Properties

Label 2667.2.a.q.1.6
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $19$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [19,4,19,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(19\)
Coefficient field: \(\mathbb{Q}[x]/(x^{19} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{19} - 4 x^{18} - 22 x^{17} + 101 x^{16} + 178 x^{15} - 1035 x^{14} - 583 x^{13} + 5572 x^{12} + \cdots + 210 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.30029\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.30029 q^{2} +1.00000 q^{3} -0.309249 q^{4} +3.89453 q^{5} -1.30029 q^{6} +1.00000 q^{7} +3.00269 q^{8} +1.00000 q^{9} -5.06401 q^{10} -2.39630 q^{11} -0.309249 q^{12} +6.75130 q^{13} -1.30029 q^{14} +3.89453 q^{15} -3.28587 q^{16} +2.21708 q^{17} -1.30029 q^{18} +2.24339 q^{19} -1.20438 q^{20} +1.00000 q^{21} +3.11588 q^{22} +6.95956 q^{23} +3.00269 q^{24} +10.1673 q^{25} -8.77864 q^{26} +1.00000 q^{27} -0.309249 q^{28} -4.13812 q^{29} -5.06401 q^{30} -7.14764 q^{31} -1.73281 q^{32} -2.39630 q^{33} -2.88284 q^{34} +3.89453 q^{35} -0.309249 q^{36} -5.98607 q^{37} -2.91705 q^{38} +6.75130 q^{39} +11.6941 q^{40} +4.17542 q^{41} -1.30029 q^{42} -6.77459 q^{43} +0.741053 q^{44} +3.89453 q^{45} -9.04944 q^{46} +8.85337 q^{47} -3.28587 q^{48} +1.00000 q^{49} -13.2205 q^{50} +2.21708 q^{51} -2.08783 q^{52} -1.24294 q^{53} -1.30029 q^{54} -9.33245 q^{55} +3.00269 q^{56} +2.24339 q^{57} +5.38076 q^{58} +0.805013 q^{59} -1.20438 q^{60} +12.7164 q^{61} +9.29399 q^{62} +1.00000 q^{63} +8.82488 q^{64} +26.2931 q^{65} +3.11588 q^{66} +0.850802 q^{67} -0.685629 q^{68} +6.95956 q^{69} -5.06401 q^{70} -11.0690 q^{71} +3.00269 q^{72} -11.9131 q^{73} +7.78362 q^{74} +10.1673 q^{75} -0.693765 q^{76} -2.39630 q^{77} -8.77864 q^{78} +3.01636 q^{79} -12.7969 q^{80} +1.00000 q^{81} -5.42926 q^{82} -9.71900 q^{83} -0.309249 q^{84} +8.63446 q^{85} +8.80892 q^{86} -4.13812 q^{87} -7.19534 q^{88} +2.24162 q^{89} -5.06401 q^{90} +6.75130 q^{91} -2.15224 q^{92} -7.14764 q^{93} -11.5119 q^{94} +8.73693 q^{95} -1.73281 q^{96} -2.27268 q^{97} -1.30029 q^{98} -2.39630 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 19 q + 4 q^{2} + 19 q^{3} + 22 q^{4} + 5 q^{5} + 4 q^{6} + 19 q^{7} + 9 q^{8} + 19 q^{9} - 9 q^{11} + 22 q^{12} + 24 q^{13} + 4 q^{14} + 5 q^{15} + 20 q^{16} + 17 q^{17} + 4 q^{18} + 23 q^{19} + 5 q^{20}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30029 −0.919443 −0.459722 0.888063i \(-0.652051\pi\)
−0.459722 + 0.888063i \(0.652051\pi\)
\(3\) 1.00000 0.577350
\(4\) −0.309249 −0.154625
\(5\) 3.89453 1.74169 0.870843 0.491562i \(-0.163574\pi\)
0.870843 + 0.491562i \(0.163574\pi\)
\(6\) −1.30029 −0.530841
\(7\) 1.00000 0.377964
\(8\) 3.00269 1.06161
\(9\) 1.00000 0.333333
\(10\) −5.06401 −1.60138
\(11\) −2.39630 −0.722511 −0.361256 0.932467i \(-0.617652\pi\)
−0.361256 + 0.932467i \(0.617652\pi\)
\(12\) −0.309249 −0.0892725
\(13\) 6.75130 1.87247 0.936237 0.351370i \(-0.114284\pi\)
0.936237 + 0.351370i \(0.114284\pi\)
\(14\) −1.30029 −0.347517
\(15\) 3.89453 1.00556
\(16\) −3.28587 −0.821467
\(17\) 2.21708 0.537720 0.268860 0.963179i \(-0.413353\pi\)
0.268860 + 0.963179i \(0.413353\pi\)
\(18\) −1.30029 −0.306481
\(19\) 2.24339 0.514668 0.257334 0.966322i \(-0.417156\pi\)
0.257334 + 0.966322i \(0.417156\pi\)
\(20\) −1.20438 −0.269307
\(21\) 1.00000 0.218218
\(22\) 3.11588 0.664308
\(23\) 6.95956 1.45117 0.725584 0.688133i \(-0.241570\pi\)
0.725584 + 0.688133i \(0.241570\pi\)
\(24\) 3.00269 0.612922
\(25\) 10.1673 2.03347
\(26\) −8.77864 −1.72163
\(27\) 1.00000 0.192450
\(28\) −0.309249 −0.0584426
\(29\) −4.13812 −0.768430 −0.384215 0.923244i \(-0.625528\pi\)
−0.384215 + 0.923244i \(0.625528\pi\)
\(30\) −5.06401 −0.924557
\(31\) −7.14764 −1.28375 −0.641877 0.766808i \(-0.721844\pi\)
−0.641877 + 0.766808i \(0.721844\pi\)
\(32\) −1.73281 −0.306320
\(33\) −2.39630 −0.417142
\(34\) −2.88284 −0.494403
\(35\) 3.89453 0.658295
\(36\) −0.309249 −0.0515415
\(37\) −5.98607 −0.984104 −0.492052 0.870566i \(-0.663753\pi\)
−0.492052 + 0.870566i \(0.663753\pi\)
\(38\) −2.91705 −0.473208
\(39\) 6.75130 1.08107
\(40\) 11.6941 1.84899
\(41\) 4.17542 0.652092 0.326046 0.945354i \(-0.394284\pi\)
0.326046 + 0.945354i \(0.394284\pi\)
\(42\) −1.30029 −0.200639
\(43\) −6.77459 −1.03312 −0.516558 0.856252i \(-0.672787\pi\)
−0.516558 + 0.856252i \(0.672787\pi\)
\(44\) 0.741053 0.111718
\(45\) 3.89453 0.580562
