi\)
\(32\) −4.36357 −0.771377
\(33\) 2.30086 0.400528
\(34\) −1.57447 −0.270019
\(35\) −1.08992 −0.184230
\(36\) −1.83358 −0.305596
\(37\) 4.76674 0.783648 0.391824 0.920040i \(-0.371844\pi\)
0.391824 + 0.920040i \(0.371844\pi\)
\(38\) 2.23588 0.362707
\(39\) −1.28207 −0.205296
\(40\) −1.70454 −0.269512
\(41\) 4.53932 0.708923 0.354461 0.935071i \(-0.384664\pi\)
0.354461 + 0.935071i \(0.384664\pi\)
\(42\) −0.407951 −0.0629482
\(43\) 3.17008 0.483433 0.241716 0.970347i \(-0.422290\pi\)
0.241716 + 0.970347i \(0.422290\pi\)
\(44\) −4.21880 −0.636007
\(45\) −1.08992 −0.162476
\(46\) −2.10290 −0.310056
\(47\) 0.491884 0.0717486 0.0358743 0.999356i \(-0.488578\pi\)
0.0358743 + 0.999356i \(0.488578\pi\)
\(48\) 3.02915 0.437221
\(49\) 1.00000 0.142857
\(50\) 1.55514 0.219930
\(51\) 3.85945 0.540431
\(52\) 2.35078 0.325994
\(53\) −11.3199 −1.55490 −0.777452 0.628943i \(-0.783488\pi\)
−0.777452 + 0.628943i \(0.783488\pi\)
\(54\) −0.407951 −0.0555151
\(55\) −2.50775 −0.338145
\(56\) 1.56391 0.208986
\(57\) −5.48075 −0.725943
\(58\) 1.36664 0.179449
\(59\) 1.96040 0.255222 0.127611 0.991824i \(-0.459269\pi\)
0.127611 + 0.991824i \(0.459269\pi\)
\(60\) 1.99845 0.257999
\(61\) 0.0291708 0.00373494 0.00186747 0.999998i \(-0.499406\pi\)
0.00186747 + 0.999998i \(0.499406\pi\)
\(62\) 0.106819 0.0135660
\(63\) 1.00000 0.125988
\(64\) −4.27818 −0.534773
\(65\) 1.39736 0.173321
\(66\) −0.938637 −0.115538
\(67\) 13.7705 1.68234 0.841169 0.540772i \(-0.181868\pi\)
0.841169 + 0.540772i \(0.181868\pi\)
\(68\) −7.07659 −0.858162
\(69\) 5.15478 0.620563
\(70\) 0.444635 0.0531440
\(71\) 1.95435 0.231938 0.115969 0.993253i \(-0.463003\pi\)
0.115969 + 0.993253i \(0.463003\pi\)
\(72\) 1.56391 0.184309
\(73\) 10.9732 1.28431 0.642155 0.766575i \(-0.278040\pi\)
0.642155 + 0.766575i \(0.278040\pi\)
\(74\) −1.94460 −0.226055
\(75\) −3.81207 −0.440180
\(76\) 10.0494 1.15274
\(77\) 2.30086 0.262207
\(78\) 0.523023 0.0592207
\(79\) 1.31077 0.147473 0.0737364 0.997278i \(-0.476508\pi\)
0.0737364 + 0.997278i \(0.476508\pi\)
\(80\) −3.30154 −0.369123
\(81\) 1.00000 0.111111
\(82\) −1.85182 −0.204499
\(83\) −9.68361 −1.06291 −0.531457 0.847085i \(-0.678355\pi\)
−0.531457 + 0.847085i \(0.678355\pi\)
\(84\) −1.83358 −0.200060
\(85\) −4.20649 −0.456258
\(86\) −1.29324 −0.139453
\(87\) −3.35002 −0.359159
\(88\) 3.59834 0.383584
\(89\) 13.3023 1.41004 0.705022 0.709186i \(-0.250937\pi\)
0.705022 + 0.709186i \(0.250937\pi\)
\(90\) 0.444635 0.0468686
\(91\) −1.28207 −0.134398
\(92\) −9.45169 −0.985406
\(93\) −0.261843 −0.0271518
\(94\) −0.200664 −0.0206970
\(95\) 5.97359 0.612877
\(96\) −4.36357 −0.445355
\(97\) −2.44284 −0.248033 −0.124016 0.992280i \(-0.539578\pi\)
−0.124016 + 0.992280i \(0.539578\pi\)
\(98\) −0.407951 −0.0412093
\(99\) 2.30086 0.231245
\(100\) 6.98972 0.698972
\(101\) 16.2404 1.61598 0.807991 0.589195i \(-0.200555\pi\)
0.807991 + 0.589195i \(0.200555\pi\)
\(102\) −1.57447 −0.155895
\(103\) 16.7605 1.65146 0.825730 0.564066i \(-0.190764\pi\)
0.825730 + 0.564066i \(0.190764\pi\)
\(104\) −2.00505 −0.196611
\(105\) −1.08992 −0.106365
\(106\) 4.61795 0.448535
\(107\) −7.03427 −0.680028 −0.340014 0.940420i \(-0.610432\pi\)
−0.340014 + 0.940420i \(0.610432\pi\)
\(108\) −1.83358 −0.176436
\(109\) 8.64818 0.828345 0.414173 0.910198i \(-0.364071\pi\)
0.414173 + 0.910198i \(0.364071\pi\)
\(110\) 1.02304 0.0975431
\(111\) 4.76674 0.452439
\(112\) 3.02915 0.286228
\(113\) −9.06671 −0.852924 −0.426462 0.904505i \(-0.640240\pi\)
−0.426462 + 0.904505i \(0.640240\pi\)
\(114\) 2.23588 0.209409
\(115\) −5.61831 −0.523910
\(116\) 6.14251 0.570318
\(117\) −1.28207 −0.118528
\(118\) −0.799745 −0.0736225
\(119\) 3.85945 0.353795
\(120\) −1.70454 −0.155603
\(121\) −5.70606 −0.518733
\(122\) −0.0119003 −0.00107740
\(123\) 4.53932 0.409297
\(124\) 0.480109 0.0431150
\(125\) 9.60447 0.859050
\(126\) −0.407951 −0.0363432
\(127\) 1.00000 0.0887357
\(128\) 10.4724 0.925640
\(129\) 3.17008 0.279110
\(130\) −0.570054 −0.0499970
\(131\) 13.6779 1.19504 0.597521 0.801853i \(-0.296153\pi\)
0.597521 + 0.801853i \(0.296153\pi\)
\(132\) −4.21880 −0.367199
\(133\) −5.48075 −0.475241
\(134\) −5.61770 −0.485296
\(135\) −1.08992 −0.0938055
\(136\) 6.03583 0.517568
\(137\) −21.0777 −1.80079 −0.900394 0.435076i \(-0.856722\pi\)
−0.900394 + 0.435076i \(0.856722\pi\)
\(138\) −2.10290 −0.179011
\(139\) 10.4381 0.885348 0.442674 0.896683i \(-0.354030\pi\)
0.442674 + 0.896683i \(0.354030\pi\)
\(140\) 1.99845 0.168900
\(141\) 0.491884 0.0414241
\(142\) −0.797278 −0.0669061
\(143\) −2.94986 −0.246680
\(144\) 3.02915 0.252429
\(145\) 3.65125 0.303220
\(146\) −4.47651 −0.370479
\(147\) 1.00000 0.0824786
\(148\) −8.74019 −0.718439
