Properties

Label 2667.2.a.q.1.7
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $19$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [19,4,19,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(19\)
Coefficient field: \(\mathbb{Q}[x]/(x^{19} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{19} - 4 x^{18} - 22 x^{17} + 101 x^{16} + 178 x^{15} - 1035 x^{14} - 583 x^{13} + 5572 x^{12} + \cdots + 210 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.782325\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.782325 q^{2} +1.00000 q^{3} -1.38797 q^{4} -2.85652 q^{5} -0.782325 q^{6} +1.00000 q^{7} +2.65049 q^{8} +1.00000 q^{9} +2.23472 q^{10} -5.95291 q^{11} -1.38797 q^{12} -2.24308 q^{13} -0.782325 q^{14} -2.85652 q^{15} +0.702387 q^{16} +0.355250 q^{17} -0.782325 q^{18} +4.58452 q^{19} +3.96475 q^{20} +1.00000 q^{21} +4.65711 q^{22} +1.77438 q^{23} +2.65049 q^{24} +3.15968 q^{25} +1.75482 q^{26} +1.00000 q^{27} -1.38797 q^{28} -9.18000 q^{29} +2.23472 q^{30} -2.61888 q^{31} -5.85048 q^{32} -5.95291 q^{33} -0.277921 q^{34} -2.85652 q^{35} -1.38797 q^{36} +0.446439 q^{37} -3.58659 q^{38} -2.24308 q^{39} -7.57117 q^{40} -5.55748 q^{41} -0.782325 q^{42} -3.81437 q^{43} +8.26245 q^{44} -2.85652 q^{45} -1.38814 q^{46} -4.89679 q^{47} +0.702387 q^{48} +1.00000 q^{49} -2.47190 q^{50} +0.355250 q^{51} +3.11332 q^{52} +12.9711 q^{53} -0.782325 q^{54} +17.0046 q^{55} +2.65049 q^{56} +4.58452 q^{57} +7.18175 q^{58} +5.34918 q^{59} +3.96475 q^{60} +3.71025 q^{61} +2.04882 q^{62} +1.00000 q^{63} +3.17221 q^{64} +6.40739 q^{65} +4.65711 q^{66} +10.3248 q^{67} -0.493075 q^{68} +1.77438 q^{69} +2.23472 q^{70} +1.31960 q^{71} +2.65049 q^{72} -8.85675 q^{73} -0.349261 q^{74} +3.15968 q^{75} -6.36316 q^{76} -5.95291 q^{77} +1.75482 q^{78} +13.1696 q^{79} -2.00638 q^{80} +1.00000 q^{81} +4.34776 q^{82} +15.2753 q^{83} -1.38797 q^{84} -1.01478 q^{85} +2.98408 q^{86} -9.18000 q^{87} -15.7782 q^{88} -2.60509 q^{89} +2.23472 q^{90} -2.24308 q^{91} -2.46278 q^{92} -2.61888 q^{93} +3.83088 q^{94} -13.0958 q^{95} -5.85048 q^{96} -3.10938 q^{97} -0.782325 q^{98} -5.95291 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 19 q + 4 q^{2} + 19 q^{3} + 22 q^{4} + 5 q^{5} + 4 q^{6} + 19 q^{7} + 9 q^{8} + 19 q^{9} - 9 q^{11} + 22 q^{12} + 24 q^{13} + 4 q^{14} + 5 q^{15} + 20 q^{16} + 17 q^{17} + 4 q^{18} + 23 q^{19} + 5 q^{20}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.782325 −0.553188 −0.276594 0.960987i \(-0.589206\pi\)
−0.276594 + 0.960987i \(0.589206\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.38797 −0.693984
\(5\) −2.85652 −1.27747 −0.638736 0.769426i \(-0.720543\pi\)
−0.638736 + 0.769426i \(0.720543\pi\)
\(6\) −0.782325 −0.319383
\(7\) 1.00000 0.377964
\(8\) 2.65049 0.937091
\(9\) 1.00000 0.333333
\(10\) 2.23472 0.706682
\(11\) −5.95291 −1.79487 −0.897435 0.441146i \(-0.854572\pi\)
−0.897435 + 0.441146i \(0.854572\pi\)
\(12\) −1.38797 −0.400672
\(13\) −2.24308 −0.622118 −0.311059 0.950391i \(-0.600684\pi\)
−0.311059 + 0.950391i \(0.600684\pi\)
\(14\) −0.782325 −0.209085
\(15\) −2.85652 −0.737549
\(16\) 0.702387 0.175597
\(17\) 0.355250 0.0861607 0.0430803 0.999072i \(-0.486283\pi\)
0.0430803 + 0.999072i \(0.486283\pi\)
\(18\) −0.782325 −0.184396
\(19\) 4.58452 1.05176 0.525881 0.850558i \(-0.323736\pi\)
0.525881 + 0.850558i \(0.323736\pi\)
\(20\) 3.96475 0.886545
\(21\) 1.00000 0.218218
\(22\) 4.65711 0.992900
\(23\) 1.77438 0.369984 0.184992 0.982740i \(-0.440774\pi\)
0.184992 + 0.982740i \(0.440774\pi\)
\(24\) 2.65049 0.541030
\(25\) 3.15968 0.631936
\(26\) 1.75482 0.344148
\(27\) 1.00000 0.192450
\(28\) −1.38797 −0.262301
\(29\) −9.18000 −1.70468 −0.852342 0.522985i \(-0.824818\pi\)
−0.852342 + 0.522985i \(0.824818\pi\)
\(30\) 2.23472 0.408003
\(31\) −2.61888 −0.470365 −0.235183 0.971951i \(-0.575569\pi\)
−0.235183 + 0.971951i \(0.575569\pi\)
\(32\) −5.85048 −1.03423
\(33\) −5.95291 −1.03627
\(34\) −0.277921 −0.0476630
\(35\) −2.85652 −0.482839
\(36\) −1.38797 −0.231328
\(37\) 0.446439 0.0733942 0.0366971 0.999326i \(-0.488316\pi\)
0.0366971 + 0.999326i \(0.488316\pi\)
\(38\) −3.58659 −0.581821
\(39\) −2.24308 −0.359180
\(40\) −7.57117 −1.19711
\(41\) −5.55748 −0.867932 −0.433966 0.900929i \(-0.642886\pi\)
−0.433966 + 0.900929i \(0.642886\pi\)
\(42\) −0.782325 −0.120715
\(43\) −3.81437 −0.581685 −0.290843 0.956771i \(-0.593936\pi\)
−0.290843 + 0.956771i \(0.593936\pi\)
\(44\) 8.26245 1.24561
\(45\) −2.85652 −0.425824
\(46\) −1.38814 −0.204671
\(47\) −4.89679 −0.714271 −0.357135 0.934053i \(-0.616246\pi\)
−0.357135 + 0.934053i \(0.616246\pi\)
\(48\) 0.702387 0.101381
\(49\) 1.00000 0.142857
\(50\) −2.47190 −0.349579
\(51\) 0.355250 0.0497449
\(52\) 3.11332 0.431740
\(53\) 12.9711 1.78171 0.890856 0.454286i \(-0.150106\pi\)
0.890856 + 0.454286i \(0.150106\pi\)
\(54\) −0.782325 −0.106461
\(55\) 17.0046 2.29290
\(56\) 2.65049 0.354187
\(57\) 4.58452 0.607235
\(58\) 7.18175 0.943010
\(59\) 5.34918 0.696403 0.348202 0.937420i \(-0.386792\pi\)
0.348202 + 0.937420i \(0.386792\pi\)
\(60\) 3.96475 0.511847
\(61\) 3.71025 0.475049 0.237524 0.971382i \(-0.423664\pi\)
0.237524 + 0.971382i \(0.423664\pi\)