\(46\) −9.04944 −1.33427
\(47\) 8.85337 1.29140 0.645699 0.763592i \(-0.276566\pi\)
0.645699 + 0.763592i \(0.276566\pi\)
\(48\) −3.28587 −0.474274
\(49\) 1.00000 0.142857
\(50\) −13.2205 −1.86966
\(51\) 2.21708 0.310453
\(52\) −2.08783 −0.289530
\(53\) −1.24294 −0.170731 −0.0853654 0.996350i \(-0.527206\pi\)
−0.0853654 + 0.996350i \(0.527206\pi\)
\(54\) −1.30029 −0.176947
\(55\) −9.33245 −1.25839
\(56\) 3.00269 0.401251
\(57\) 2.24339 0.297144
\(58\) 5.38076 0.706528
\(59\) 0.805013 0.104804 0.0524019 0.998626i \(-0.483312\pi\)
0.0524019 + 0.998626i \(0.483312\pi\)
\(60\) −1.20438 −0.155485
\(61\) 12.7164 1.62817 0.814085 0.580746i \(-0.197239\pi\)
0.814085 + 0.580746i \(0.197239\pi\)
\(62\) 9.29399 1.18034
\(63\) 1.00000 0.125988
\(64\) 8.82488 1.10311
\(65\) 26.2931 3.26126
\(66\) 3.11588 0.383538
\(67\) 0.850802 0.103942 0.0519710 0.998649i \(-0.483450\pi\)
0.0519710 + 0.998649i \(0.483450\pi\)
\(68\) −0.685629 −0.0831447
\(69\) 6.95956 0.837833
\(70\) −5.06401 −0.605265
\(71\) −11.0690 −1.31364 −0.656822 0.754046i \(-0.728100\pi\)
−0.656822 + 0.754046i \(0.728100\pi\)
\(72\) 3.00269 0.353870
\(73\) −11.9131 −1.39432 −0.697162 0.716914i \(-0.745554\pi\)
−0.697162 + 0.716914i \(0.745554\pi\)
\(74\) 7.78362 0.904827
\(75\) 10.1673 1.17402
\(76\) −0.693765 −0.0795804
\(77\) −2.39630 −0.273084
\(78\) −8.77864 −0.993985
\(79\) 3.01636 0.339368 0.169684 0.985499i \(-0.445725\pi\)
0.169684 + 0.985499i \(0.445725\pi\)
\(80\) −12.7969 −1.43074
\(81\) 1.00000 0.111111
\(82\) −5.42926 −0.599561
\(83\) −9.71900 −1.06680 −0.533399 0.845864i \(-0.679086\pi\)
−0.533399 + 0.845864i \(0.679086\pi\)
\(84\) −0.309249 −0.0337418
\(85\) 8.63446 0.936539
\(86\) 8.80892 0.949891
\(87\) −4.13812 −0.443653
\(88\) −7.19534 −0.767026
\(89\) 2.24162 0.237611 0.118805 0.992918i \(-0.462094\pi\)
0.118805 + 0.992918i \(0.462094\pi\)
\(90\) −5.06401 −0.533793
\(91\) 6.75130 0.707728
\(92\) −2.15224 −0.224386
\(93\) −7.14764 −0.741175
\(94\) −11.5119 −1.18737
\(95\) 8.73693 0.896390
\(96\) −1.73281 −0.176854
\(97\) −2.27268 −0.230756 −0.115378 0.993322i \(-0.536808\pi\)
−0.115378 + 0.993322i \(0.536808\pi\)
\(98\) −1.30029 −0.131349
\(99\) −2.39630 −0.240837
\(100\) −3.14424 −0.314424
\(101\) −12.4450 −1.23833 −0.619163 0.785263i \(-0.712528\pi\)
−0.619163 + 0.785263i \(0.712528\pi\)
\(102\) −2.88284 −0.285444
\(103\) −5.58562 −0.550368 −0.275184 0.961392i \(-0.588739\pi\)
−0.275184 + 0.961392i \(0.588739\pi\)
\(104\) 20.2721 1.98784
\(105\) 3.89453 0.380067
\(106\) 1.61618 0.156977
\(107\) −12.8657 −1.24378 −0.621888 0.783106i \(-0.713634\pi\)
−0.621888 + 0.783106i \(0.713634\pi\)
\(108\) −0.309249 −0.0297575
\(109\) 0.699267 0.0669777 0.0334888 0.999439i \(-0.489338\pi\)
0.0334888 + 0.999439i \(0.489338\pi\)
\(110\) 12.1349 1.15702
\(111\) −5.98607 −0.568173
\(112\) −3.28587 −0.310485
\(113\) −14.3692 −1.35174 −0.675869 0.737022i \(-0.736231\pi\)
−0.675869 + 0.737022i \(0.736231\pi\)
\(114\) −2.91705 −0.273207
\(115\) 27.1042 2.52748
\(116\) 1.27971 0.118818
\(117\) 6.75130 0.624158
\(118\) −1.04675 −0.0963611
\(119\) 2.21708 0.203239
\(120\) 11.6941 1.06752
\(121\) −5.25775 −0.477977
\(122\) −16.5350 −1.49701
\(123\) 4.17542 0.376485
\(124\) 2.21040 0.198500
\(125\) 20.1243 1.79997
\(126\) −1.30029 −0.115839
\(127\) 1.00000 0.0887357
\(128\) −8.00928 −0.707927
\(129\) −6.77459 −0.596469
\(130\) −34.1886 −2.99854
\(131\) −20.2823 −1.77207 −0.886035 0.463618i \(-0.846551\pi\)
−0.886035 + 0.463618i \(0.846551\pi\)
\(132\) 0.741053 0.0645004
\(133\) 2.24339 0.194526
\(134\) −1.10629 −0.0955687
\(135\) 3.89453 0.335187
\(136\) 6.65720 0.570850
\(137\) 3.96873 0.339071 0.169536 0.985524i \(-0.445773\pi\)
0.169536 + 0.985524i \(0.445773\pi\)
\(138\) −9.04944 −0.770339
\(139\) 14.6292 1.24084 0.620418 0.784271i \(-0.286963\pi\)
0.620418 + 0.784271i \(0.286963\pi\)
\(140\) −1.20438 −0.101789
\(141\) 8.85337 0.745589
\(142\) 14.3928 1.20782
\(143\) −16.1781 −1.35288
\(144\) −3.28587 −0.273822
\(145\) −16.1160 −1.33836
\(146\) 15.4905 1.28200
\(147\) 1.00000 0.0824786
\(148\) 1.85119 0.152167
\(149\) −11.7970 −0.966451 −0.483225 0.875496i \(-0.660535\pi\)
−0.483225 + 0.875496i \(0.660535\pi\)
\(150\) −13.2205 −1.07945
\(151\) 15.8963 1.29362 0.646811 0.762650i \(-0.276102\pi\)
0.646811 + 0.762650i \(0.276102\pi\)
\(152\) 6.73620 0.546378
\(153\) 2.21708 0.179240
\(154\) 3.11588 0.251085
\(155\) −27.8367 −2.23589
\(156\) −2.08783 −0.167160