\(149\) 0.369201 0.0302461 0.0151231 0.999886i \(-0.495186\pi\)
0.0151231 + 0.999886i \(0.495186\pi\)
\(150\) 1.55514 0.126977
\(151\) 10.3324 0.840841 0.420420 0.907329i \(-0.361883\pi\)
0.420420 + 0.907329i \(0.361883\pi\)
\(152\) −8.57140 −0.695233
\(153\) 3.85945 0.312018
\(154\) −0.938637 −0.0756375
\(155\) 0.285388 0.0229229
\(156\) 2.35078 0.188213
\(157\) 19.4698 1.55386 0.776929 0.629589i \(-0.216777\pi\)
0.776929 + 0.629589i \(0.216777\pi\)
\(158\) −0.534729 −0.0425407
\(159\) −11.3199 −0.897724
\(160\) 4.75595 0.375991
\(161\) 5.15478 0.406254
\(162\) −0.407951 −0.0320517
\(163\) 13.8845 1.08752 0.543760 0.839241i \(-0.317000\pi\)
0.543760 + 0.839241i \(0.317000\pi\)
\(164\) −8.32319 −0.649932
\(165\) −2.50775 −0.195228
\(166\) 3.95044 0.306614
\(167\) −8.27086 −0.640018 −0.320009 0.947414i \(-0.603686\pi\)
−0.320009 + 0.947414i \(0.603686\pi\)
\(168\) 1.56391 0.120658
\(169\) −11.3563 −0.873561
\(170\) 1.71604 0.131615
\(171\) −5.48075 −0.419123
\(172\) −5.81258 −0.443205
\(173\) 17.6707 1.34348 0.671738 0.740789i \(-0.265548\pi\)
0.671738 + 0.740789i \(0.265548\pi\)
\(174\) 1.36664 0.103605
\(175\) −3.81207 −0.288165
\(176\) 6.96965 0.525357
\(177\) 1.96040 0.147352
\(178\) −5.42670 −0.406748
\(179\) 17.8016 1.33056 0.665279 0.746595i \(-0.268313\pi\)
0.665279 + 0.746595i \(0.268313\pi\)
\(180\) 1.99845 0.148956
\(181\) 24.5660 1.82598 0.912989 0.407984i \(-0.133768\pi\)
0.912989 + 0.407984i \(0.133768\pi\)
\(182\) 0.523023 0.0387690
\(183\) 0.0291708 0.00215637
\(184\) 8.06162 0.594311
\(185\) −5.19538 −0.381972
\(186\) 0.106819 0.00783235
\(187\) 8.88003 0.649372
\(188\) −0.901906 −0.0657783
\(189\) 1.00000 0.0727393
\(190\) −2.43693 −0.176794
\(191\) 23.1438 1.67463 0.837314 0.546723i \(-0.184125\pi\)
0.837314 + 0.546723i \(0.184125\pi\)
\(192\) −4.27818 −0.308751
\(193\) 4.89303 0.352208 0.176104 0.984372i \(-0.443651\pi\)
0.176104 + 0.984372i \(0.443651\pi\)
\(194\) 0.996560 0.0715488
\(195\) 1.39736 0.100067
\(196\) −1.83358 −0.130970
\(197\) 23.9211 1.70431 0.852155 0.523289i \(-0.175295\pi\)
0.852155 + 0.523289i \(0.175295\pi\)
\(198\) −0.938637 −0.0667060
\(199\) −12.8048 −0.907707 −0.453853 0.891076i \(-0.649951\pi\)
−0.453853 + 0.891076i \(0.649951\pi\)
\(200\) −5.96174 −0.421559
\(201\) 13.7705 0.971298
\(202\) −6.62530 −0.466154
\(203\) −3.35002 −0.235125
\(204\) −7.07659 −0.495460
\(205\) −4.94751 −0.345549
\(206\) −6.83746 −0.476388
\(207\) 5.15478 0.358282
\(208\) −3.88359 −0.269279
\(209\) −12.6104 −0.872281
\(210\) 0.444635 0.0306827
\(211\) −3.97912 −0.273934 −0.136967 0.990576i \(-0.543735\pi\)
−0.136967 + 0.990576i \(0.543735\pi\)
\(212\) 20.7558 1.42552
\(213\) 1.95435 0.133910
\(214\) 2.86964 0.196164
\(215\) −3.45514 −0.235639
\(216\) 1.56391 0.106411
\(217\) −0.261843 −0.0177751
\(218\) −3.52803 −0.238949
\(219\) 10.9732 0.741497
\(220\) 4.59816 0.310008
\(221\) −4.94809 −0.332844
\(222\) −1.94460 −0.130513
\(223\) 1.15283 0.0771992 0.0385996 0.999255i \(-0.487710\pi\)
0.0385996 + 0.999255i \(0.487710\pi\)
\(224\) −4.36357 −0.291553
\(225\) −3.81207 −0.254138
\(226\) 3.69877 0.246039
\(227\) −16.2210 −1.07663 −0.538314 0.842744i \(-0.680939\pi\)
−0.538314 + 0.842744i \(0.680939\pi\)
\(228\) 10.0494 0.665536
\(229\) −16.9029 −1.11698 −0.558488 0.829512i \(-0.688618\pi\)
−0.558488 + 0.829512i \(0.688618\pi\)
\(230\) 2.29200 0.151130
\(231\) 2.30086 0.151385
\(232\) −5.23913 −0.343966
\(233\) −6.97836 −0.457168 −0.228584 0.973524i \(-0.573409\pi\)
−0.228584 + 0.973524i \(0.573409\pi\)
\(234\) 0.523023 0.0341911
\(235\) −0.536115 −0.0349723
\(236\) −3.59453 −0.233984
\(237\) 1.31077 0.0851434
\(238\) −1.57447 −0.102057
\(239\) −27.3643 −1.77005 −0.885025 0.465544i \(-0.845859\pi\)
−0.885025 + 0.465544i \(0.845859\pi\)
\(240\) −3.30154 −0.213113
\(241\) −25.1019 −1.61695 −0.808477 0.588528i \(-0.799708\pi\)
−0.808477 + 0.588528i \(0.799708\pi\)
\(242\) 2.32779 0.149636
\(243\) 1.00000 0.0641500
\(244\) −0.0534869 −0.00342415
\(245\) −1.08992 −0.0696325
\(246\) −1.85182 −0.118068
\(247\) 7.02671 0.447099
\(248\) −0.409499 −0.0260032
\(249\) −9.68361 −0.613674
\(250\) −3.91815 −0.247806
\(251\) 7.05092 0.445050 0.222525 0.974927i \(-0.428570\pi\)
0.222525 + 0.974927i \(0.428570\pi\)
\(252\) −1.83358 −0.115504
\(253\) 11.8604 0.745658
\(254\) −0.407951 −0.0255971
\(255\) −4.20649 −0.263421
\(256\) 4.28413 0.267758
\(257\) 0.0574366 0.00358280 0.00179140 0.999998i \(-0.499430\pi\)
0.00179140 + 0.999998i \(0.499430\pi\)
\(258\) −1.29324 −0.0805135
\(259\) 4.76674 0.296191
\(260\) −2.56216 −0.158899
\(261\) −3.35002 −0.207361
\(262\) −5.57990 −0.344728
\(263\) −14.6910 −0.905885 −0.452943 0.891540i \(-0.649626\pi\)
−0.452943 + 0.891540i \(0.649626\pi\)