\(62\) 2.04882 0.260200
\(63\) 1.00000 0.125988
\(64\) 3.17221 0.396526
\(65\) 6.40739 0.794739
\(66\) 4.65711 0.573251
\(67\) 10.3248 1.26138 0.630689 0.776035i \(-0.282772\pi\)
0.630689 + 0.776035i \(0.282772\pi\)
\(68\) −0.493075 −0.0597941
\(69\) 1.77438 0.213610
\(70\) 2.23472 0.267101
\(71\) 1.31960 0.156608 0.0783041 0.996930i \(-0.475050\pi\)
0.0783041 + 0.996930i \(0.475050\pi\)
\(72\) 2.65049 0.312364
\(73\) −8.85675 −1.03660 −0.518302 0.855198i \(-0.673436\pi\)
−0.518302 + 0.855198i \(0.673436\pi\)
\(74\) −0.349261 −0.0406007
\(75\) 3.15968 0.364849
\(76\) −6.36316 −0.729905
\(77\) −5.95291 −0.678397
\(78\) 1.75482 0.198694
\(79\) 13.1696 1.48169 0.740847 0.671673i \(-0.234424\pi\)
0.740847 + 0.671673i \(0.234424\pi\)
\(80\) −2.00638 −0.224320
\(81\) 1.00000 0.111111
\(82\) 4.34776 0.480129
\(83\) 15.2753 1.67668 0.838342 0.545145i \(-0.183525\pi\)
0.838342 + 0.545145i \(0.183525\pi\)
\(84\) −1.38797 −0.151440
\(85\) −1.01478 −0.110068
\(86\) 2.98408 0.321781
\(87\) −9.18000 −0.984199
\(88\) −15.7782 −1.68196
\(89\) −2.60509 −0.276139 −0.138070 0.990423i \(-0.544090\pi\)
−0.138070 + 0.990423i \(0.544090\pi\)
\(90\) 2.23472 0.235561
\(91\) −2.24308 −0.235139
\(92\) −2.46278 −0.256763
\(93\) −2.61888 −0.271565
\(94\) 3.83088 0.395126
\(95\) −13.0958 −1.34360
\(96\) −5.85048 −0.597112
\(97\) −3.10938 −0.315709 −0.157855 0.987462i \(-0.550458\pi\)
−0.157855 + 0.987462i \(0.550458\pi\)
\(98\) −0.782325 −0.0790268
\(99\) −5.95291 −0.598290
\(100\) −4.38553 −0.438553
\(101\) 2.36661 0.235487 0.117743 0.993044i \(-0.462434\pi\)
0.117743 + 0.993044i \(0.462434\pi\)
\(102\) −0.277921 −0.0275183
\(103\) 3.24902 0.320135 0.160068 0.987106i \(-0.448829\pi\)
0.160068 + 0.987106i \(0.448829\pi\)
\(104\) −5.94526 −0.582981
\(105\) −2.85652 −0.278767
\(106\) −10.1476 −0.985621
\(107\) −0.104034 −0.0100573 −0.00502866 0.999987i \(-0.501601\pi\)
−0.00502866 + 0.999987i \(0.501601\pi\)
\(108\) −1.38797 −0.133557
\(109\) 19.8237 1.89877 0.949383 0.314120i \(-0.101710\pi\)
0.949383 + 0.314120i \(0.101710\pi\)
\(110\) −13.3031 −1.26840
\(111\) 0.446439 0.0423741
\(112\) 0.702387 0.0663693
\(113\) −13.2923 −1.25043 −0.625216 0.780452i \(-0.714989\pi\)
−0.625216 + 0.780452i \(0.714989\pi\)
\(114\) −3.58659 −0.335915
\(115\) −5.06855 −0.472645
\(116\) 12.7415 1.18302
\(117\) −2.24308 −0.207373
\(118\) −4.18480 −0.385242
\(119\) 0.355250 0.0325657
\(120\) −7.57117 −0.691150
\(121\) 24.4372 2.22156
\(122\) −2.90262 −0.262791
\(123\) −5.55748 −0.501101
\(124\) 3.63492 0.326426
\(125\) 5.25690 0.470191
\(126\) −0.782325 −0.0696951
\(127\) 1.00000 0.0887357
\(128\) 9.21926 0.814875
\(129\) −3.81437 −0.335836
\(130\) −5.01266 −0.439640
\(131\) 1.48402 0.129660 0.0648298 0.997896i \(-0.479350\pi\)
0.0648298 + 0.997896i \(0.479350\pi\)
\(132\) 8.26245 0.719154
\(133\) 4.58452 0.397528
\(134\) −8.07738 −0.697779
\(135\) −2.85652 −0.245850
\(136\) 0.941587 0.0807404
\(137\) 3.92401 0.335251 0.167626 0.985851i \(-0.446390\pi\)
0.167626 + 0.985851i \(0.446390\pi\)
\(138\) −1.38814 −0.118167
\(139\) −1.61387 −0.136887 −0.0684435 0.997655i \(-0.521803\pi\)
−0.0684435 + 0.997655i \(0.521803\pi\)
\(140\) 3.96475 0.335082
\(141\) −4.89679 −0.412384
\(142\) −1.03236 −0.0866337
\(143\) 13.3529 1.11662
\(144\) 0.702387 0.0585322
\(145\) 26.2228 2.17769
\(146\) 6.92886 0.573437
\(147\) 1.00000 0.0824786
\(148\) −0.619643 −0.0509343
\(149\) 9.10778 0.746138 0.373069 0.927804i \(-0.378305\pi\)
0.373069 + 0.927804i \(0.378305\pi\)
\(150\) −2.47190 −0.201830
\(151\) −9.73474 −0.792202 −0.396101 0.918207i \(-0.629637\pi\)
−0.396101 + 0.918207i \(0.629637\pi\)
\(152\) 12.1512 0.985595
\(153\) 0.355250 0.0287202
\(154\) 4.65711 0.375281
\(155\) 7.48088 0.600879
\(156\) 3.11332 0.249265
\(157\) 10.5542 0.842315 0.421158 0.906987i \(-0.361624\pi\)
0.421158 + 0.906987i \(0.361624\pi\)
\(158\) −10.3029 −0.819655
\(159\) 12.9711 1.02867
\(160\) 16.7120 1.32120
\(161\) 1.77438 0.139841
\(162\) −0.782325 −0.0614653
\(163\) 6.03292 0.472534 0.236267 0.971688i \(-0.424076\pi\)
0.236267 + 0.971688i \(0.424076\pi\)
\(164\) 7.71360 0.602331
\(165\) 17.0046 1.32381
\(166\) −11.9503 −0.927520
\(167\) 1.24770 0.0965497 0.0482748 0.998834i \(-0.484628\pi\)
0.0482748 + 0.998834i \(0.484628\pi\)
\(168\) 2.65049 0.204490
\(169\) −7.96860 −0.612969
\(170\) 0.793885 0.0608882
\(171\) 4.58452 0.350587
\(172\) 5.29421 0.403680
\(173\) −7.02419 −0.534039 −0.267020 0.963691i \(-0.586039\pi\)
−0.267020 + 0.963691i \(0.586039\pi\)
\(174\) 7.18175 0.544447
\(175\) 3.15968 0.238849
\(176\) −4.18125 −0.315173
\(177\) 5.34918 0.402069
\(178\) 2.03803 0.152757
\(179\) −16.0501 −1.19964 −0.599822 0.800134i \(-0.704762\pi\)
−0.599822 + 0.800134i \(0.704762\pi\)
\(180\) 3.96475 0.295515
\(181\) −10.0388 −0.746181 −0.373091 0.927795i \(-0.621702\pi\)
−0.373091 + 0.927795i \(0.621702\pi\)
\(182\) 1.75482 0.130076
\(183\) 3.71025 0.274269
\(184\) 4.70299 0.346709
\(185\) −1.27526 −0.0937590
\(186\) 2.04882 0.150227
\(187\) −2.11477 −0.154647
\(188\) 6.79659 0.495692
\(189\) 1.00000 0.0727393
\(190\) 10.2451 0.743260
\(191\) 12.8858 0.932386 0.466193 0.884683i \(-0.345625\pi\)
0.466193 + 0.884683i \(0.345625\pi\)