\(157\) −7.53723 −0.601536 −0.300768 0.953697i \(-0.597243\pi\)
−0.300768 + 0.953697i \(0.597243\pi\)
\(158\) −3.92214 −0.312029
\(159\) −1.24294 −0.0985715
\(160\) −6.74846 −0.533512
\(161\) 6.95956 0.548490
\(162\) −1.30029 −0.102160
\(163\) −5.04061 −0.394811 −0.197405 0.980322i \(-0.563252\pi\)
−0.197405 + 0.980322i \(0.563252\pi\)
\(164\) −1.29125 −0.100829
\(165\) −9.33245 −0.726530
\(166\) 12.6375 0.980861
\(167\) −15.1860 −1.17513 −0.587564 0.809178i \(-0.699913\pi\)
−0.587564 + 0.809178i \(0.699913\pi\)
\(168\) 3.00269 0.231663
\(169\) 32.5800 2.50616
\(170\) −11.2273 −0.861094
\(171\) 2.24339 0.171556
\(172\) 2.09504 0.159745
\(173\) 5.85526 0.445167 0.222584 0.974914i \(-0.428551\pi\)
0.222584 + 0.974914i \(0.428551\pi\)
\(174\) 5.38076 0.407914
\(175\) 10.1673 0.768578
\(176\) 7.87392 0.593519
\(177\) 0.805013 0.0605085
\(178\) −2.91475 −0.218470
\(179\) 5.92007 0.442487 0.221243 0.975219i \(-0.428988\pi\)
0.221243 + 0.975219i \(0.428988\pi\)
\(180\) −1.20438 −0.0897691
\(181\) 14.4113 1.07119 0.535593 0.844476i \(-0.320088\pi\)
0.535593 + 0.844476i \(0.320088\pi\)
\(182\) −8.77864 −0.650716
\(183\) 12.7164 0.940024
\(184\) 20.8974 1.54058
\(185\) −23.3129 −1.71400
\(186\) 9.29399 0.681469
\(187\) −5.31278 −0.388509
\(188\) −2.73790 −0.199682
\(189\) 1.00000 0.0727393
\(190\) −11.3605 −0.824180
\(191\) 14.9477 1.08158 0.540790 0.841158i \(-0.318125\pi\)
0.540790 + 0.841158i \(0.318125\pi\)
\(192\) 8.82488 0.636881
\(193\) 12.1148 0.872045 0.436023 0.899936i \(-0.356387\pi\)
0.436023 + 0.899936i \(0.356387\pi\)
\(194\) 2.95515 0.212167
\(195\) 26.2931 1.88289
\(196\) −0.309249 −0.0220892
\(197\) 19.7870 1.40977 0.704883 0.709324i \(-0.251000\pi\)
0.704883 + 0.709324i \(0.251000\pi\)
\(198\) 3.11588 0.221436
\(199\) −4.83892 −0.343022 −0.171511 0.985182i \(-0.554865\pi\)
−0.171511 + 0.985182i \(0.554865\pi\)
\(200\) 30.5294 2.15875
\(201\) 0.850802 0.0600109
\(202\) 16.1821 1.13857
\(203\) −4.13812 −0.290439
\(204\) −0.685629 −0.0480036
\(205\) 16.2613 1.13574
\(206\) 7.26292 0.506032
\(207\) 6.95956 0.483723
\(208\) −22.1839 −1.53817
\(209\) −5.37583 −0.371854
\(210\) −5.06401 −0.349450
\(211\) 16.8744 1.16168 0.580840 0.814018i \(-0.302724\pi\)
0.580840 + 0.814018i \(0.302724\pi\)
\(212\) 0.384378 0.0263992
\(213\) −11.0690 −0.758433
\(214\) 16.7292 1.14358
\(215\) −26.3838 −1.79936
\(216\) 3.00269 0.204307
\(217\) −7.14764 −0.485213
\(218\) −0.909249 −0.0615821
\(219\) −11.9131 −0.805013
\(220\) 2.88605 0.194578
\(221\) 14.9681 1.00687
\(222\) 7.78362 0.522402
\(223\) −4.23308 −0.283468 −0.141734 0.989905i \(-0.545268\pi\)
−0.141734 + 0.989905i \(0.545268\pi\)
\(224\) −1.73281 −0.115778
\(225\) 10.1673 0.677822
\(226\) 18.6841 1.24285
\(227\) 11.2253 0.745048 0.372524 0.928023i \(-0.378492\pi\)
0.372524 + 0.928023i \(0.378492\pi\)
\(228\) −0.693765 −0.0459457
\(229\) 26.9780 1.78276 0.891379 0.453259i \(-0.149739\pi\)
0.891379 + 0.453259i \(0.149739\pi\)
\(230\) −35.2433 −2.32387
\(231\) −2.39630 −0.157665
\(232\) −12.4255 −0.815774
\(233\) −0.503531 −0.0329874 −0.0164937 0.999864i \(-0.505250\pi\)
−0.0164937 + 0.999864i \(0.505250\pi\)
\(234\) −8.77864 −0.573878
\(235\) 34.4797 2.24921
\(236\) −0.248950 −0.0162052
\(237\) 3.01636 0.195934
\(238\) −2.88284 −0.186867
\(239\) −24.9528 −1.61406 −0.807032 0.590508i \(-0.798928\pi\)
−0.807032 + 0.590508i \(0.798928\pi\)
\(240\) −12.7969 −0.826036
\(241\) −9.47834 −0.610553 −0.305277 0.952264i \(-0.598749\pi\)
−0.305277 + 0.952264i \(0.598749\pi\)
\(242\) 6.83660 0.439473
\(243\) 1.00000 0.0641500
\(244\) −3.93254 −0.251755
\(245\) 3.89453 0.248812
\(246\) −5.42926 −0.346157
\(247\) 15.1458 0.963703
\(248\) −21.4621 −1.36285
\(249\) −9.71900 −0.615916
\(250\) −26.1674 −1.65497
\(251\) −10.6194 −0.670288 −0.335144 0.942167i \(-0.608785\pi\)
−0.335144 + 0.942167i \(0.608785\pi\)
\(252\) −0.309249 −0.0194809
\(253\) −16.6772 −1.04849
\(254\) −1.30029 −0.0815874
\(255\) 8.63446 0.540711
\(256\) −7.23538 −0.452211
\(257\) 25.5404 1.59317 0.796583 0.604530i \(-0.206639\pi\)
0.796583 + 0.604530i \(0.206639\pi\)
\(258\) 8.80892 0.548420
\(259\) −5.98607 −0.371956
\(260\) −8.13112 −0.504271
\(261\) −4.13812 −0.256143
\(262\) 26.3728 1.62932
\(263\) −8.16149 −0.503259 −0.251629 0.967824i \(-0.580966\pi\)
−0.251629 + 0.967824i \(0.580966\pi\)
\(264\) −7.19534 −0.442843
\(265\) −4.84066 −0.297359
\(266\) −2.91705 −0.178856
\(267\) 2.24162 0.137185