\(264\) 3.59834 0.221462
\(265\) 12.3378 0.757903
\(266\) 2.23588 0.137090
\(267\) 13.3023 0.814089
\(268\) −25.2493 −1.54235
\(269\) −9.26332 −0.564795 −0.282397 0.959298i \(-0.591130\pi\)
−0.282397 + 0.959298i \(0.591130\pi\)
\(270\) 0.444635 0.0270596
\(271\) 13.1700 0.800024 0.400012 0.916510i \(-0.369006\pi\)
0.400012 + 0.916510i \(0.369006\pi\)
\(272\) 11.6909 0.708862
\(273\) −1.28207 −0.0775945
\(274\) 8.59866 0.519464
\(275\) −8.77103 −0.528913
\(276\) −9.45169 −0.568925
\(277\) 16.3591 0.982922 0.491461 0.870900i \(-0.336463\pi\)
0.491461 + 0.870900i \(0.336463\pi\)
\(278\) −4.25823 −0.255392
\(279\) −0.261843 −0.0156761
\(280\) −1.70454 −0.101866
\(281\) −7.16275 −0.427294 −0.213647 0.976911i \(-0.568534\pi\)
−0.213647 + 0.976911i \(0.568534\pi\)
\(282\) −0.200664 −0.0119494
\(283\) −2.99945 −0.178299 −0.0891494 0.996018i \(-0.528415\pi\)
−0.0891494 + 0.996018i \(0.528415\pi\)
\(284\) −3.58345 −0.212638
\(285\) 5.97359 0.353845
\(286\) 1.20340 0.0711585
\(287\) 4.53932 0.267948
\(288\) −4.36357 −0.257126
\(289\) −2.10467 −0.123804
\(290\) −1.48953 −0.0874684
\(291\) −2.44284 −0.143202
\(292\) −20.1201 −1.17744
\(293\) −7.96629 −0.465396 −0.232698 0.972549i \(-0.574755\pi\)
−0.232698 + 0.972549i \(0.574755\pi\)
\(294\) −0.407951 −0.0237922
\(295\) −2.13668 −0.124402
\(296\) 7.45476 0.433299
\(297\) 2.30086 0.133509
\(298\) −0.150616 −0.00872495
\(299\) −6.60880 −0.382197
\(300\) 6.98972 0.403552
\(301\) 3.17008 0.182720
\(302\) −4.21512 −0.242553
\(303\) 16.2404 0.932988
\(304\) −16.6020 −0.952191
\(305\) −0.0317939 −0.00182051
\(306\) −1.57447 −0.0900062
\(307\) 9.84980 0.562158 0.281079 0.959685i \(-0.409308\pi\)
0.281079 + 0.959685i \(0.409308\pi\)
\(308\) −4.21880 −0.240388
\(309\) 16.7605 0.953471
\(310\) −0.116424 −0.00661246
\(311\) −31.7455 −1.80012 −0.900062 0.435762i \(-0.856479\pi\)
−0.900062 + 0.435762i \(0.856479\pi\)
\(312\) −2.00505 −0.113513
\(313\) −12.9459 −0.731748 −0.365874 0.930664i \(-0.619230\pi\)
−0.365874 + 0.930664i \(0.619230\pi\)
\(314\) −7.94272 −0.448233
\(315\) −1.08992 −0.0614101
\(316\) −2.40339 −0.135201
\(317\) −4.65835 −0.261639 −0.130819 0.991406i \(-0.541761\pi\)
−0.130819 + 0.991406i \(0.541761\pi\)
\(318\) 4.61795 0.258962
\(319\) −7.70791 −0.431560
\(320\) 4.66288 0.260663
\(321\) −7.03427 −0.392615
\(322\) −2.10290 −0.117190
\(323\) −21.1527 −1.17697
\(324\) −1.83358 −0.101865
\(325\) 4.88735 0.271101
\(326\) −5.66421 −0.313712
\(327\) 8.64818 0.478245
\(328\) 7.09910 0.391982
\(329\) 0.491884 0.0271184
\(330\) 1.02304 0.0563165
\(331\) 14.0354 0.771458 0.385729 0.922612i \(-0.373950\pi\)
0.385729 + 0.922612i \(0.373950\pi\)
\(332\) 17.7556 0.974467
\(333\) 4.76674 0.261216
\(334\) 3.37410 0.184623
\(335\) −15.0088 −0.820018
\(336\) 3.02915 0.165254
\(337\) −19.7961 −1.07836 −0.539182 0.842190i \(-0.681266\pi\)
−0.539182 + 0.842190i \(0.681266\pi\)
\(338\) 4.63281 0.251992
\(339\) −9.06671 −0.492436
\(340\) 7.71293 0.418292
\(341\) −0.602463 −0.0326252
\(342\) 2.23588 0.120902
\(343\) 1.00000 0.0539949
\(344\) 4.95772 0.267303
\(345\) −5.61831 −0.302480
\(346\) −7.20877 −0.387546
\(347\) −21.2045 −1.13832 −0.569158 0.822228i \(-0.692731\pi\)
−0.569158 + 0.822228i \(0.692731\pi\)
\(348\) 6.14251 0.329273
\(349\) −3.55610 −0.190354 −0.0951769 0.995460i \(-0.530342\pi\)
−0.0951769 + 0.995460i \(0.530342\pi\)
\(350\) 1.55514 0.0831256
\(351\) −1.28207 −0.0684319
\(352\) −10.0399 −0.535131
\(353\) −15.4845 −0.824156 −0.412078 0.911149i \(-0.635197\pi\)
−0.412078 + 0.911149i \(0.635197\pi\)
\(354\) −0.799745 −0.0425060
\(355\) −2.13009 −0.113053
\(356\) −24.3908 −1.29271
\(357\) 3.85945 0.204264
\(358\) −7.26220 −0.383819
\(359\) 14.4272 0.761436 0.380718 0.924691i \(-0.375677\pi\)
0.380718 + 0.924691i \(0.375677\pi\)
\(360\) −1.70454 −0.0898372
\(361\) 11.0386 0.580979
\(362\) −10.0217 −0.526731
\(363\) −5.70606 −0.299490
\(364\) 2.35078 0.123214
\(365\) −11.9599 −0.626009
\(366\) −0.0119003 −0.000622037 0
\(367\) 37.0573 1.93438 0.967188 0.254063i \(-0.0817671\pi\)
0.967188 + 0.254063i \(0.0817671\pi\)
\(368\) 15.6146 0.813969
\(369\) 4.53932 0.236308
\(370\) 2.11946 0.110185
\(371\) −11.3199 −0.587698
\(372\) 0.480109 0.0248925
\(373\) 29.5070 1.52782 0.763908 0.645325i \(-0.223278\pi\)
0.763908 + 0.645325i \(0.223278\pi\)
\(374\) −3.62262 −0.187321
\(375\) 9.60447 0.495973
\(376\) 0.769262 0.0396717
\(377\) 4.29496 0.221202
\(378\) −0.407951 −0.0209827
\(379\) 20.2256 1.03892 0.519460 0.854495i \(-0.326133\pi\)
0.519460 + 0.854495i \(0.326133\pi\)
\(380\) −10.9530 −0.561878
\(381\) 1.00000 0.0512316
\(382\) −9.44154 −0.483071
\(383\) −1.33594 −0.0682635 −0.0341317 0.999417i \(-0.510867\pi\)
−0.0341317 + 0.999417i \(0.510867\pi\)