\(192\) 3.17221 0.228934
\(193\) 15.5417 1.11871 0.559357 0.828927i \(-0.311048\pi\)
0.559357 + 0.828927i \(0.311048\pi\)
\(194\) 2.43254 0.174647
\(195\) 6.40739 0.458843
\(196\) −1.38797 −0.0991405
\(197\) −9.10451 −0.648669 −0.324335 0.945942i \(-0.605140\pi\)
−0.324335 + 0.945942i \(0.605140\pi\)
\(198\) 4.65711 0.330967
\(199\) 20.7799 1.47305 0.736524 0.676411i \(-0.236466\pi\)
0.736524 + 0.676411i \(0.236466\pi\)
\(200\) 8.37471 0.592181
\(201\) 10.3248 0.728257
\(202\) −1.85146 −0.130268
\(203\) −9.18000 −0.644310
\(204\) −0.493075 −0.0345221
\(205\) 15.8750 1.10876
\(206\) −2.54179 −0.177095
\(207\) 1.77438 0.123328
\(208\) −1.57551 −0.109242
\(209\) −27.2912 −1.88778
\(210\) 2.23472 0.154211
\(211\) −7.23948 −0.498387 −0.249193 0.968454i \(-0.580165\pi\)
−0.249193 + 0.968454i \(0.580165\pi\)
\(212\) −18.0034 −1.23648
\(213\) 1.31960 0.0904177
\(214\) 0.0813882 0.00556358
\(215\) 10.8958 0.743087
\(216\) 2.65049 0.180343
\(217\) −2.61888 −0.177781
\(218\) −15.5086 −1.05037
\(219\) −8.85675 −0.598484
\(220\) −23.6018 −1.59123
\(221\) −0.796853 −0.0536021
\(222\) −0.349261 −0.0234408
\(223\) −16.9713 −1.13648 −0.568241 0.822862i \(-0.692376\pi\)
−0.568241 + 0.822862i \(0.692376\pi\)
\(224\) −5.85048 −0.390902
\(225\) 3.15968 0.210645
\(226\) 10.3989 0.691723
\(227\) 26.3750 1.75057 0.875285 0.483607i \(-0.160674\pi\)
0.875285 + 0.483607i \(0.160674\pi\)
\(228\) −6.36316 −0.421411
\(229\) 22.6839 1.49900 0.749498 0.662006i \(-0.230295\pi\)
0.749498 + 0.662006i \(0.230295\pi\)
\(230\) 3.96525 0.261461
\(231\) −5.95291 −0.391673
\(232\) −24.3315 −1.59744
\(233\) 19.9035 1.30392 0.651960 0.758253i \(-0.273947\pi\)
0.651960 + 0.758253i \(0.273947\pi\)
\(234\) 1.75482 0.114716
\(235\) 13.9878 0.912461
\(236\) −7.42448 −0.483292
\(237\) 13.1696 0.855457
\(238\) −0.277921 −0.0180149
\(239\) 14.8701 0.961870 0.480935 0.876756i \(-0.340297\pi\)
0.480935 + 0.876756i \(0.340297\pi\)
\(240\) −2.00638 −0.129511
\(241\) 29.5656 1.90449 0.952245 0.305335i \(-0.0987685\pi\)
0.952245 + 0.305335i \(0.0987685\pi\)
\(242\) −19.1178 −1.22894
\(243\) 1.00000 0.0641500
\(244\) −5.14970 −0.329676
\(245\) −2.85652 −0.182496
\(246\) 4.34776 0.277203
\(247\) −10.2834 −0.654320
\(248\) −6.94133 −0.440775
\(249\) 15.2753 0.968034
\(250\) −4.11261 −0.260104
\(251\) 20.0199 1.26364 0.631821 0.775114i \(-0.282308\pi\)
0.631821 + 0.775114i \(0.282308\pi\)
\(252\) −1.38797 −0.0874337
\(253\) −10.5627 −0.664074
\(254\) −0.782325 −0.0490875
\(255\) −1.01478 −0.0635477
\(256\) −13.5569 −0.847305
\(257\) −26.4101 −1.64742 −0.823709 0.567012i \(-0.808099\pi\)
−0.823709 + 0.567012i \(0.808099\pi\)
\(258\) 2.98408 0.185780
\(259\) 0.446439 0.0277404
\(260\) −8.89325 −0.551536
\(261\) −9.18000 −0.568228
\(262\) −1.16099 −0.0717261
\(263\) −18.5090 −1.14131 −0.570656 0.821189i \(-0.693311\pi\)
−0.570656 + 0.821189i \(0.693311\pi\)
\(264\) −15.7782 −0.971078
\(265\) −37.0520 −2.27609
\(266\) −3.58659 −0.219908
\(267\) −2.60509 −0.159429
\(268\) −14.3305 −0.875376
\(269\) 0.573334 0.0349568 0.0174784 0.999847i \(-0.494436\pi\)
0.0174784 + 0.999847i \(0.494436\pi\)
\(270\) 2.23472 0.136001
\(271\) 7.26958 0.441595 0.220798 0.975320i \(-0.429134\pi\)
0.220798 + 0.975320i \(0.429134\pi\)
\(272\) 0.249523 0.0151295
\(273\) −2.24308 −0.135757
\(274\) −3.06986 −0.185457
\(275\) −18.8093 −1.13424
\(276\) −2.46278 −0.148242
\(277\) −16.1927 −0.972924 −0.486462 0.873702i \(-0.661713\pi\)
−0.486462 + 0.873702i \(0.661713\pi\)
\(278\) 1.26257 0.0757242
\(279\) −2.61888 −0.156788
\(280\) −7.57117 −0.452464
\(281\) −0.461522 −0.0275321 −0.0137661 0.999905i \(-0.504382\pi\)
−0.0137661 + 0.999905i \(0.504382\pi\)
\(282\) 3.83088 0.228126
\(283\) 3.00080 0.178379 0.0891895 0.996015i \(-0.471572\pi\)
0.0891895 + 0.996015i \(0.471572\pi\)
\(284\) −1.83157 −0.108683
\(285\) −13.0958 −0.775725
\(286\) −10.4463 −0.617701
\(287\) −5.55748 −0.328048
\(288\) −5.85048 −0.344743
\(289\) −16.8738 −0.992576
\(290\) −20.5148 −1.20467
\(291\) −3.10938 −0.182275
\(292\) 12.2929 0.719386
\(293\) 14.8706 0.868752 0.434376 0.900732i \(-0.356969\pi\)
0.434376 + 0.900732i \(0.356969\pi\)
\(294\) −0.782325 −0.0456261
\(295\) −15.2800 −0.889636
\(296\) 1.18328 0.0687770
\(297\) −5.95291 −0.345423
\(298\) −7.12524 −0.412754
\(299\) −3.98008 −0.230174
\(300\) −4.38553 −0.253199
\(301\) −3.81437 −0.219856
\(302\) 7.61573 0.438236
\(303\) 2.36661 0.135958
\(304\) 3.22011 0.184686
\(305\) −10.5984 −0.606862
\(306\) −0.277921 −0.0158877
\(307\) 20.0380 1.14363 0.571815 0.820383i \(-0.306240\pi\)
0.571815 + 0.820383i \(0.306240\pi\)
\(308\) 8.26245 0.470797
\(309\) 3.24902 0.184830
\(310\) −5.85248 −0.332399
\(311\) −1.42299 −0.0806904 −0.0403452 0.999186i \(-0.512846\pi\)
−0.0403452 + 0.999186i \(0.512846\pi\)
\(312\) −5.94526 −0.336584
\(313\) 8.24182 0.465855 0.232928 0.972494i \(-0.425170\pi\)
0.232928 + 0.972494i \(0.425170\pi\)
\(314\) −8.25680 −0.465958
\(315\) −2.85652 −0.160946
\(316\) −18.2790 −1.02827
\(317\) 22.8267 1.28208 0.641038 0.767509i \(-0.278504\pi\)
0.641038 + 0.767509i \(0.278504\pi\)
\(318\) −10.1476 −0.569048
\(319\) 54.6477 3.05969
\(320\) −9.06145 −0.506551