\(268\) −0.263110 −0.0160720
\(269\) 0.585453 0.0356957 0.0178478 0.999841i \(-0.494319\pi\)
0.0178478 + 0.999841i \(0.494319\pi\)
\(270\) −5.06401 −0.308186
\(271\) −3.75629 −0.228178 −0.114089 0.993471i \(-0.536395\pi\)
−0.114089 + 0.993471i \(0.536395\pi\)
\(272\) −7.28502 −0.441719
\(273\) 6.75130 0.408607
\(274\) −5.16049 −0.311757
\(275\) −24.3640 −1.46920
\(276\) −2.15224 −0.129549
\(277\) 22.9533 1.37913 0.689565 0.724224i \(-0.257802\pi\)
0.689565 + 0.724224i \(0.257802\pi\)
\(278\) −19.0222 −1.14088
\(279\) −7.14764 −0.427918
\(280\) 11.6941 0.698854
\(281\) 12.5921 0.751182 0.375591 0.926785i \(-0.377440\pi\)
0.375591 + 0.926785i \(0.377440\pi\)
\(282\) −11.5119 −0.685526
\(283\) −17.5458 −1.04299 −0.521494 0.853255i \(-0.674625\pi\)
−0.521494 + 0.853255i \(0.674625\pi\)
\(284\) 3.42307 0.203122
\(285\) 8.73693 0.517531
\(286\) 21.0362 1.24390
\(287\) 4.17542 0.246468
\(288\) −1.73281 −0.102107
\(289\) −12.0846 −0.710857
\(290\) 20.9555 1.23055
\(291\) −2.27268 −0.133227
\(292\) 3.68412 0.215597
\(293\) 7.11385 0.415596 0.207798 0.978172i \(-0.433370\pi\)
0.207798 + 0.978172i \(0.433370\pi\)
\(294\) −1.30029 −0.0758344
\(295\) 3.13514 0.182535
\(296\) −17.9743 −1.04474
\(297\) −2.39630 −0.139047
\(298\) 15.3396 0.888597
\(299\) 46.9861 2.71728
\(300\) −3.14424 −0.181533
\(301\) −6.77459 −0.390481
\(302\) −20.6698 −1.18941
\(303\) −12.4450 −0.714948
\(304\) −7.37147 −0.422783
\(305\) 49.5244 2.83576
\(306\) −2.88284 −0.164801
\(307\) 9.70536 0.553914 0.276957 0.960882i \(-0.410674\pi\)
0.276957 + 0.960882i \(0.410674\pi\)
\(308\) 0.741053 0.0422254
\(309\) −5.58562 −0.317755
\(310\) 36.1957 2.05578
\(311\) −13.6173 −0.772168 −0.386084 0.922464i \(-0.626172\pi\)
−0.386084 + 0.922464i \(0.626172\pi\)
\(312\) 20.2721 1.14768
\(313\) 10.9421 0.618485 0.309242 0.950983i \(-0.399925\pi\)
0.309242 + 0.950983i \(0.399925\pi\)
\(314\) 9.80057 0.553078
\(315\) 3.89453 0.219432
\(316\) −0.932808 −0.0524745
\(317\) −4.23874 −0.238071 −0.119036 0.992890i \(-0.537980\pi\)
−0.119036 + 0.992890i \(0.537980\pi\)
\(318\) 1.61618 0.0906309
\(319\) 9.91618 0.555200
\(320\) 34.3687 1.92127
\(321\) −12.8657 −0.718095
\(322\) −9.04944 −0.504306
\(323\) 4.97376 0.276748
\(324\) −0.309249 −0.0171805
\(325\) 68.6427 3.80761
\(326\) 6.55424 0.363006
\(327\) 0.699267 0.0386696
\(328\) 12.5375 0.692268
\(329\) 8.85337 0.488102
\(330\) 12.1349 0.668003
\(331\) 15.8239 0.869759 0.434880 0.900489i \(-0.356791\pi\)
0.434880 + 0.900489i \(0.356791\pi\)
\(332\) 3.00559 0.164953
\(333\) −5.98607 −0.328035
\(334\) 19.7462 1.08046
\(335\) 3.31347 0.181034
\(336\) −3.28587 −0.179259
\(337\) −0.576223 −0.0313889 −0.0156944 0.999877i \(-0.504996\pi\)
−0.0156944 + 0.999877i \(0.504996\pi\)
\(338\) −42.3635 −2.30427
\(339\) −14.3692 −0.780426
\(340\) −2.67020 −0.144812
\(341\) 17.1279 0.927526
\(342\) −2.91705 −0.157736
\(343\) 1.00000 0.0539949
\(344\) −20.3420 −1.09677
\(345\) 27.1042 1.45924
\(346\) −7.61353 −0.409306
\(347\) −6.25612 −0.335846 −0.167923 0.985800i \(-0.553706\pi\)
−0.167923 + 0.985800i \(0.553706\pi\)
\(348\) 1.27971 0.0685997
\(349\) −16.1162 −0.862679 −0.431339 0.902190i \(-0.641959\pi\)
−0.431339 + 0.902190i \(0.641959\pi\)
\(350\) −13.2205 −0.706664
\(351\) 6.75130 0.360358
\(352\) 4.15232 0.221319
\(353\) 23.0130 1.22486 0.612430 0.790525i \(-0.290192\pi\)
0.612430 + 0.790525i \(0.290192\pi\)
\(354\) −1.04675 −0.0556341
\(355\) −43.1084 −2.28795
\(356\) −0.693218 −0.0367405
\(357\) 2.21708 0.117340
\(358\) −7.69780 −0.406842
\(359\) 17.7747 0.938115 0.469058 0.883168i \(-0.344594\pi\)
0.469058 + 0.883168i \(0.344594\pi\)
\(360\) 11.6941 0.616331
\(361\) −13.9672 −0.735117
\(362\) −18.7389 −0.984894
\(363\) −5.25775 −0.275960
\(364\) −2.08783 −0.109432
\(365\) −46.3959 −2.42847
\(366\) −16.5350 −0.864299
\(367\) −32.1389 −1.67764 −0.838819 0.544410i \(-0.816754\pi\)
−0.838819 + 0.544410i \(0.816754\pi\)
\(368\) −22.8682 −1.19209
\(369\) 4.17542 0.217364
\(370\) 30.3135 1.57592
\(371\) −1.24294 −0.0645302
\(372\) 2.21040 0.114604
\(373\) 16.5396 0.856390 0.428195 0.903686i \(-0.359150\pi\)
0.428195 + 0.903686i \(0.359150\pi\)
\(374\) 6.90815 0.357212
\(375\) 20.1243 1.03922
\(376\) 26.5839 1.37096
\(377\) −27.9377 −1.43887
\(378\) −1.30029 −0.0668796
\(379\) 20.6102 1.05867 0.529336 0.848412i \(-0.322441\pi\)
0.529336 + 0.848412i \(0.322441\pi\)
\(380\) −2.70189 −0.138604
\(381\) 1.00000 0.0512316
\(382\) −19.4364 −0.994451