\(384\) 10.4724 0.534419
\(385\) −2.50775 −0.127807
\(386\) −1.99612 −0.101600
\(387\) 3.17008 0.161144
\(388\) 4.47914 0.227394
\(389\) −31.0104 −1.57229 −0.786144 0.618044i \(-0.787925\pi\)
−0.786144 + 0.618044i \(0.787925\pi\)
\(390\) −0.570054 −0.0288658
\(391\) 19.8946 1.00611
\(392\) 1.56391 0.0789894
\(393\) 13.6779 0.689957
\(394\) −9.75865 −0.491634
\(395\) −1.42863 −0.0718823
\(396\) −4.21880 −0.212002
\(397\) −1.70559 −0.0856012 −0.0428006 0.999084i \(-0.513628\pi\)
−0.0428006 + 0.999084i \(0.513628\pi\)
\(398\) 5.22372 0.261842
\(399\) −5.48075 −0.274381
\(400\) −11.5473 −0.577367
\(401\) 31.1528 1.55570 0.777849 0.628451i \(-0.216311\pi\)
0.777849 + 0.628451i \(0.216311\pi\)
\(402\) −5.61770 −0.280186
\(403\) 0.335701 0.0167225
\(404\) −29.7780 −1.48151
\(405\) −1.08992 −0.0541586
\(406\) 1.36664 0.0678253
\(407\) 10.9676 0.543643
\(408\) 6.03583 0.298818
\(409\) 28.7531 1.42175 0.710875 0.703318i \(-0.248299\pi\)
0.710875 + 0.703318i \(0.248299\pi\)
\(410\) 2.01834 0.0996787
\(411\) −21.0777 −1.03969
\(412\) −30.7316 −1.51404
\(413\) 1.96040 0.0964647
\(414\) −2.10290 −0.103352
\(415\) 10.5544 0.518094
\(416\) 5.59441 0.274288
\(417\) 10.4381 0.511156
\(418\) 5.14443 0.251622
\(419\) −10.0450 −0.490730 −0.245365 0.969431i \(-0.578908\pi\)
−0.245365 + 0.969431i \(0.578908\pi\)
\(420\) 1.99845 0.0975146
\(421\) −24.2888 −1.18376 −0.591882 0.806025i \(-0.701615\pi\)
−0.591882 + 0.806025i \(0.701615\pi\)
\(422\) 1.62329 0.0790203
\(423\) 0.491884 0.0239162
\(424\) −17.7033 −0.859747
\(425\) −14.7125 −0.713660
\(426\) −0.797278 −0.0386283
\(427\) 0.0291708 0.00141167
\(428\) 12.8979 0.623442
\(429\) −2.94986 −0.142421
\(430\) 1.40953 0.0679735
\(431\) 8.94786 0.431003 0.215502 0.976503i \(-0.430861\pi\)
0.215502 + 0.976503i \(0.430861\pi\)
\(432\) 3.02915 0.145740
\(433\) −12.7200 −0.611282 −0.305641 0.952147i \(-0.598871\pi\)
−0.305641 + 0.952147i \(0.598871\pi\)
\(434\) 0.106819 0.00512748
\(435\) 3.65125 0.175064
\(436\) −15.8571 −0.759417
\(437\) −28.2521 −1.35148
\(438\) −4.47651 −0.213896
\(439\) 20.2200 0.965048 0.482524 0.875883i \(-0.339720\pi\)
0.482524 + 0.875883i \(0.339720\pi\)
\(440\) −3.92190 −0.186969
\(441\) 1.00000 0.0476190
\(442\) 2.01858 0.0960140
\(443\) −8.70900 −0.413777 −0.206889 0.978364i \(-0.566334\pi\)
−0.206889 + 0.978364i \(0.566334\pi\)
\(444\) −8.74019 −0.414791
\(445\) −14.4985 −0.687295
\(446\) −0.470298 −0.0222693
\(447\) 0.369201 0.0174626
\(448\) −4.27818 −0.202125
\(449\) −2.31692 −0.109342 −0.0546711 0.998504i \(-0.517411\pi\)
−0.0546711 + 0.998504i \(0.517411\pi\)
\(450\) 1.55514 0.0733099
\(451\) 10.4443 0.491804
\(452\) 16.6245 0.781951
\(453\) 10.3324 0.485460
\(454\) 6.61739 0.310570
\(455\) 1.39736 0.0655092
\(456\) −8.57140 −0.401393
\(457\) −2.94767 −0.137886 −0.0689430 0.997621i \(-0.521963\pi\)
−0.0689430 + 0.997621i \(0.521963\pi\)
\(458\) 6.89557 0.322209
\(459\) 3.85945 0.180144
\(460\) 10.3016 0.480314
\(461\) 14.1185 0.657564 0.328782 0.944406i \(-0.393362\pi\)
0.328782 + 0.944406i \(0.393362\pi\)
\(462\) −0.938637 −0.0436693
\(463\) −37.5227 −1.74383 −0.871913 0.489661i \(-0.837121\pi\)
−0.871913 + 0.489661i \(0.837121\pi\)
\(464\) −10.1477 −0.471096
\(465\) 0.285388 0.0132346
\(466\) 2.84683 0.131877
\(467\) 30.4306 1.40816 0.704081 0.710120i \(-0.251359\pi\)
0.704081 + 0.710120i \(0.251359\pi\)
\(468\) 2.35078 0.108665
\(469\) 13.7705 0.635864
\(470\) 0.218709 0.0100883
\(471\) 19.4698 0.897120
\(472\) 3.06588 0.141119
\(473\) 7.29390 0.335374
\(474\) −0.534729 −0.0245609
\(475\) 20.8930 0.958637
\(476\) −7.07659 −0.324355
\(477\) −11.3199 −0.518301
\(478\) 11.1633 0.510597
\(479\) 25.2836 1.15524 0.577619 0.816306i \(-0.303982\pi\)
0.577619 + 0.816306i \(0.303982\pi\)
\(480\) 4.75595 0.217078
\(481\) −6.11131 −0.278652
\(482\) 10.2403 0.466434
\(483\) 5.15478 0.234551
\(484\) 10.4625 0.475568
\(485\) 2.66251 0.120898
\(486\) −0.407951 −0.0185050
\(487\) −23.6931 −1.07364 −0.536819 0.843697i \(-0.680374\pi\)
−0.536819 + 0.843697i \(0.680374\pi\)
\(488\) 0.0456206 0.00206515
\(489\) 13.8845 0.627880
\(490\) 0.444635 0.0200865
\(491\) 29.3480 1.32445 0.662227 0.749303i \(-0.269611\pi\)
0.662227 + 0.749303i \(0.269611\pi\)
\(492\) −8.32319 −0.375238
\(493\) −12.9292 −0.582302
\(494\) −2.86656 −0.128972
\(495\) −2.50775 −0.112715
\(496\) −0.793162 −0.0356140
\(497\) 1.95435 0.0876645
\(498\) 3.95044 0.177023
\(499\) 23.3986 1.04746 0.523732 0.851883i \(-0.324539\pi\)
0.523732 + 0.851883i \(0.324539\pi\)
\(500\) −17.6105 −0.787566
\(501\) −8.27086 −0.369515
\(502\) −2.87643 −0.128381
\(503\) −15.4011 −0.686701 −0.343351 0.939207i \(-0.611562\pi\)
−0.343351 + 0.939207i \(0.611562\pi\)
\(504\) 1.56391 0.0696621