\(321\) −0.104034 −0.00580660
\(322\) −1.38814 −0.0773582
\(323\) 1.62865 0.0906205
\(324\) −1.38797 −0.0771093
\(325\) −7.08741 −0.393139
\(326\) −4.71970 −0.261400
\(327\) 19.8237 1.09625
\(328\) −14.7301 −0.813331
\(329\) −4.89679 −0.269969
\(330\) −13.3031 −0.732313
\(331\) 23.7844 1.30731 0.653656 0.756792i \(-0.273235\pi\)
0.653656 + 0.756792i \(0.273235\pi\)
\(332\) −21.2016 −1.16359
\(333\) 0.446439 0.0244647
\(334\) −0.976105 −0.0534101
\(335\) −29.4930 −1.61138
\(336\) 0.702387 0.0383183
\(337\) −6.16356 −0.335750 −0.167875 0.985808i \(-0.553691\pi\)
−0.167875 + 0.985808i \(0.553691\pi\)
\(338\) 6.23403 0.339087
\(339\) −13.2923 −0.721937
\(340\) 1.40848 0.0763853
\(341\) 15.5900 0.844245
\(342\) −3.58659 −0.193940
\(343\) 1.00000 0.0539949
\(344\) −10.1099 −0.545092
\(345\) −5.06855 −0.272882
\(346\) 5.49520 0.295424
\(347\) −10.9479 −0.587716 −0.293858 0.955849i \(-0.594939\pi\)
−0.293858 + 0.955849i \(0.594939\pi\)
\(348\) 12.7415 0.683018
\(349\) −4.35089 −0.232898 −0.116449 0.993197i \(-0.537151\pi\)
−0.116449 + 0.993197i \(0.537151\pi\)
\(350\) −2.47190 −0.132129
\(351\) −2.24308 −0.119727
\(352\) 34.8274 1.85631
\(353\) −23.5716 −1.25459 −0.627294 0.778782i \(-0.715838\pi\)
−0.627294 + 0.778782i \(0.715838\pi\)
\(354\) −4.18480 −0.222419
\(355\) −3.76947 −0.200063
\(356\) 3.61578 0.191636
\(357\) 0.355250 0.0188018
\(358\) 12.5564 0.663628
\(359\) −10.7509 −0.567412 −0.283706 0.958911i \(-0.591564\pi\)
−0.283706 + 0.958911i \(0.591564\pi\)
\(360\) −7.57117 −0.399036
\(361\) 2.01782 0.106201
\(362\) 7.85364 0.412778
\(363\) 24.4372 1.28262
\(364\) 3.11332 0.163182
\(365\) 25.2995 1.32423
\(366\) −2.90262 −0.151722
\(367\) 13.4042 0.699694 0.349847 0.936807i \(-0.386234\pi\)
0.349847 + 0.936807i \(0.386234\pi\)
\(368\) 1.24630 0.0649680
\(369\) −5.55748 −0.289311
\(370\) 0.997669 0.0518663
\(371\) 12.9711 0.673424
\(372\) 3.63492 0.188462
\(373\) 2.43314 0.125983 0.0629915 0.998014i \(-0.479936\pi\)
0.0629915 + 0.998014i \(0.479936\pi\)
\(374\) 1.65444 0.0855490
\(375\) 5.25690 0.271465
\(376\) −12.9789 −0.669336
\(377\) 20.5915 1.06051
\(378\) −0.782325 −0.0402385
\(379\) 1.12262 0.0576652 0.0288326 0.999584i \(-0.490821\pi\)
0.0288326 + 0.999584i \(0.490821\pi\)
\(380\) 18.1765 0.932433
\(381\) 1.00000 0.0512316
\(382\) −10.0809 −0.515784
\(383\) −12.1235 −0.619484 −0.309742 0.950821i \(-0.600243\pi\)
−0.309742 + 0.950821i \(0.600243\pi\)
\(384\) 9.21926 0.470469
\(385\) 17.0046 0.866634
\(386\) −12.1586 −0.618858
\(387\) −3.81437 −0.193895
\(388\) 4.31571 0.219097
\(389\) −7.49818 −0.380173 −0.190086 0.981767i \(-0.560877\pi\)
−0.190086 + 0.981767i \(0.560877\pi\)
\(390\) −5.01266 −0.253826
\(391\) 0.630349 0.0318781
\(392\) 2.65049 0.133870
\(393\) 1.48402 0.0748590
\(394\) 7.12268 0.358836
\(395\) −37.6191 −1.89282
\(396\) 8.26245 0.415204
\(397\) 2.60531 0.130757 0.0653785 0.997861i \(-0.479175\pi\)
0.0653785 + 0.997861i \(0.479175\pi\)
\(398\) −16.2566 −0.814872
\(399\) 4.58452 0.229513
\(400\) 2.21932 0.110966
\(401\) −34.5142 −1.72356 −0.861778 0.507285i \(-0.830649\pi\)
−0.861778 + 0.507285i \(0.830649\pi\)
\(402\) −8.07738 −0.402863
\(403\) 5.87436 0.292623
\(404\) −3.28478 −0.163424
\(405\) −2.85652 −0.141941
\(406\) 7.18175 0.356424
\(407\) −2.65761 −0.131733
\(408\) 0.941587 0.0466155
\(409\) −18.5829 −0.918864 −0.459432 0.888213i \(-0.651947\pi\)
−0.459432 + 0.888213i \(0.651947\pi\)
\(410\) −12.4194 −0.613352
\(411\) 3.92401 0.193557
\(412\) −4.50953 −0.222168
\(413\) 5.34918 0.263216
\(414\) −1.38814 −0.0682236
\(415\) −43.6342 −2.14192
\(416\) 13.1231 0.643412
\(417\) −1.61387 −0.0790317
\(418\) 21.3506 1.04429
\(419\) −34.4281 −1.68192 −0.840962 0.541094i \(-0.818010\pi\)
−0.840962 + 0.541094i \(0.818010\pi\)
\(420\) 3.96475 0.193460
\(421\) 10.5543 0.514383 0.257191 0.966360i \(-0.417203\pi\)
0.257191 + 0.966360i \(0.417203\pi\)
\(422\) 5.66363 0.275701
\(423\) −4.89679 −0.238090
\(424\) 34.3797 1.66963
\(425\) 1.12248 0.0544481
\(426\) −1.03236 −0.0500180
\(427\) 3.71025 0.179552
\(428\) 0.144395 0.00697961
\(429\) 13.3529 0.644682
\(430\) −8.52406 −0.411067
\(431\) 23.7306 1.14306 0.571531 0.820581i \(-0.306350\pi\)
0.571531 + 0.820581i \(0.306350\pi\)
\(432\) 0.702387 0.0337936
\(433\) 3.32779 0.159923 0.0799617 0.996798i \(-0.474520\pi\)
0.0799617 + 0.996798i \(0.474520\pi\)
\(434\) 2.04882 0.0983464
\(435\) 26.2228 1.25729
\(436\) −27.5146 −1.31771
\(437\) 8.13469 0.389135
\(438\) 6.92886 0.331074
\(439\) 20.6852 0.987252 0.493626 0.869674i \(-0.335671\pi\)
0.493626 + 0.869674i \(0.335671\pi\)
\(440\) 45.0705 2.14865
\(441\) 1.00000 0.0476190
\(442\) 0.623398 0.0296520
\(443\) −40.0896 −1.90472 −0.952358 0.304981i \(-0.901350\pi\)
−0.952358 + 0.304981i \(0.901350\pi\)
\(444\) −0.619643 −0.0294070
\(445\) 7.44149 0.352760
\(446\) 13.2771 0.628687
\(447\) 9.10778 0.430783
\(448\) 3.17221 0.149873
\(449\) −20.3346 −0.959648 −0.479824 0.877365i \(-0.659300\pi\)
−0.479824 + 0.877365i \(0.659300\pi\)
\(450\) −2.47190 −0.116526
\(451\) 33.0832 1.55783
\(452\) 18.4492 0.867779
\(453\) −9.73474 −0.457378
\(454\) −20.6338 −0.968394
\(455\) 6.40739 0.300383
\(456\) 12.1512 0.569034