\(383\) −37.1156 −1.89652 −0.948259 0.317498i \(-0.897157\pi\)
−0.948259 + 0.317498i \(0.897157\pi\)
\(384\) −8.00928 −0.408722
\(385\) −9.33245 −0.475626
\(386\) −15.7528 −0.801796
\(387\) −6.77459 −0.344372
\(388\) 0.702825 0.0356806
\(389\) −11.1761 −0.566653 −0.283327 0.959023i \(-0.591438\pi\)
−0.283327 + 0.959023i \(0.591438\pi\)
\(390\) −34.1886 −1.73121
\(391\) 15.4299 0.780323
\(392\) 3.00269 0.151659
\(393\) −20.2823 −1.02311
\(394\) −25.7288 −1.29620
\(395\) 11.7473 0.591071
\(396\) 0.741053 0.0372393
\(397\) −13.9354 −0.699396 −0.349698 0.936862i \(-0.613716\pi\)
−0.349698 + 0.936862i \(0.613716\pi\)
\(398\) 6.29200 0.315389
\(399\) 2.24339 0.112310
\(400\) −33.4085 −1.67043
\(401\) 16.6189 0.829907 0.414954 0.909843i \(-0.363798\pi\)
0.414954 + 0.909843i \(0.363798\pi\)
\(402\) −1.10629 −0.0551766
\(403\) −48.2558 −2.40379
\(404\) 3.84861 0.191476
\(405\) 3.89453 0.193521
\(406\) 5.38076 0.267042
\(407\) 14.3444 0.711026
\(408\) 6.65720 0.329580
\(409\) 39.1584 1.93626 0.968129 0.250451i \(-0.0805790\pi\)
0.968129 + 0.250451i \(0.0805790\pi\)
\(410\) −21.1444 −1.04425
\(411\) 3.96873 0.195763
\(412\) 1.72735 0.0851004
\(413\) 0.805013 0.0396121
\(414\) −9.04944 −0.444756
\(415\) −37.8509 −1.85803
\(416\) −11.6987 −0.573575
\(417\) 14.6292 0.716397
\(418\) 6.99013 0.341898
\(419\) −22.5455 −1.10142 −0.550709 0.834697i \(-0.685643\pi\)
−0.550709 + 0.834697i \(0.685643\pi\)
\(420\) −1.20438 −0.0587677
\(421\) 28.2216 1.37544 0.687718 0.725978i \(-0.258613\pi\)
0.687718 + 0.725978i \(0.258613\pi\)
\(422\) −21.9416 −1.06810
\(423\) 8.85337 0.430466
\(424\) −3.73216 −0.181250
\(425\) 22.5418 1.09344
\(426\) 14.3928 0.697336
\(427\) 12.7164 0.615390
\(428\) 3.97871 0.192318
\(429\) −16.1781 −0.781087
\(430\) 34.3066 1.65441
\(431\) −18.9034 −0.910544 −0.455272 0.890352i \(-0.650458\pi\)
−0.455272 + 0.890352i \(0.650458\pi\)
\(432\) −3.28587 −0.158091
\(433\) −26.1024 −1.25440 −0.627201 0.778858i \(-0.715799\pi\)
−0.627201 + 0.778858i \(0.715799\pi\)
\(434\) 9.29399 0.446126
\(435\) −16.1160 −0.772705
\(436\) −0.216248 −0.0103564
\(437\) 15.6130 0.746871
\(438\) 15.4905 0.740164
\(439\) −32.3492 −1.54394 −0.771972 0.635656i \(-0.780730\pi\)
−0.771972 + 0.635656i \(0.780730\pi\)
\(440\) −28.0225 −1.33592
\(441\) 1.00000 0.0476190
\(442\) −19.4629 −0.925756
\(443\) 39.6894 1.88570 0.942850 0.333218i \(-0.108135\pi\)
0.942850 + 0.333218i \(0.108135\pi\)
\(444\) 1.85119 0.0878534
\(445\) 8.73004 0.413843
\(446\) 5.50423 0.260633
\(447\) −11.7970 −0.557981
\(448\) 8.82488 0.416936
\(449\) −35.2431 −1.66323 −0.831613 0.555355i \(-0.812582\pi\)
−0.831613 + 0.555355i \(0.812582\pi\)
\(450\) −13.2205 −0.623219
\(451\) −10.0056 −0.471144
\(452\) 4.44365 0.209012
\(453\) 15.8963 0.746873
\(454\) −14.5961 −0.685029
\(455\) 26.2931 1.23264
\(456\) 6.73620 0.315451
\(457\) 33.0348 1.54530 0.772651 0.634831i \(-0.218930\pi\)
0.772651 + 0.634831i \(0.218930\pi\)
\(458\) −35.0792 −1.63914
\(459\) 2.21708 0.103484
\(460\) −8.38195 −0.390810
\(461\) −34.4017 −1.60225 −0.801124 0.598499i \(-0.795764\pi\)
−0.801124 + 0.598499i \(0.795764\pi\)
\(462\) 3.11588 0.144964
\(463\) −11.8834 −0.552270 −0.276135 0.961119i \(-0.589054\pi\)
−0.276135 + 0.961119i \(0.589054\pi\)
\(464\) 13.5973 0.631240
\(465\) −27.8367 −1.29089
\(466\) 0.654736 0.0303300
\(467\) −37.4363 −1.73235 −0.866173 0.499744i \(-0.833428\pi\)
−0.866173 + 0.499744i \(0.833428\pi\)
\(468\) −2.08783 −0.0965101
\(469\) 0.850802 0.0392864
\(470\) −44.8336 −2.06802
\(471\) −7.53723 −0.347297
\(472\) 2.41721 0.111261
\(473\) 16.2339 0.746437
\(474\) −3.92214 −0.180150
\(475\) 22.8093 1.04656
\(476\) −0.685629 −0.0314258
\(477\) −1.24294 −0.0569103
\(478\) 32.4459 1.48404
\(479\) −20.9968 −0.959370 −0.479685 0.877441i \(-0.659249\pi\)
−0.479685 + 0.877441i \(0.659249\pi\)
\(480\) −6.74846 −0.308024
\(481\) −40.4137 −1.84271
\(482\) 12.3246 0.561369
\(483\) 6.95956 0.316671
\(484\) 1.62595 0.0739070
\(485\) −8.85103 −0.401904
\(486\) −1.30029 −0.0589823
\(487\) 43.7964 1.98461 0.992303 0.123832i \(-0.0395185\pi\)
0.992303 + 0.123832i \(0.0395185\pi\)
\(488\) 38.1834 1.72848
\(489\) −5.04061 −0.227944
\(490\) −5.06401 −0.228769
\(491\) −34.9624 −1.57783 −0.788915 0.614502i \(-0.789357\pi\)
−0.788915 + 0.614502i \(0.789357\pi\)
\(492\) −1.29125 −0.0582139
\(493\) −9.17454 −0.413200
\(494\) −19.6939 −0.886070
\(495\) −9.33245 −0.419462
\(496\) 23.4862 1.05456