\(505\) −17.7008 −0.787675
\(506\) −4.83847 −0.215096
\(507\) −11.3563 −0.504351
\(508\) −1.83358 −0.0813518
\(509\) −9.83148 −0.435773 −0.217886 0.975974i \(-0.569916\pi\)
−0.217886 + 0.975974i \(0.569916\pi\)
\(510\) 1.71604 0.0759877
\(511\) 10.9732 0.485424
\(512\) −22.6926 −1.00288
\(513\) −5.48075 −0.241981
\(514\) −0.0234313 −0.00103351
\(515\) −18.2676 −0.804967
\(516\) −5.81258 −0.255885
\(517\) 1.13175 0.0497745
\(518\) −1.94460 −0.0854407
\(519\) 17.6707 0.775657
\(520\) 2.18534 0.0958337
\(521\) −0.581283 −0.0254665 −0.0127332 0.999919i \(-0.504053\pi\)
−0.0127332 + 0.999919i \(0.504053\pi\)
\(522\) 1.36664 0.0598163
\(523\) 9.39466 0.410800 0.205400 0.978678i \(-0.434150\pi\)
0.205400 + 0.978678i \(0.434150\pi\)
\(524\) −25.0794 −1.09560
\(525\) −3.81207 −0.166372
\(526\) 5.99320 0.261316
\(527\) −1.01057 −0.0440211
\(528\) 6.96965 0.303315
\(529\) 3.57179 0.155295
\(530\) −5.03321 −0.218628
\(531\) 1.96040 0.0850739
\(532\) 10.0494 0.435695
\(533\) −5.81974 −0.252081
\(534\) −5.42670 −0.234836
\(535\) 7.66680 0.331465
\(536\) 21.5359 0.930209
\(537\) 17.8016 0.768198
\(538\) 3.77898 0.162923
\(539\) 2.30086 0.0991049
\(540\) 1.99845 0.0859998
\(541\) 16.0235 0.688905 0.344452 0.938804i \(-0.388065\pi\)
0.344452 + 0.938804i \(0.388065\pi\)
\(542\) −5.37274 −0.230779
\(543\) 24.5660 1.05423
\(544\) −16.8410 −0.722050
\(545\) −9.42584 −0.403758
\(546\) 0.523023 0.0223833
\(547\) −21.8696 −0.935077 −0.467538 0.883973i \(-0.654859\pi\)
−0.467538 + 0.883973i \(0.654859\pi\)
\(548\) 38.6475 1.65094
\(549\) 0.0291708 0.00124498
\(550\) 3.57815 0.152573
\(551\) 18.3606 0.782188
\(552\) 8.06162 0.343125
\(553\) 1.31077 0.0557395
\(554\) −6.67370 −0.283539
\(555\) −5.19538 −0.220531
\(556\) −19.1390 −0.811676
\(557\) 9.18821 0.389317 0.194658 0.980871i \(-0.437640\pi\)
0.194658 + 0.980871i \(0.437640\pi\)
\(558\) 0.106819 0.00452201
\(559\) −4.06427 −0.171900
\(560\) −3.30154 −0.139515
\(561\) 8.88003 0.374915
\(562\) 2.92205 0.123259
\(563\) −26.1377 −1.10157 −0.550786 0.834647i \(-0.685672\pi\)
−0.550786 + 0.834647i \(0.685672\pi\)
\(564\) −0.901906 −0.0379771
\(565\) 9.88200 0.415739
\(566\) 1.22363 0.0514330
\(567\) 1.00000 0.0419961
\(568\) 3.05643 0.128245
\(569\) −17.4717 −0.732451 −0.366225 0.930526i \(-0.619350\pi\)
−0.366225 + 0.930526i \(0.619350\pi\)
\(570\) −2.43693 −0.102072
\(571\) 23.0247 0.963553 0.481776 0.876294i \(-0.339992\pi\)
0.481776 + 0.876294i \(0.339992\pi\)
\(572\) 5.40880 0.226153
\(573\) 23.1438 0.966847
\(574\) −1.85182 −0.0772935
\(575\) −19.6504 −0.819478
\(576\) −4.27818 −0.178258
\(577\) 4.55690 0.189706 0.0948531 0.995491i \(-0.469762\pi\)
0.0948531 + 0.995491i \(0.469762\pi\)
\(578\) 0.858603 0.0357132
\(579\) 4.89303 0.203347
\(580\) −6.69485 −0.277989
\(581\) −9.68361 −0.401744
\(582\) 0.996560 0.0413087
\(583\) −26.0454 −1.07869
\(584\) 17.1610 0.710129
\(585\) 1.39736 0.0577736
\(586\) 3.24986 0.134250
\(587\) −3.20341 −0.132219 −0.0661094 0.997812i \(-0.521059\pi\)
−0.0661094 + 0.997812i \(0.521059\pi\)
\(588\) −1.83358 −0.0756154
\(589\) 1.43509 0.0591321
\(590\) 0.871660 0.0358857
\(591\) 23.9211 0.983984
\(592\) 14.4392 0.593447
\(593\) −36.9825 −1.51869 −0.759344 0.650689i \(-0.774480\pi\)
−0.759344 + 0.650689i \(0.774480\pi\)
\(594\) −0.938637 −0.0385127
\(595\) −4.20649 −0.172449
\(596\) −0.676958 −0.0277293
\(597\) −12.8048 −0.524065
\(598\) 2.69607 0.110250
\(599\) −38.3476 −1.56684 −0.783421 0.621491i \(-0.786527\pi\)
−0.783421 + 0.621491i \(0.786527\pi\)
\(600\) −5.96174 −0.243387
\(601\) −33.1185 −1.35093 −0.675467 0.737391i \(-0.736058\pi\)
−0.675467 + 0.737391i \(0.736058\pi\)
\(602\) −1.29324 −0.0527084
\(603\) 13.7705 0.560779
\(604\) −18.9453 −0.770873
\(605\) 6.21916 0.252845
\(606\) −6.62530 −0.269134
\(607\) −1.37747 −0.0559096 −0.0279548 0.999609i \(-0.508899\pi\)
−0.0279548 + 0.999609i \(0.508899\pi\)
\(608\) 23.9156 0.969907
\(609\) −3.35002 −0.135749
\(610\) 0.0129704 0.000525154 0
\(611\) −0.630630 −0.0255126
\(612\) −7.07659 −0.286054
\(613\) 6.71060 0.271039 0.135519 0.990775i \(-0.456730\pi\)
0.135519 + 0.990775i \(0.456730\pi\)
\(614\) −4.01824 −0.162163
\(615\) −4.94751 −0.199503
\(616\) 3.59834 0.144981
\(617\) −20.8740 −0.840356 −0.420178 0.907442i \(-0.638032\pi\)
−0.420178 + 0.907442i \(0.638032\pi\)
\(618\) −6.83746 −0.275043
\(619\) 10.0657 0.404576 0.202288 0.979326i \(-0.435162\pi\)
0.202288 + 0.979326i \(0.435162\pi\)
\(620\) −0.523281 −0.0210155
\(621\) 5.15478 0.206854
\(622\) 12.9506 0.519273
\(623\) 13.3023 0.532946
\(624\) −3.88359 −0.155468
\(625\) 8.59224 0.343689
\(626\) 5.28131 0.211084
\(627\) −12.6104 −0.503612
\(628\) −35.6993 −1.42456
\(629\) 18.3970 0.733536