\(457\) −11.4154 −0.533991 −0.266996 0.963698i \(-0.586031\pi\)
−0.266996 + 0.963698i \(0.586031\pi\)
\(458\) −17.7462 −0.829226
\(459\) 0.355250 0.0165816
\(460\) 7.03498 0.328008
\(461\) −35.1107 −1.63527 −0.817634 0.575738i \(-0.804715\pi\)
−0.817634 + 0.575738i \(0.804715\pi\)
\(462\) 4.65711 0.216669
\(463\) −9.61602 −0.446894 −0.223447 0.974716i \(-0.571731\pi\)
−0.223447 + 0.974716i \(0.571731\pi\)
\(464\) −6.44791 −0.299337
\(465\) 7.48088 0.346917
\(466\) −15.5710 −0.721313
\(467\) 32.7492 1.51545 0.757725 0.652574i \(-0.226311\pi\)
0.757725 + 0.652574i \(0.226311\pi\)
\(468\) 3.11332 0.143913
\(469\) 10.3248 0.476756
\(470\) −10.9430 −0.504762
\(471\) 10.5542 0.486311
\(472\) 14.1780 0.652593
\(473\) 22.7066 1.04405
\(474\) −10.3029 −0.473228
\(475\) 14.4856 0.664646
\(476\) −0.493075 −0.0226000
\(477\) 12.9711 0.593904
\(478\) −11.6333 −0.532095
\(479\) 4.11326 0.187940 0.0939698 0.995575i \(-0.470044\pi\)
0.0939698 + 0.995575i \(0.470044\pi\)
\(480\) 16.7120 0.762794
\(481\) −1.00140 −0.0456598
\(482\) −23.1299 −1.05354
\(483\) 1.77438 0.0807372
\(484\) −33.9180 −1.54173
\(485\) 8.88199 0.403310
\(486\) −0.782325 −0.0354870
\(487\) −10.3942 −0.471007 −0.235504 0.971873i \(-0.575674\pi\)
−0.235504 + 0.971873i \(0.575674\pi\)
\(488\) 9.83399 0.445164
\(489\) 6.03292 0.272818
\(490\) 2.23472 0.100955
\(491\) 11.6309 0.524895 0.262447 0.964946i \(-0.415470\pi\)
0.262447 + 0.964946i \(0.415470\pi\)
\(492\) 7.71360 0.347756
\(493\) −3.26119 −0.146877
\(494\) 8.04500 0.361961
\(495\) 17.0046 0.764299
\(496\) −1.83947 −0.0825946
\(497\) 1.31960 0.0591923
\(498\) −11.9503 −0.535504
\(499\) 18.6834 0.836384 0.418192 0.908359i \(-0.362664\pi\)
0.418192 + 0.908359i \(0.362664\pi\)
\(500\) −7.29640 −0.326305
\(501\) 1.24770 0.0557430
\(502\) −15.6620 −0.699031
\(503\) −37.2918 −1.66276 −0.831380 0.555705i \(-0.812449\pi\)
−0.831380 + 0.555705i \(0.812449\pi\)
\(504\) 2.65049 0.118062
\(505\) −6.76026 −0.300828
\(506\) 8.26350 0.367357
\(507\) −7.96860 −0.353898
\(508\) −1.38797 −0.0615811
\(509\) 30.3885 1.34695 0.673474 0.739211i \(-0.264801\pi\)
0.673474 + 0.739211i \(0.264801\pi\)
\(510\) 0.793885 0.0351538
\(511\) −8.85675 −0.391800
\(512\) −7.83264 −0.346157
\(513\) 4.58452 0.202412
\(514\) 20.6613 0.911331
\(515\) −9.28086 −0.408964
\(516\) 5.29421 0.233065
\(517\) 29.1502 1.28202
\(518\) −0.349261 −0.0153456
\(519\) −7.02419 −0.308328
\(520\) 16.9827 0.744742
\(521\) 13.9497 0.611146 0.305573 0.952169i \(-0.401152\pi\)
0.305573 + 0.952169i \(0.401152\pi\)
\(522\) 7.18175 0.314337
\(523\) −22.2163 −0.971450 −0.485725 0.874112i \(-0.661444\pi\)
−0.485725 + 0.874112i \(0.661444\pi\)
\(524\) −2.05977 −0.0899816
\(525\) 3.15968 0.137900
\(526\) 14.4800 0.631360
\(527\) −0.930357 −0.0405270
\(528\) −4.18125 −0.181965
\(529\) −19.8516 −0.863112
\(530\) 28.9867 1.25910
\(531\) 5.34918 0.232134
\(532\) −6.36316 −0.275878
\(533\) 12.4659 0.539957
\(534\) 2.03803 0.0881942
\(535\) 0.297174 0.0128479
\(536\) 27.3659 1.18203
\(537\) −16.0501 −0.692614
\(538\) −0.448534 −0.0193377
\(539\) −5.95291 −0.256410
\(540\) 3.96475 0.170616
\(541\) 25.9878 1.11730 0.558651 0.829403i \(-0.311319\pi\)
0.558651 + 0.829403i \(0.311319\pi\)
\(542\) −5.68718 −0.244285
\(543\) −10.0388 −0.430808
\(544\) −2.07838 −0.0891098
\(545\) −56.6267 −2.42562
\(546\) 1.75482 0.0750993
\(547\) −38.7425 −1.65651 −0.828254 0.560352i \(-0.810666\pi\)
−0.828254 + 0.560352i \(0.810666\pi\)
\(548\) −5.44640 −0.232659
\(549\) 3.71025 0.158350
\(550\) 14.7150 0.627450
\(551\) −42.0859 −1.79292
\(552\) 4.70299 0.200172
\(553\) 13.1696 0.560028
\(554\) 12.6679 0.538209
\(555\) −1.27526 −0.0541318
\(556\) 2.24000 0.0949973
\(557\) −13.2224 −0.560252 −0.280126 0.959963i \(-0.590376\pi\)
−0.280126 + 0.959963i \(0.590376\pi\)
\(558\) 2.04882 0.0867334
\(559\) 8.55592 0.361877
\(560\) −2.00638 −0.0847850
\(561\) −2.11477 −0.0892857
\(562\) 0.361061 0.0152304
\(563\) −12.5799 −0.530180 −0.265090 0.964224i \(-0.585402\pi\)
−0.265090 + 0.964224i \(0.585402\pi\)
\(564\) 6.79659 0.286188
\(565\) 37.9696 1.59739
\(566\) −2.34760 −0.0986771
\(567\) 1.00000 0.0419961
\(568\) 3.49760 0.146756
\(569\) 22.4858 0.942653 0.471326 0.881959i \(-0.343775\pi\)
0.471326 + 0.881959i \(0.343775\pi\)
\(570\) 10.2451 0.429122
\(571\) 10.9617 0.458733 0.229366 0.973340i \(-0.426335\pi\)
0.229366 + 0.973340i \(0.426335\pi\)
\(572\) −18.5333 −0.774917
\(573\) 12.8858 0.538313
\(574\) 4.34776 0.181472
\(575\) 5.60648 0.233806
\(576\) 3.17221 0.132175
\(577\) −7.86167 −0.327286 −0.163643 0.986520i \(-0.552324\pi\)
−0.163643 + 0.986520i \(0.552324\pi\)
\(578\) 13.2008 0.549081
\(579\) 15.5417 0.645889
\(580\) −36.3964 −1.51128
\(581\) 15.2753 0.633727
\(582\) 2.43254 0.100832
\(583\) −77.2156 −3.19794
\(584\) −23.4748 −0.971392
\(585\) 6.40739 0.264913
\(586\) −11.6337 −0.480583
\(587\) 45.8628 1.89296 0.946479 0.322764i \(-0.104612\pi\)
0.946479 + 0.322764i \(0.104612\pi\)
\(588\) −1.38797 −0.0572388
\(589\) −12.0063 −0.494712
\(590\) 11.9539 0.492136
\(591\) −9.10451 −0.374509
\(592\) 0.313573 0.0128878
\(593\) 19.8056 0.813319 0.406660 0.913580i \(-0.366693\pi\)
0.406660 + 0.913580i \(0.366693\pi\)