\(497\) −11.0690 −0.496511
\(498\) 12.6375 0.566300
\(499\) 25.9616 1.16220 0.581099 0.813833i \(-0.302623\pi\)
0.581099 + 0.813833i \(0.302623\pi\)
\(500\) −6.22343 −0.278320
\(501\) −15.1860 −0.678460
\(502\) 13.8082 0.616291
\(503\) 7.61057 0.339338 0.169669 0.985501i \(-0.445730\pi\)
0.169669 + 0.985501i \(0.445730\pi\)
\(504\) 3.00269 0.133750
\(505\) −48.4675 −2.15677
\(506\) 21.6852 0.964023
\(507\) 32.5800 1.44693
\(508\) −0.309249 −0.0137207
\(509\) 3.81286 0.169002 0.0845010 0.996423i \(-0.473070\pi\)
0.0845010 + 0.996423i \(0.473070\pi\)
\(510\) −11.2273 −0.497153
\(511\) −11.9131 −0.527005
\(512\) 25.4267 1.12371
\(513\) 2.24339 0.0990480
\(514\) −33.2099 −1.46482
\(515\) −21.7534 −0.958567
\(516\) 2.09504 0.0922288
\(517\) −21.2153 −0.933049
\(518\) 7.78362 0.341993
\(519\) 5.85526 0.257017
\(520\) 78.9501 3.46219
\(521\) 39.4310 1.72750 0.863752 0.503917i \(-0.168108\pi\)
0.863752 + 0.503917i \(0.168108\pi\)
\(522\) 5.38076 0.235509
\(523\) −31.8685 −1.39351 −0.696756 0.717308i \(-0.745374\pi\)
−0.696756 + 0.717308i \(0.745374\pi\)
\(524\) 6.27228 0.274006
\(525\) 10.1673 0.443739
\(526\) 10.6123 0.462718
\(527\) −15.8469 −0.690300
\(528\) 7.87392 0.342668
\(529\) 25.4355 1.10589
\(530\) 6.29426 0.273405
\(531\) 0.805013 0.0349346
\(532\) −0.693765 −0.0300785
\(533\) 28.1895 1.22102
\(534\) −2.91475 −0.126134
\(535\) −50.1059 −2.16627
\(536\) 2.55470 0.110346
\(537\) 5.92007 0.255470
\(538\) −0.761258 −0.0328202
\(539\) −2.39630 −0.103216
\(540\) −1.20438 −0.0518282
\(541\) 7.69149 0.330683 0.165342 0.986236i \(-0.447127\pi\)
0.165342 + 0.986236i \(0.447127\pi\)
\(542\) 4.88426 0.209797
\(543\) 14.4113 0.618449
\(544\) −3.84176 −0.164714
\(545\) 2.72332 0.116654
\(546\) −8.77864 −0.375691
\(547\) 36.3675 1.55496 0.777481 0.628907i \(-0.216497\pi\)
0.777481 + 0.628907i \(0.216497\pi\)
\(548\) −1.22732 −0.0524287
\(549\) 12.7164 0.542723
\(550\) 31.6802 1.35085
\(551\) −9.28341 −0.395487
\(552\) 20.8974 0.889453
\(553\) 3.01636 0.128269
\(554\) −29.8459 −1.26803
\(555\) −23.3129 −0.989578
\(556\) −4.52408 −0.191864
\(557\) −32.7213 −1.38645 −0.693223 0.720723i \(-0.743810\pi\)
−0.693223 + 0.720723i \(0.743810\pi\)
\(558\) 9.29399 0.393446
\(559\) −45.7373 −1.93448
\(560\) −12.7969 −0.540768
\(561\) −5.31278 −0.224306
\(562\) −16.3734 −0.690669
\(563\) 37.9585 1.59976 0.799881 0.600159i \(-0.204896\pi\)
0.799881 + 0.600159i \(0.204896\pi\)
\(564\) −2.73790 −0.115286
\(565\) −55.9611 −2.35430
\(566\) 22.8146 0.958968
\(567\) 1.00000 0.0419961
\(568\) −33.2367 −1.39458
\(569\) −34.6604 −1.45304 −0.726520 0.687145i \(-0.758864\pi\)
−0.726520 + 0.687145i \(0.758864\pi\)
\(570\) −11.3605 −0.475840
\(571\) 26.3412 1.10234 0.551171 0.834392i \(-0.314181\pi\)
0.551171 + 0.834392i \(0.314181\pi\)
\(572\) 5.00307 0.209189
\(573\) 14.9477 0.624451
\(574\) −5.42926 −0.226613
\(575\) 70.7602 2.95090
\(576\) 8.82488 0.367703
\(577\) −18.7461 −0.780411 −0.390206 0.920728i \(-0.627596\pi\)
−0.390206 + 0.920728i \(0.627596\pi\)
\(578\) 15.7134 0.653593
\(579\) 12.1148 0.503476
\(580\) 4.98387 0.206944
\(581\) −9.71900 −0.403212
\(582\) 2.95515 0.122495
\(583\) 2.97845 0.123355
\(584\) −35.7714 −1.48023
\(585\) 26.2931 1.08709
\(586\) −9.25006 −0.382116
\(587\) 14.9451 0.616850 0.308425 0.951249i \(-0.400198\pi\)
0.308425 + 0.951249i \(0.400198\pi\)
\(588\) −0.309249 −0.0127532
\(589\) −16.0349 −0.660707
\(590\) −4.07659 −0.167831
\(591\) 19.7870 0.813929
\(592\) 19.6694 0.808409
\(593\) 24.1999 0.993769 0.496885 0.867817i \(-0.334477\pi\)
0.496885 + 0.867817i \(0.334477\pi\)
\(594\) 3.11588 0.127846
\(595\) 8.63446 0.353979
\(596\) 3.64822 0.149437
\(597\) −4.83892 −0.198044
\(598\) −61.0955 −2.49838
\(599\) 23.1503 0.945896 0.472948 0.881090i \(-0.343190\pi\)
0.472948 + 0.881090i \(0.343190\pi\)
\(600\) 30.5294 1.24636
\(601\) 2.39101 0.0975313 0.0487657 0.998810i \(-0.484471\pi\)
0.0487657 + 0.998810i \(0.484471\pi\)
\(602\) 8.80892 0.359025
\(603\) 0.850802 0.0346473
\(604\) −4.91591 −0.200026
\(605\) −20.4765 −0.832486
\(606\) 16.1821 0.657354
\(607\) 18.0847 0.734037 0.367019 0.930214i \(-0.380379\pi\)
0.367019 + 0.930214i \(0.380379\pi\)
\(608\) −3.88735 −0.157653
\(609\) −4.13812 −0.167685
\(610\) −64.3960 −2.60732
\(611\) 59.7718 2.41811
\(612\) −0.685629 −0.0277149
\(613\) −15.7792 −0.637316 −0.318658 0.947870i \(-0.603232\pi\)
−0.318658 + 0.947870i \(0.603232\pi\)
\(614\) −12.6198 −0.509292