\(630\) 0.444635 0.0177147
\(631\) −45.6084 −1.81564 −0.907821 0.419359i \(-0.862255\pi\)
−0.907821 + 0.419359i \(0.862255\pi\)
\(632\) 2.04992 0.0815416
\(633\) −3.97912 −0.158156
\(634\) 1.90038 0.0754736
\(635\) −1.08992 −0.0432522
\(636\) 20.7558 0.823022
\(637\) −1.28207 −0.0507975
\(638\) 3.14445 0.124490
\(639\) 1.95435 0.0773128
\(640\) −11.4141 −0.451183
\(641\) −36.7175 −1.45025 −0.725126 0.688616i \(-0.758219\pi\)
−0.725126 + 0.688616i \(0.758219\pi\)
\(642\) 2.86964 0.113256
\(643\) −45.1998 −1.78250 −0.891252 0.453508i \(-0.850172\pi\)
−0.891252 + 0.453508i \(0.850172\pi\)
\(644\) −9.45169 −0.372449
\(645\) −3.45514 −0.136046
\(646\) 8.62925 0.339513
\(647\) 4.64930 0.182783 0.0913915 0.995815i \(-0.470869\pi\)
0.0913915 + 0.995815i \(0.470869\pi\)
\(648\) 1.56391 0.0614362
\(649\) 4.51059 0.177056
\(650\) −1.99380 −0.0782032
\(651\) −0.261843 −0.0102624
\(652\) −25.4584 −0.997026
\(653\) 38.9603 1.52463 0.762317 0.647204i \(-0.224062\pi\)
0.762317 + 0.647204i \(0.224062\pi\)
\(654\) −3.52803 −0.137957
\(655\) −14.9078 −0.582496
\(656\) 13.7503 0.536859
\(657\) 10.9732 0.428103
\(658\) −0.200664 −0.00782271
\(659\) −19.9316 −0.776425 −0.388212 0.921570i \(-0.626907\pi\)
−0.388212 + 0.921570i \(0.626907\pi\)
\(660\) 4.59816 0.178983
\(661\) −36.2288 −1.40914 −0.704569 0.709635i \(-0.748860\pi\)
−0.704569 + 0.709635i \(0.748860\pi\)
\(662\) −5.72578 −0.222539
\(663\) −4.94809 −0.192168
\(664\) −15.1443 −0.587713
\(665\) 5.97359 0.231646
\(666\) −1.94460 −0.0753516
\(667\) −17.2686 −0.668643
\(668\) 15.1652 0.586761
\(669\) 1.15283 0.0445710
\(670\) 6.12286 0.236547
\(671\) 0.0671179 0.00259106
\(672\) −4.36357 −0.168328
\(673\) 10.0220 0.386320 0.193160 0.981167i \(-0.438126\pi\)
0.193160 + 0.981167i \(0.438126\pi\)
\(674\) 8.07585 0.311070
\(675\) −3.81207 −0.146727
\(676\) 20.8226 0.800870
\(677\) 2.27813 0.0875555 0.0437778 0.999041i \(-0.486061\pi\)
0.0437778 + 0.999041i \(0.486061\pi\)
\(678\) 3.69877 0.142051
\(679\) −2.44284 −0.0937477
\(680\) −6.57858 −0.252277
\(681\) −16.2210 −0.621592
\(682\) 0.245775 0.00941123
\(683\) −34.7013 −1.32781 −0.663904 0.747817i \(-0.731102\pi\)
−0.663904 + 0.747817i \(0.731102\pi\)
\(684\) 10.0494 0.384247
\(685\) 22.9730 0.877754
\(686\) −0.407951 −0.0155756
\(687\) −16.9029 −0.644887
\(688\) 9.60266 0.366098
\(689\) 14.5129 0.552897
\(690\) 2.29200 0.0872548
\(691\) 25.5923 0.973576 0.486788 0.873520i \(-0.338168\pi\)
0.486788 + 0.873520i \(0.338168\pi\)
\(692\) −32.4005 −1.23168
\(693\) 2.30086 0.0874023
\(694\) 8.65038 0.328364
\(695\) −11.3767 −0.431543
\(696\) −5.23913 −0.198589
\(697\) 17.5193 0.663590
\(698\) 1.45072 0.0549104
\(699\) −6.97836 −0.263946
\(700\) 6.98972 0.264187
\(701\) −34.4738 −1.30206 −0.651028 0.759054i \(-0.725662\pi\)
−0.651028 + 0.759054i \(0.725662\pi\)
\(702\) 0.523023 0.0197402
\(703\) −26.1253 −0.985335
\(704\) −9.84349 −0.370990
\(705\) −0.536115 −0.0201912
\(706\) 6.31691 0.237740
\(707\) 16.2404 0.610784
\(708\) −3.59453 −0.135091
\(709\) −5.12099 −0.192323 −0.0961614 0.995366i \(-0.530656\pi\)
−0.0961614 + 0.995366i \(0.530656\pi\)
\(710\) 0.868971 0.0326119
\(711\) 1.31077 0.0491576
\(712\) 20.8037 0.779650
\(713\) −1.34974 −0.0505483
\(714\) −1.57447 −0.0589229
\(715\) 3.21512 0.120239
\(716\) −32.6407 −1.21984
\(717\) −27.3643 −1.02194
\(718\) −5.88557 −0.219648
\(719\) −9.38376 −0.349955 −0.174978 0.984572i \(-0.555985\pi\)
−0.174978 + 0.984572i \(0.555985\pi\)
\(720\) −3.30154 −0.123041
\(721\) 16.7605 0.624193
\(722\) −4.50321 −0.167592
\(723\) −25.1019 −0.933548
\(724\) −45.0437 −1.67404
\(725\) 12.7705 0.474284
\(726\) 2.32779 0.0863925
\(727\) −17.8615 −0.662445 −0.331222 0.943553i \(-0.607461\pi\)
−0.331222 + 0.943553i \(0.607461\pi\)
\(728\) −2.00505 −0.0743120
\(729\) 1.00000 0.0370370
\(730\) 4.87904 0.180582
\(731\) 12.2348 0.452519
\(732\) −0.0534869 −0.00197693
\(733\) 20.4202 0.754238 0.377119 0.926165i \(-0.376915\pi\)
0.377119 + 0.926165i \(0.376915\pi\)
\(734\) −15.1176 −0.557999
\(735\) −1.08992 −0.0402024
\(736\) −22.4932 −0.829112
\(737\) 31.6840 1.16710
\(738\) −1.85182 −0.0681665
\(739\) 51.1576 1.88186 0.940931 0.338597i \(-0.109952\pi\)
0.940931 + 0.338597i \(0.109952\pi\)
\(740\) 9.52612 0.350187
\(741\) 7.02671 0.258133
\(742\) 4.61795 0.169530
\(743\) 32.3657 1.18738 0.593691 0.804693i \(-0.297670\pi\)
0.593691 + 0.804693i \(0.297670\pi\)
\(744\) −0.409499 −0.0150130
\(745\) −0.402400 −0.0147428
\(746\) −12.0374 −0.440722
\(747\) −9.68361 −0.354305
\(748\) −16.2822 −0.595337
\(749\) −7.03427 −0.257027
\(750\) −3.91815 −0.143071
\(751\) −50.9969 −1.86090 −0.930452 0.366414i \(-0.880585\pi\)
−0.930452 + 0.366414i \(0.880585\pi\)
\(752\) 1.48999 0.0543344