\(594\) 4.65711 0.191084
\(595\) −1.01478 −0.0416018
\(596\) −12.6413 −0.517808
\(597\) 20.7799 0.850465
\(598\) 3.11372 0.127329
\(599\) 34.5952 1.41352 0.706761 0.707452i \(-0.250156\pi\)
0.706761 + 0.707452i \(0.250156\pi\)
\(600\) 8.37471 0.341896
\(601\) 10.5867 0.431840 0.215920 0.976411i \(-0.430725\pi\)
0.215920 + 0.976411i \(0.430725\pi\)
\(602\) 2.98408 0.121622
\(603\) 10.3248 0.420460
\(604\) 13.5115 0.549775
\(605\) −69.8052 −2.83798
\(606\) −1.85146 −0.0752104
\(607\) −28.2830 −1.14797 −0.573986 0.818865i \(-0.694604\pi\)
−0.573986 + 0.818865i \(0.694604\pi\)
\(608\) −26.8216 −1.08776
\(609\) −9.18000 −0.371992
\(610\) 8.29138 0.335708
\(611\) 10.9839 0.444361
\(612\) −0.493075 −0.0199314
\(613\) −8.39067 −0.338896 −0.169448 0.985539i \(-0.554198\pi\)
−0.169448 + 0.985539i \(0.554198\pi\)
\(614\) −15.6762 −0.632642
\(615\) 15.8750 0.640143
\(616\) −15.7782 −0.635720
\(617\) 1.54113 0.0620437 0.0310219 0.999519i \(-0.490124\pi\)
0.0310219 + 0.999519i \(0.490124\pi\)
\(618\) −2.54179 −0.102246
\(619\) −18.5681 −0.746313 −0.373157 0.927768i \(-0.621725\pi\)
−0.373157 + 0.927768i \(0.621725\pi\)
\(620\) −10.3832 −0.417000
\(621\) 1.77438 0.0712035
\(622\) 1.11324 0.0446369
\(623\) −2.60509 −0.104371
\(624\) −1.57551 −0.0630708
\(625\) −30.8148 −1.23259
\(626\) −6.44778 −0.257705
\(627\) −27.2912 −1.08991
\(628\) −14.6489 −0.584553
\(629\) 0.158597 0.00632369
\(630\) 2.23472 0.0890336
\(631\) 34.2361 1.36292 0.681459 0.731857i \(-0.261346\pi\)
0.681459 + 0.731857i \(0.261346\pi\)
\(632\) 34.9059 1.38848
\(633\) −7.23948 −0.287744
\(634\) −17.8579 −0.709229
\(635\) −2.85652 −0.113357
\(636\) −18.0034 −0.713881
\(637\) −2.24308 −0.0888740
\(638\) −42.7523 −1.69258
\(639\) 1.31960 0.0522027
\(640\) −26.3350 −1.04098
\(641\) 0.674416 0.0266378 0.0133189 0.999911i \(-0.495760\pi\)
0.0133189 + 0.999911i \(0.495760\pi\)
\(642\) 0.0813882 0.00321214
\(643\) 29.7807 1.17444 0.587219 0.809428i \(-0.300223\pi\)
0.587219 + 0.809428i \(0.300223\pi\)
\(644\) −2.46278 −0.0970473
\(645\) 10.8958 0.429022
\(646\) −1.27413 −0.0501301
\(647\) 19.3926 0.762401 0.381200 0.924492i \(-0.375511\pi\)
0.381200 + 0.924492i \(0.375511\pi\)
\(648\) 2.65049 0.104121
\(649\) −31.8432 −1.24995
\(650\) 5.54466 0.217480
\(651\) −2.61888 −0.102642
\(652\) −8.37349 −0.327931
\(653\) −7.50126 −0.293547 −0.146773 0.989170i \(-0.546889\pi\)
−0.146773 + 0.989170i \(0.546889\pi\)
\(654\) −15.5086 −0.606434
\(655\) −4.23913 −0.165637
\(656\) −3.90350 −0.152406
\(657\) −8.85675 −0.345535
\(658\) 3.83088 0.149343
\(659\) −1.97123 −0.0767882 −0.0383941 0.999263i \(-0.512224\pi\)
−0.0383941 + 0.999263i \(0.512224\pi\)
\(660\) −23.6018 −0.918699
\(661\) −24.4180 −0.949750 −0.474875 0.880053i \(-0.657507\pi\)
−0.474875 + 0.880053i \(0.657507\pi\)
\(662\) −18.6072 −0.723188
\(663\) −0.796853 −0.0309472
\(664\) 40.4871 1.57120
\(665\) −13.0958 −0.507831
\(666\) −0.349261 −0.0135336
\(667\) −16.2888 −0.630706
\(668\) −1.73176 −0.0670039
\(669\) −16.9713 −0.656148
\(670\) 23.0732 0.891394
\(671\) −22.0868 −0.852651
\(672\) −5.85048 −0.225687
\(673\) −39.0533 −1.50539 −0.752697 0.658367i \(-0.771247\pi\)
−0.752697 + 0.658367i \(0.771247\pi\)
\(674\) 4.82191 0.185733
\(675\) 3.15968 0.121616
\(676\) 11.0601 0.425390
\(677\) −37.5231 −1.44213 −0.721065 0.692868i \(-0.756347\pi\)
−0.721065 + 0.692868i \(0.756347\pi\)
\(678\) 10.3989 0.399366
\(679\) −3.10938 −0.119327
\(680\) −2.68966 −0.103144
\(681\) 26.3750 1.01069
\(682\) −12.1964 −0.467026
\(683\) −42.5582 −1.62845 −0.814223 0.580552i \(-0.802837\pi\)
−0.814223 + 0.580552i \(0.802837\pi\)
\(684\) −6.36316 −0.243302
\(685\) −11.2090 −0.428274
\(686\) −0.782325 −0.0298693
\(687\) 22.6839 0.865446
\(688\) −2.67916 −0.102142
\(689\) −29.0951 −1.10844
\(690\) 3.96525 0.150955
\(691\) 8.50252 0.323451 0.161726 0.986836i \(-0.448294\pi\)
0.161726 + 0.986836i \(0.448294\pi\)
\(692\) 9.74934 0.370614
\(693\) −5.95291 −0.226132
\(694\) 8.56485 0.325117
\(695\) 4.61006 0.174869
\(696\) −24.3315 −0.922284
\(697\) −1.97429 −0.0747817
\(698\) 3.40381 0.128836
\(699\) 19.9035 0.752819
\(700\) −4.38553 −0.165758
\(701\) 41.0282 1.54962 0.774808 0.632197i \(-0.217847\pi\)
0.774808 + 0.632197i \(0.217847\pi\)
\(702\) 1.75482 0.0662313
\(703\) 2.04671 0.0771931
\(704\) −18.8839 −0.711712
\(705\) 13.9878 0.526810
\(706\) 18.4406 0.694023
\(707\) 2.36661 0.0890055
\(708\) −7.42448 −0.279029
\(709\) −27.8419 −1.04563 −0.522813 0.852448i \(-0.675117\pi\)
−0.522813 + 0.852448i \(0.675117\pi\)
\(710\) 2.94895 0.110672
\(711\) 13.1696 0.493898
\(712\) −6.90478 −0.258767
\(713\) −4.64690 −0.174028
\(714\) −0.277921 −0.0104009
\(715\) −38.1426 −1.42645
\(716\) 22.2771 0.832533
\(717\) 14.8701 0.555336
\(718\) 8.41072 0.313885
\(719\) 35.7992 1.33509 0.667543 0.744572i \(-0.267346\pi\)
0.667543 + 0.744572i \(0.267346\pi\)
\(720\) −2.00638 −0.0747733
\(721\) 3.24902 0.121000
\(722\) −1.57859 −0.0587492
\(723\) 29.5656 1.09956
\(724\) 13.9336 0.517838
\(725\) −29.0059 −1.07725
\(726\) −19.1178 −0.709529
\(727\) 28.1120 1.04262 0.521308 0.853369i \(-0.325444\pi\)
0.521308 + 0.853369i \(0.325444\pi\)
\(728\) −5.94526 −0.220346