\(615\) 16.2613 0.655719
\(616\) −7.19534 −0.289909
\(617\) 18.0117 0.725123 0.362561 0.931960i \(-0.381902\pi\)
0.362561 + 0.931960i \(0.381902\pi\)
\(618\) 7.26292 0.292158
\(619\) 34.9940 1.40653 0.703264 0.710928i \(-0.251725\pi\)
0.703264 + 0.710928i \(0.251725\pi\)
\(620\) 8.60846 0.345724
\(621\) 6.95956 0.279278
\(622\) 17.7065 0.709964
\(623\) 2.24162 0.0898085
\(624\) −22.1839 −0.888065
\(625\) 27.5380 1.10152
\(626\) −14.2279 −0.568661
\(627\) −5.37583 −0.214690
\(628\) 2.33088 0.0930122
\(629\) −13.2716 −0.529172
\(630\) −5.06401 −0.201755
\(631\) −38.1719 −1.51960 −0.759799 0.650158i \(-0.774703\pi\)
−0.759799 + 0.650158i \(0.774703\pi\)
\(632\) 9.05721 0.360276
\(633\) 16.8744 0.670697
\(634\) 5.51158 0.218893
\(635\) 3.89453 0.154550
\(636\) 0.384378 0.0152416
\(637\) 6.75130 0.267496
\(638\) −12.8939 −0.510474
\(639\) −11.0690 −0.437881
\(640\) −31.1924 −1.23299
\(641\) −3.57350 −0.141145 −0.0705724 0.997507i \(-0.522483\pi\)
−0.0705724 + 0.997507i \(0.522483\pi\)
\(642\) 16.7292 0.660247
\(643\) −22.1182 −0.872255 −0.436127 0.899885i \(-0.643650\pi\)
−0.436127 + 0.899885i \(0.643650\pi\)
\(644\) −2.15224 −0.0848101
\(645\) −26.3838 −1.03886
\(646\) −6.46733 −0.254454
\(647\) −11.8343 −0.465256 −0.232628 0.972566i \(-0.574732\pi\)
−0.232628 + 0.972566i \(0.574732\pi\)
\(648\) 3.00269 0.117957
\(649\) −1.92905 −0.0757219
\(650\) −89.2554 −3.50088
\(651\) −7.14764 −0.280138
\(652\) 1.55880 0.0610474
\(653\) −43.8013 −1.71408 −0.857038 0.515253i \(-0.827698\pi\)
−0.857038 + 0.515253i \(0.827698\pi\)
\(654\) −0.909249 −0.0355545
\(655\) −78.9899 −3.08639
\(656\) −13.7199 −0.535672
\(657\) −11.9131 −0.464775
\(658\) −11.5119 −0.448782
\(659\) 14.9940 0.584085 0.292042 0.956405i \(-0.405665\pi\)
0.292042 + 0.956405i \(0.405665\pi\)
\(660\) 2.88605 0.112339
\(661\) −17.0713 −0.663996 −0.331998 0.943280i \(-0.607723\pi\)
−0.331998 + 0.943280i \(0.607723\pi\)
\(662\) −20.5756 −0.799694
\(663\) 14.9681 0.581315
\(664\) −29.1831 −1.13253
\(665\) 8.73693 0.338804
\(666\) 7.78362 0.301609
\(667\) −28.7995 −1.11512
\(668\) 4.69626 0.181704
\(669\) −4.23308 −0.163660
\(670\) −4.30847 −0.166451
\(671\) −30.4723 −1.17637
\(672\) −1.73281 −0.0668444
\(673\) 11.8232 0.455751 0.227876 0.973690i \(-0.426822\pi\)
0.227876 + 0.973690i \(0.426822\pi\)
\(674\) 0.749256 0.0288603
\(675\) 10.1673 0.391341
\(676\) −10.0753 −0.387513
\(677\) −14.6156 −0.561723 −0.280861 0.959748i \(-0.590620\pi\)
−0.280861 + 0.959748i \(0.590620\pi\)
\(678\) 18.6841 0.717557
\(679\) −2.27268 −0.0872176
\(680\) 25.9266 0.994241
\(681\) 11.2253 0.430154
\(682\) −22.2712 −0.852808
\(683\) −36.1076 −1.38162 −0.690810 0.723036i \(-0.742746\pi\)
−0.690810 + 0.723036i \(0.742746\pi\)
\(684\) −0.693765 −0.0265268
\(685\) 15.4563 0.590555
\(686\) −1.30029 −0.0496453
\(687\) 26.9780 1.02928
\(688\) 22.2604 0.848670
\(689\) −8.39146 −0.319689
\(690\) −35.2433 −1.34169
\(691\) −5.86998 −0.223305 −0.111652 0.993747i \(-0.535614\pi\)
−0.111652 + 0.993747i \(0.535614\pi\)
\(692\) −1.81073 −0.0688338
\(693\) −2.39630 −0.0910279
\(694\) 8.13476 0.308791
\(695\) 56.9739 2.16114
\(696\) −12.4255 −0.470988
\(697\) 9.25724 0.350643
\(698\) 20.9557 0.793184
\(699\) −0.503531 −0.0190453
\(700\) −3.14424 −0.118841
\(701\) −5.04266 −0.190459 −0.0952293 0.995455i \(-0.530358\pi\)
−0.0952293 + 0.995455i \(0.530358\pi\)
\(702\) −8.77864 −0.331328
\(703\) −13.4291 −0.506487
\(704\) −21.1471 −0.797010
\(705\) 34.4797 1.29858
\(706\) −29.9236 −1.12619
\(707\) −12.4450 −0.468043
\(708\) −0.248950 −0.00935610
\(709\) −5.42957 −0.203912 −0.101956 0.994789i \(-0.532510\pi\)
−0.101956 + 0.994789i \(0.532510\pi\)
\(710\) 56.0533 2.10364
\(711\) 3.01636 0.113123
\(712\) 6.73088 0.252251
\(713\) −49.7444 −1.86294
\(714\) −2.88284 −0.107888
\(715\) −63.0061 −2.35630
\(716\) −1.83078 −0.0684193
\(717\) −24.9528 −0.931880
\(718\) −23.1123 −0.862544
\(719\) 32.5836 1.21516 0.607581 0.794258i \(-0.292140\pi\)
0.607581 + 0.794258i \(0.292140\pi\)
\(720\) −12.7969 −0.476912
\(721\) −5.58562 −0.208019
\(722\) 18.1614 0.675898
\(723\) −9.47834 −0.352503
\(724\) −4.45669 −0.165632
\(725\) −42.0737 −1.56258
\(726\) 6.83660 0.253730
\(727\) −45.1575 −1.67480 −0.837399 0.546592i \(-0.815925\pi\)
−0.837399 + 0.546592i \(0.815925\pi\)
\(728\) 20.2721 0.751333
\(729\) 1.00000 0.0370370
\(730\) 60.3281 2.23284
\(731\) −15.0198 −0.555527
\(732\) −3.93254 −0.145351