\(753\) 7.05092 0.256950
\(754\) −1.75213 −0.0638090
\(755\) −11.2615 −0.409849
\(756\) −1.83358 −0.0666865
\(757\) 37.7384 1.37162 0.685812 0.727779i \(-0.259447\pi\)
0.685812 + 0.727779i \(0.259447\pi\)
\(758\) −8.25106 −0.299692
\(759\) 11.8604 0.430506
\(760\) 9.34216 0.338876
\(761\) 43.9468 1.59307 0.796535 0.604593i \(-0.206664\pi\)
0.796535 + 0.604593i \(0.206664\pi\)
\(762\) −0.407951 −0.0147785
\(763\) 8.64818 0.313085
\(764\) −42.4359 −1.53528
\(765\) −4.20649 −0.152086
\(766\) 0.544999 0.0196916
\(767\) −2.51337 −0.0907525
\(768\) 4.28413 0.154590
\(769\) 42.1961 1.52163 0.760816 0.648968i \(-0.224799\pi\)
0.760816 + 0.648968i \(0.224799\pi\)
\(770\) 1.02304 0.0368678
\(771\) 0.0574366 0.00206853
\(772\) −8.97174 −0.322900
\(773\) −40.4493 −1.45486 −0.727430 0.686182i \(-0.759285\pi\)
−0.727430 + 0.686182i \(0.759285\pi\)
\(774\) −1.29324 −0.0464845
\(775\) 0.998164 0.0358551
\(776\) −3.82039 −0.137144
\(777\) 4.76674 0.171006
\(778\) 12.6507 0.453550
\(779\) −24.8789 −0.891378
\(780\) −2.56216 −0.0917401
\(781\) 4.49667 0.160904
\(782\) −8.11603 −0.290229
\(783\) −3.35002 −0.119720
\(784\) 3.02915 0.108184
\(785\) −21.2205 −0.757393
\(786\) −5.57990 −0.199029
\(787\) 17.1152 0.610090 0.305045 0.952338i \(-0.401329\pi\)
0.305045 + 0.952338i \(0.401329\pi\)
\(788\) −43.8612 −1.56249
\(789\) −14.6910 −0.523013
\(790\) 0.582812 0.0207355
\(791\) −9.06671 −0.322375
\(792\) 3.59834 0.127861
\(793\) −0.0373991 −0.00132808
\(794\) 0.695798 0.0246929
\(795\) 12.3378 0.437576
\(796\) 23.4785 0.832175
\(797\) 6.60740 0.234046 0.117023 0.993129i \(-0.462665\pi\)
0.117023 + 0.993129i \(0.462665\pi\)
\(798\) 2.23588 0.0791492
\(799\) 1.89840 0.0671605
\(800\) 16.6342 0.588109
\(801\) 13.3023 0.470015
\(802\) −12.7088 −0.448764
\(803\) 25.2477 0.890970
\(804\) −25.2493 −0.890475
\(805\) −5.61831 −0.198019
\(806\) −0.136950 −0.00482385
\(807\) −9.26332 −0.326084
\(808\) 25.3986 0.893519
\(809\) −8.40122 −0.295371 −0.147686 0.989034i \(-0.547182\pi\)
−0.147686 + 0.989034i \(0.547182\pi\)
\(810\) 0.444635 0.0156229
\(811\) 40.8644 1.43494 0.717472 0.696588i \(-0.245299\pi\)
0.717472 + 0.696588i \(0.245299\pi\)
\(812\) 6.14251 0.215560
\(813\) 13.1700 0.461894
\(814\) −4.47424 −0.156822
\(815\) −15.1331 −0.530088
\(816\) 11.6909 0.409262
\(817\) −17.3744 −0.607854
\(818\) −11.7299 −0.410125
\(819\) −1.28207 −0.0447992
\(820\) 9.07163 0.316795
\(821\) 5.24790 0.183153 0.0915764 0.995798i \(-0.470809\pi\)
0.0915764 + 0.995798i \(0.470809\pi\)
\(822\) 8.59866 0.299913
\(823\) −13.5425 −0.472060 −0.236030 0.971746i \(-0.575846\pi\)
−0.236030 + 0.971746i \(0.575846\pi\)
\(824\) 26.2119 0.913135
\(825\) −8.77103 −0.305368
\(826\) −0.799745 −0.0278267
\(827\) −21.6919 −0.754301 −0.377150 0.926152i \(-0.623096\pi\)
−0.377150 + 0.926152i \(0.623096\pi\)
\(828\) −9.45169 −0.328469
\(829\) 51.7300 1.79666 0.898328 0.439325i \(-0.144782\pi\)
0.898328 + 0.439325i \(0.144782\pi\)
\(830\) −4.30567 −0.149452
\(831\) 16.3591 0.567490
\(832\) 5.48494 0.190156
\(833\) 3.85945 0.133722
\(834\) −4.25823 −0.147450
\(835\) 9.01459 0.311963
\(836\) 23.1222 0.799697
\(837\) −0.261843 −0.00905061
\(838\) 4.09787 0.141558
\(839\) −21.3671 −0.737673 −0.368836 0.929494i \(-0.620244\pi\)
−0.368836 + 0.929494i \(0.620244\pi\)
\(840\) −1.70454 −0.0588122
\(841\) −17.7774 −0.613014
\(842\) 9.90865 0.341474
\(843\) −7.16275 −0.246698
\(844\) 7.29601 0.251139
\(845\) 12.3775 0.425798
\(846\) −0.200664 −0.00689899
\(847\) −5.70606 −0.196062
\(848\) −34.2896 −1.17751
\(849\) −2.99945 −0.102941
\(850\) 6.00197 0.205866
\(851\) 24.5715 0.842301
\(852\) −3.58345 −0.122767
\(853\) −33.7067 −1.15410 −0.577048 0.816710i \(-0.695796\pi\)
−0.577048 + 0.816710i \(0.695796\pi\)
\(854\) −0.0119003 −0.000407219 0
\(855\) 5.97359 0.204292
\(856\) −11.0010 −0.376005
\(857\) 18.6766 0.637982 0.318991 0.947758i \(-0.396656\pi\)
0.318991 + 0.947758i \(0.396656\pi\)
\(858\) 1.20340 0.0410834
\(859\) −37.7733 −1.28881 −0.644405 0.764684i \(-0.722895\pi\)
−0.644405 + 0.764684i \(0.722895\pi\)
\(860\) 6.33526 0.216031
\(861\) 4.53932 0.154700
\(862\) −3.65029 −0.124329
\(863\) −19.9811 −0.680166 −0.340083 0.940395i \(-0.610455\pi\)
−0.340083 + 0.940395i \(0.610455\pi\)
\(864\) −4.36357 −0.148452
\(865\) −19.2597 −0.654848
\(866\) 5.18912 0.176334
\(867\) −2.10467 −0.0714784
\(868\) 0.480109 0.0162960
\(869\) 3.01589 0.102307
\(870\) −1.48953 −0.0504999
\(871\) −17.6548 −0.598211
\(872\) 13.5250 0.458014
\(873\) −2.44284 −0.0826777
\(874\) 11.5255 0.389855
\(875\) 9.60447 0.324690
\(876\) −20.1201 −0.679795
\(877\) −20.6716 −0.698030 −0.349015 0.937117i \(-0.613484\pi\)
−0.349015 + 0.937117i \(0.613484\pi\)
\(878\) −8.24877 −0.278382