\(729\) 1.00000 0.0370370
\(730\) −19.7924 −0.732550
\(731\) −1.35505 −0.0501184
\(732\) −5.14970 −0.190339
\(733\) −3.35859 −0.124053 −0.0620263 0.998075i \(-0.519756\pi\)
−0.0620263 + 0.998075i \(0.519756\pi\)
\(734\) −10.4865 −0.387062
\(735\) −2.85652 −0.105364
\(736\) −10.3810 −0.382648
\(737\) −61.4628 −2.26401
\(738\) 4.34776 0.160043
\(739\) −8.81699 −0.324338 −0.162169 0.986763i \(-0.551849\pi\)
−0.162169 + 0.986763i \(0.551849\pi\)
\(740\) 1.77002 0.0650672
\(741\) −10.2834 −0.377772
\(742\) −10.1476 −0.372530
\(743\) −33.5929 −1.23240 −0.616201 0.787589i \(-0.711329\pi\)
−0.616201 + 0.787589i \(0.711329\pi\)
\(744\) −6.94133 −0.254481
\(745\) −26.0165 −0.953171
\(746\) −1.90350 −0.0696922
\(747\) 15.2753 0.558895
\(748\) 2.93523 0.107323
\(749\) −0.104034 −0.00380131
\(750\) −4.11261 −0.150171
\(751\) 38.7986 1.41578 0.707891 0.706321i \(-0.249647\pi\)
0.707891 + 0.706321i \(0.249647\pi\)
\(752\) −3.43944 −0.125424
\(753\) 20.0199 0.729564
\(754\) −16.1092 −0.586663
\(755\) 27.8074 1.01202
\(756\) −1.38797 −0.0504799
\(757\) 13.6304 0.495406 0.247703 0.968836i \(-0.420324\pi\)
0.247703 + 0.968836i \(0.420324\pi\)
\(758\) −0.878256 −0.0318997
\(759\) −10.5627 −0.383403
\(760\) −34.7102 −1.25907
\(761\) −7.00438 −0.253909 −0.126954 0.991909i \(-0.540520\pi\)
−0.126954 + 0.991909i \(0.540520\pi\)
\(762\) −0.782325 −0.0283407
\(763\) 19.8237 0.717666
\(764\) −17.8851 −0.647061
\(765\) −1.01478 −0.0366893
\(766\) 9.48456 0.342691
\(767\) −11.9986 −0.433245
\(768\) −13.5569 −0.489192
\(769\) −25.3807 −0.915251 −0.457625 0.889145i \(-0.651300\pi\)
−0.457625 + 0.889145i \(0.651300\pi\)
\(770\) −13.3031 −0.479411
\(771\) −26.4101 −0.951137
\(772\) −21.5713 −0.776368
\(773\) 45.1789 1.62497 0.812485 0.582982i \(-0.198114\pi\)
0.812485 + 0.582982i \(0.198114\pi\)
\(774\) 2.98408 0.107260
\(775\) −8.27483 −0.297241
\(776\) −8.24138 −0.295848
\(777\) 0.446439 0.0160159
\(778\) 5.86601 0.210307
\(779\) −25.4784 −0.912857
\(780\) −8.89325 −0.318429
\(781\) −7.85548 −0.281091
\(782\) −0.493138 −0.0176346
\(783\) −9.18000 −0.328066
\(784\) 0.702387 0.0250852
\(785\) −30.1482 −1.07603
\(786\) −1.16099 −0.0414111
\(787\) 17.2345 0.614344 0.307172 0.951654i \(-0.400617\pi\)
0.307172 + 0.951654i \(0.400617\pi\)
\(788\) 12.6368 0.450166
\(789\) −18.5090 −0.658937
\(790\) 29.4304 1.04709
\(791\) −13.2923 −0.472619
\(792\) −15.7782 −0.560652
\(793\) −8.32238 −0.295536
\(794\) −2.03820 −0.0723331
\(795\) −37.0520 −1.31410
\(796\) −28.8418 −1.02227
\(797\) 11.1590 0.395273 0.197636 0.980275i \(-0.436673\pi\)
0.197636 + 0.980275i \(0.436673\pi\)
\(798\) −3.58659 −0.126964
\(799\) −1.73958 −0.0615420
\(800\) −18.4856 −0.653566
\(801\) −2.60509 −0.0920464
\(802\) 27.0013 0.953450
\(803\) 52.7235 1.86057
\(804\) −14.3305 −0.505399
\(805\) −5.06855 −0.178643
\(806\) −4.59566 −0.161875
\(807\) 0.573334 0.0201823
\(808\) 6.27268 0.220672
\(809\) −8.81764 −0.310012 −0.155006 0.987914i \(-0.549540\pi\)
−0.155006 + 0.987914i \(0.549540\pi\)
\(810\) 2.23472 0.0785202
\(811\) 23.6575 0.830726 0.415363 0.909656i \(-0.363655\pi\)
0.415363 + 0.909656i \(0.363655\pi\)
\(812\) 12.7415 0.447140
\(813\) 7.26958 0.254955
\(814\) 2.07912 0.0728731
\(815\) −17.2331 −0.603650
\(816\) 0.249523 0.00873504
\(817\) −17.4870 −0.611794
\(818\) 14.5379 0.508304
\(819\) −2.24308 −0.0783795
\(820\) −22.0340 −0.769461
\(821\) −10.4013 −0.363006 −0.181503 0.983390i \(-0.558096\pi\)
−0.181503 + 0.983390i \(0.558096\pi\)
\(822\) −3.06986 −0.107074
\(823\) −55.3493 −1.92935 −0.964677 0.263434i \(-0.915145\pi\)
−0.964677 + 0.263434i \(0.915145\pi\)
\(824\) 8.61149 0.299996
\(825\) −18.8093 −0.654856
\(826\) −4.18480 −0.145608
\(827\) 48.9737 1.70298 0.851491 0.524369i \(-0.175699\pi\)
0.851491 + 0.524369i \(0.175699\pi\)
\(828\) −2.46278 −0.0855876
\(829\) 13.1541 0.456859 0.228430 0.973560i \(-0.426641\pi\)
0.228430 + 0.973560i \(0.426641\pi\)
\(830\) 34.1361 1.18488
\(831\) −16.1927 −0.561718
\(832\) −7.11551 −0.246686
\(833\) 0.355250 0.0123087
\(834\) 1.26257 0.0437194
\(835\) −3.56407 −0.123340
\(836\) 37.8794 1.31008
\(837\) −2.61888 −0.0905218
\(838\) 26.9340 0.930420
\(839\) −22.3972 −0.773237 −0.386618 0.922240i \(-0.626357\pi\)
−0.386618 + 0.922240i \(0.626357\pi\)
\(840\) −7.57117 −0.261230
\(841\) 55.2724 1.90594
\(842\) −8.25686 −0.284550
\(843\) −0.461522 −0.0158957
\(844\) 10.0482 0.345872
\(845\) 22.7624 0.783051
\(846\) 3.83088 0.131709
\(847\) 24.4372 0.839671
\(848\) 9.11070 0.312863
\(849\) 3.00080 0.102987
\(850\) −0.878141 −0.0301200
\(851\) 0.792154 0.0271547
\(852\) −1.83157 −0.0627484
\(853\) 6.45732 0.221094 0.110547 0.993871i \(-0.464740\pi\)
0.110547 + 0.993871i \(0.464740\pi\)
\(854\) −2.90262 −0.0993257
\(855\) −13.0958 −0.447865
\(856\) −0.275741 −0.00942462
\(857\) −2.95220 −0.100845 −0.0504226 0.998728i \(-0.516057\pi\)
−0.0504226 + 0.998728i \(0.516057\pi\)
\(858\) −10.4463 −0.356630
\(859\) −36.7317 −1.25327 −0.626634 0.779314i \(-0.715568\pi\)
−0.626634 + 0.779314i \(0.715568\pi\)
\(860\) −15.1230 −0.515690
\(861\) −5.55748 −0.189398
\(862\) −18.5650 −0.632327
\(863\) 20.3620 0.693131 0.346565 0.938026i \(-0.387348\pi\)
0.346565 + 0.938026i \(0.387348\pi\)
\(864\) −5.85048 −0.199037
\(865\) 20.0647 0.682220
\(866\) −2.60342 −0.0884677
\(867\) −16.8738 −0.573064
\(868\) 3.63492 0.123377
\(869\) −78.3974 −2.65945
\(870\) −20.5148 −0.695516
\(871\) −23.1594 −0.784727
\(872\) 52.5426 1.77932
\(873\) −3.10938 −0.105236
\(874\) −6.36397 −0.215265
\(875\) 5.25690 0.177716
\(876\) 12.2929 0.415338
\(877\) 24.0567 0.812338 0.406169 0.913798i \(-0.366864\pi\)
0.406169 + 0.913798i \(0.366864\pi\)
\(878\) −16.1826 −0.546136
\(879\) 14.8706 0.501574
\(880\) 11.9438 0.402625
\(881\) 46.6478 1.57161 0.785803 0.618477i \(-0.212250\pi\)
0.785803 + 0.618477i \(0.212250\pi\)
\(882\) −0.782325 −0.0263423
\(883\) 25.3836 0.854225 0.427112 0.904198i \(-0.359531\pi\)
0.427112 + 0.904198i \(0.359531\pi\)
\(884\) 1.10601 0.0371990
\(885\) −15.2800 −0.513632
\(886\) 31.3631 1.05367
\(887\) 25.9636 0.871771 0.435886 0.900002i \(-0.356435\pi\)
0.435886 + 0.900002i \(0.356435\pi\)
\(888\) 1.18328 0.0397084
\(889\) 1.00000 0.0335389
\(890\) −5.82166 −0.195143
\(891\) −5.95291 −0.199430
\(892\) 23.5556 0.788699
\(893\) −22.4494 −0.751242
\(894\) −7.12524 −0.238304
\(895\) 45.8475 1.53251
\(896\) 9.21926 0.307994
\(897\) −3.98008 −0.132891
\(898\) 15.9083 0.530866
\(899\) 24.0413 0.801824
\(900\) −4.38553 −0.146184
\(901\) 4.60796 0.153514
\(902\) −25.8818 −0.861770
\(903\) −3.81437 −0.126934
\(904\) −35.2310 −1.17177
\(905\) 28.6761 0.953226
\(906\) 7.61573 0.253016
\(907\) −16.6421 −0.552591 −0.276296 0.961073i \(-0.589107\pi\)
−0.276296 + 0.961073i \(0.589107\pi\)
\(908\) −36.6076 −1.21487
\(909\) 2.36661 0.0784955
\(910\) −5.01266 −0.166168
\(911\) 23.3831 0.774717 0.387358 0.921929i \(-0.373388\pi\)
0.387358 + 0.921929i \(0.373388\pi\)
\(912\) 3.22011 0.106628
\(913\) −90.9326 −3.00943
\(914\) 8.93058 0.295397
\(915\) −10.5984 −0.350372
\(916\) −31.4845 −1.04028
\(917\) 1.48402 0.0490067
\(918\) −0.277921 −0.00917275
\(919\) 24.1039 0.795114 0.397557 0.917578i \(-0.369858\pi\)
0.397557 + 0.917578i \(0.369858\pi\)
\(920\) −13.4342 −0.442911
\(921\) 20.0380 0.660275
\(922\) 27.4680 0.904610
\(923\) −2.95997 −0.0974288
\(924\) 8.26245 0.271815
\(925\) 1.41061 0.0463804
\(926\) 7.52286 0.247216
\(927\) 3.24902 0.106712
\(928\) 53.7074 1.76303
\(929\) −11.7991 −0.387117 −0.193559 0.981089i \(-0.562003\pi\)
−0.193559 + 0.981089i \(0.562003\pi\)
\(930\) −5.85248 −0.191910
\(931\) 4.58452 0.150252
\(932\) −27.6254 −0.904899
\(933\) −1.42299 −0.0465866
\(934\) −25.6205 −0.838328
\(935\) 6.04087 0.197558
\(936\) −5.94526 −0.194327
\(937\) −13.8473 −0.452371 −0.226186 0.974084i \(-0.572626\pi\)
−0.226186 + 0.974084i \(0.572626\pi\)
\(938\) −8.07738 −0.263736
\(939\) 8.24182 0.268962
\(940\) −19.4146 −0.633233
\(941\) 44.6036 1.45404 0.727018 0.686618i \(-0.240905\pi\)
0.727018 + 0.686618i \(0.240905\pi\)
\(942\) −8.25680 −0.269021
\(943\) −9.86109 −0.321121
\(944\) 3.75719 0.122286
\(945\) −2.85652 −0.0929225
\(946\) −17.7639 −0.577555
\(947\) 23.5909 0.766601 0.383301 0.923624i \(-0.374787\pi\)
0.383301 + 0.923624i \(0.374787\pi\)
\(948\) −18.2790 −0.593673
\(949\) 19.8664 0.644891
\(950\) −11.3325 −0.367674
\(951\) 22.8267 0.740207
\(952\) 0.941587 0.0305170
\(953\) 22.2076 0.719374 0.359687 0.933073i \(-0.382884\pi\)
0.359687 + 0.933073i \(0.382884\pi\)
\(954\) −10.1476 −0.328540
\(955\) −36.8086 −1.19110
\(956\) −20.6393 −0.667522
\(957\) 54.6477 1.76651
\(958\) −3.21791 −0.103966
\(959\) 3.92401 0.126713
\(960\) −9.06145 −0.292457
\(961\) −24.1415 −0.778757
\(962\) 0.783419 0.0252585
\(963\) −0.104034 −0.00335244
\(964\) −41.0361 −1.32168
\(965\) −44.3950 −1.42913
\(966\) −1.38814 −0.0446628
\(967\) −15.9265 −0.512161 −0.256081 0.966655i \(-0.582431\pi\)
−0.256081 + 0.966655i \(0.582431\pi\)
\(968\) 64.7705 2.08180
\(969\) 1.62865 0.0523197
\(970\) −6.94860 −0.223106
\(971\) −34.2446 −1.09896 −0.549480 0.835507i \(-0.685174\pi\)
−0.549480 + 0.835507i \(0.685174\pi\)
\(972\) −1.38797 −0.0445191
\(973\) −1.61387 −0.0517384
\(974\) 8.13166 0.260555
\(975\) −7.08741 −0.226979
\(976\) 2.60603 0.0834170
\(977\) 6.04555 0.193414 0.0967072 0.995313i \(-0.469169\pi\)
0.0967072 + 0.995313i \(0.469169\pi\)
\(978\) −4.71970 −0.150919
\(979\) 15.5079 0.495634
\(980\) 3.96475 0.126649
\(981\) 19.8237 0.632922
\(982\) −9.09914 −0.290365
\(983\) 50.1818 1.60055 0.800275 0.599633i \(-0.204687\pi\)
0.800275 + 0.599633i \(0.204687\pi\)
\(984\) −14.7301 −0.469577
\(985\) 26.0072 0.828657
\(986\) 2.55131 0.0812504
\(987\) −4.89679 −0.155867
\(988\) 14.2731 0.454087
\(989\) −6.76814 −0.215214
\(990\) −13.3031 −0.422801
\(991\) 34.7358 1.10342 0.551710 0.834036i \(-0.313976\pi\)
0.551710 + 0.834036i \(0.313976\pi\)
\(992\) 15.3217 0.486465
\(993\) 23.7844 0.754776
\(994\) −1.03236 −0.0327444
\(995\) −59.3581 −1.88178
\(996\) −21.2016 −0.671799
\(997\) −28.1054 −0.890108 −0.445054 0.895504i \(-0.646815\pi\)
−0.445054 + 0.895504i \(0.646815\pi\)
\(998\) −14.6165 −0.462677
\(999\) 0.446439 0.0141247
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.q.1.7 19
3.2 odd 2 8001.2.a.v.1.13 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.q.1.7 19 1.1 even 1 trivial
8001.2.a.v.1.13 19 3.2 odd 2