\(879\) −7.96629 −0.268696
\(880\) −7.59637 −0.256074
\(881\) −5.74429 −0.193530 −0.0967651 0.995307i \(-0.530850\pi\)
−0.0967651 + 0.995307i \(0.530850\pi\)
\(882\) −0.407951 −0.0137364
\(883\) 0.269530 0.00907042 0.00453521 0.999990i \(-0.498556\pi\)
0.00453521 + 0.999990i \(0.498556\pi\)
\(884\) 9.07270 0.305148
\(885\) −2.13668 −0.0718236
\(886\) 3.55285 0.119360
\(887\) 7.13439 0.239550 0.119775 0.992801i \(-0.461783\pi\)
0.119775 + 0.992801i \(0.461783\pi\)
\(888\) 7.45476 0.250166
\(889\) 1.00000 0.0335389
\(890\) 5.91468 0.198260
\(891\) 2.30086 0.0770816
\(892\) −2.11380 −0.0707753
\(893\) −2.69589 −0.0902145
\(894\) −0.150616 −0.00503735
\(895\) −19.4024 −0.648551
\(896\) 10.4724 0.349859
\(897\) −6.60880 −0.220662
\(898\) 0.945190 0.0315414
\(899\) 0.877178 0.0292555
\(900\) 6.98972 0.232991
\(901\) −43.6884 −1.45547
\(902\) −4.26077 −0.141868
\(903\) 3.17008 0.105494
\(904\) −14.1795 −0.471604
\(905\) −26.7750 −0.890033
\(906\) −4.21512 −0.140038
\(907\) 18.4478 0.612549 0.306275 0.951943i \(-0.400917\pi\)
0.306275 + 0.951943i \(0.400917\pi\)
\(908\) 29.7425 0.987040
\(909\) 16.2404 0.538661
\(910\) −0.570054 −0.0188971
\(911\) 48.1253 1.59446 0.797231 0.603675i \(-0.206297\pi\)
0.797231 + 0.603675i \(0.206297\pi\)
\(912\) −16.6020 −0.549748
\(913\) −22.2806 −0.737380
\(914\) 1.20250 0.0397753
\(915\) −0.0317939 −0.00105107
\(916\) 30.9928 1.02403
\(917\) 13.6779 0.451683
\(918\) −1.57447 −0.0519651
\(919\) −44.9642 −1.48323 −0.741615 0.670825i \(-0.765940\pi\)
−0.741615 + 0.670825i \(0.765940\pi\)
\(920\) −8.78654 −0.289684
\(921\) 9.84980 0.324562
\(922\) −5.75966 −0.189684
\(923\) −2.50561 −0.0824733
\(924\) −4.21880 −0.138788
\(925\) −18.1712 −0.597464
\(926\) 15.3074 0.503033
\(927\) 16.7605 0.550487
\(928\) 14.6180 0.479860
\(929\) 12.6354 0.414553 0.207276 0.978282i \(-0.433540\pi\)
0.207276 + 0.978282i \(0.433540\pi\)
\(930\) −0.116424 −0.00381771
\(931\) −5.48075 −0.179624
\(932\) 12.7954 0.419126
\(933\) −31.7455 −1.03930
\(934\) −12.4142 −0.406205
\(935\) −9.67854 −0.316522
\(936\) −2.00505 −0.0655370
\(937\) 46.3648 1.51467 0.757335 0.653026i \(-0.226501\pi\)
0.757335 + 0.653026i \(0.226501\pi\)
\(938\) −5.61770 −0.183424
\(939\) −12.9459 −0.422475
\(940\) 0.983007 0.0320622
\(941\) 2.85670 0.0931259 0.0465629 0.998915i \(-0.485173\pi\)
0.0465629 + 0.998915i \(0.485173\pi\)
\(942\) −7.94272 −0.258788
\(943\) 23.3992 0.761983
\(944\) 5.93834 0.193276
\(945\) −1.08992 −0.0354552
\(946\) −2.97555 −0.0967436
\(947\) 10.6467 0.345971 0.172985 0.984924i \(-0.444659\pi\)
0.172985 + 0.984924i \(0.444659\pi\)
\(948\) −2.40339 −0.0780585
\(949\) −14.0684 −0.456679
\(950\) −8.52332 −0.276533
\(951\) −4.65835 −0.151057
\(952\) 6.03583 0.195622
\(953\) −26.1036 −0.845577 −0.422789 0.906228i \(-0.638949\pi\)
−0.422789 + 0.906228i \(0.638949\pi\)
\(954\) 4.61795 0.149512
\(955\) −25.2249 −0.816260
\(956\) 50.1745 1.62276
\(957\) −7.70791 −0.249161
\(958\) −10.3145 −0.333246
\(959\) −21.0777 −0.680634
\(960\) 4.66288 0.150494
\(961\) −30.9314 −0.997788
\(962\) 2.49311 0.0803812
\(963\) −7.03427 −0.226676
\(964\) 46.0262 1.48240
\(965\) −5.33302 −0.171676
\(966\) −2.10290 −0.0676597
\(967\) −13.5836 −0.436818 −0.218409 0.975857i \(-0.570087\pi\)
−0.218409 + 0.975857i \(0.570087\pi\)
\(968\) −8.92377 −0.286821
\(969\) −21.1527 −0.679521
\(970\) −1.08617 −0.0348749
\(971\) −39.0472 −1.25308 −0.626542 0.779388i \(-0.715530\pi\)
−0.626542 + 0.779388i \(0.715530\pi\)
\(972\) −1.83358 −0.0588120
\(973\) 10.4381 0.334630
\(974\) 9.66564 0.309707
\(975\) 4.88735 0.156520
\(976\) 0.0883629 0.00282843
\(977\) 13.9595 0.446604 0.223302 0.974749i \(-0.428316\pi\)
0.223302 + 0.974749i \(0.428316\pi\)
\(978\) −5.66421 −0.181121
\(979\) 30.6067 0.978196
\(980\) 1.99845 0.0638383
\(981\) 8.64818 0.276115
\(982\) −11.9725 −0.382059
\(983\) 11.1853 0.356755 0.178378 0.983962i \(-0.442915\pi\)
0.178378 + 0.983962i \(0.442915\pi\)
\(984\) 7.09910 0.226311
\(985\) −26.0722 −0.830728
\(986\) 5.27448 0.167974
\(987\) 0.491884 0.0156568
\(988\) −12.8840 −0.409895
\(989\) 16.3411 0.519616
\(990\) 1.02304 0.0325144
\(991\) 36.4779 1.15876 0.579379 0.815059i \(-0.303295\pi\)
0.579379 + 0.815059i \(0.303295\pi\)
\(992\) 1.14257 0.0362766
\(993\) 14.0354 0.445401
\(994\) −0.797278 −0.0252881
\(995\) 13.9562 0.442442
\(996\) 17.7556 0.562609
\(997\) −34.7863 −1.10169 −0.550846 0.834607i \(-0.685695\pi\)
−0.550846 + 0.834607i \(0.685695\pi\)
\(998\) −9.54548 −0.302157
\(999\) 4.76674 0.150813
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.q.1.8 19
3.2 odd 2 8001.2.a.v.1.12 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.q.1.8 19 1.1 even 1 trivial
8001.2.a.v.1.12 19 3.2 odd 2