\(733\) 37.6362 1.39013 0.695063 0.718949i \(-0.255377\pi\)
0.695063 + 0.718949i \(0.255377\pi\)
\(734\) 41.7899 1.54249
\(735\) 3.89453 0.143652
\(736\) −12.0596 −0.444522
\(737\) −2.03878 −0.0750993
\(738\) −5.42926 −0.199854
\(739\) 22.5159 0.828260 0.414130 0.910218i \(-0.364086\pi\)
0.414130 + 0.910218i \(0.364086\pi\)
\(740\) 7.20949 0.265026
\(741\) 15.1458 0.556394
\(742\) 1.61618 0.0593319
\(743\) −18.0968 −0.663907 −0.331954 0.943296i \(-0.607708\pi\)
−0.331954 + 0.943296i \(0.607708\pi\)
\(744\) −21.4621 −0.786840
\(745\) −45.9439 −1.68325
\(746\) −21.5063 −0.787402
\(747\) −9.71900 −0.355600
\(748\) 1.64297 0.0600730
\(749\) −12.8657 −0.470103
\(750\) −26.1674 −0.955500
\(751\) −1.12758 −0.0411461 −0.0205730 0.999788i \(-0.506549\pi\)
−0.0205730 + 0.999788i \(0.506549\pi\)
\(752\) −29.0910 −1.06084
\(753\) −10.6194 −0.386991
\(754\) 36.3271 1.32295
\(755\) 61.9085 2.25308
\(756\) −0.309249 −0.0112473
\(757\) −46.0347 −1.67316 −0.836580 0.547845i \(-0.815448\pi\)
−0.836580 + 0.547845i \(0.815448\pi\)
\(758\) −26.7992 −0.973389
\(759\) −16.6772 −0.605344
\(760\) 26.2343 0.951618
\(761\) −13.8335 −0.501464 −0.250732 0.968056i \(-0.580671\pi\)
−0.250732 + 0.968056i \(0.580671\pi\)
\(762\) −1.30029 −0.0471045
\(763\) 0.699267 0.0253152
\(764\) −4.62257 −0.167239
\(765\) 8.63446 0.312180
\(766\) 48.2610 1.74374
\(767\) 5.43488 0.196242
\(768\) −7.23538 −0.261084
\(769\) −36.3802 −1.31190 −0.655951 0.754803i \(-0.727732\pi\)
−0.655951 + 0.754803i \(0.727732\pi\)
\(770\) 12.1349 0.437311
\(771\) 25.5404 0.919814
\(772\) −3.74650 −0.134840
\(773\) −42.2178 −1.51847 −0.759234 0.650818i \(-0.774426\pi\)
−0.759234 + 0.650818i \(0.774426\pi\)
\(774\) 8.80892 0.316630
\(775\) −72.6724 −2.61047
\(776\) −6.82417 −0.244973
\(777\) −5.98607 −0.214749
\(778\) 14.5322 0.521005
\(779\) 9.36709 0.335611
\(780\) −8.13112 −0.291141
\(781\) 26.5245 0.949123
\(782\) −20.0633 −0.717462
\(783\) −4.13812 −0.147884
\(784\) −3.28587 −0.117352
\(785\) −29.3539 −1.04769
\(786\) 26.3728 0.940687
\(787\) 1.65472 0.0589845 0.0294922 0.999565i \(-0.490611\pi\)
0.0294922 + 0.999565i \(0.490611\pi\)
\(788\) −6.11911 −0.217984
\(789\) −8.16149 −0.290557
\(790\) −15.2749 −0.543456
\(791\) −14.3692 −0.510909
\(792\) −7.19534 −0.255675
\(793\) 85.8523 3.04870
\(794\) 18.1200 0.643055
\(795\) −4.84066 −0.171681
\(796\) 1.49643 0.0530397
\(797\) 47.9433 1.69824 0.849120 0.528200i \(-0.177133\pi\)
0.849120 + 0.528200i \(0.177133\pi\)
\(798\) −2.91705 −0.103262
\(799\) 19.6286 0.694410
\(800\) −17.6180 −0.622891
\(801\) 2.24162 0.0792037
\(802\) −21.6093 −0.763052
\(803\) 28.5474 1.00741
\(804\) −0.263110 −0.00927916
\(805\) 27.1042 0.955297
\(806\) 62.7465 2.21015
\(807\) 0.585453 0.0206089
\(808\) −37.3685 −1.31462
\(809\) −39.4320 −1.38635 −0.693177 0.720767i \(-0.743790\pi\)
−0.693177 + 0.720767i \(0.743790\pi\)
\(810\) −5.06401 −0.177931
\(811\) −4.35171 −0.152809 −0.0764046 0.997077i \(-0.524344\pi\)
−0.0764046 + 0.997077i \(0.524344\pi\)
\(812\) 1.27971 0.0449091
\(813\) −3.75629 −0.131739
\(814\) −18.6519 −0.653748
\(815\) −19.6308 −0.687636
\(816\) −7.28502 −0.255027
\(817\) −15.1980 −0.531712
\(818\) −50.9172 −1.78028
\(819\) 6.75130 0.235909
\(820\) −5.02879 −0.175613
\(821\) 4.11893 0.143752 0.0718758 0.997414i \(-0.477101\pi\)
0.0718758 + 0.997414i \(0.477101\pi\)
\(822\) −5.16049 −0.179993
\(823\) 26.0370 0.907594 0.453797 0.891105i \(-0.350069\pi\)
0.453797 + 0.891105i \(0.350069\pi\)
\(824\) −16.7719 −0.584277
\(825\) −24.3640 −0.848245
\(826\) −1.04675 −0.0364211
\(827\) 2.07080 0.0720087 0.0360043 0.999352i \(-0.488537\pi\)
0.0360043 + 0.999352i \(0.488537\pi\)
\(828\) −2.15224 −0.0747954
\(829\) −7.43778 −0.258325 −0.129162 0.991623i \(-0.541229\pi\)
−0.129162 + 0.991623i \(0.541229\pi\)
\(830\) 49.2171 1.70835
\(831\) 22.9533 0.796241
\(832\) 59.5794 2.06554
\(833\) 2.21708 0.0768172
\(834\) −19.0222 −0.658686
\(835\) −59.1423 −2.04670
\(836\) 1.66247 0.0574977
\(837\) −7.14764 −0.247058
\(838\) 29.3156 1.01269
\(839\) −47.8725 −1.65274 −0.826371 0.563126i \(-0.809599\pi\)
−0.826371 + 0.563126i \(0.809599\pi\)
\(840\) 11.6941 0.403483
\(841\) −11.8759 −0.409515
\(842\) −36.6962 −1.26463
\(843\) 12.5921 0.433695
\(844\) −5.21839 −0.179624
\(845\) 126.884 4.36494
\(846\) −11.5119 −0.395789
\(847\) −5.25775 −0.180658
\(848\) 4.08413 0.140250
\(849\) −17.5458 −0.602169
\(850\) −29.3108 −1.00535
\(851\) −41.6604 −1.42810
\(852\) 3.42307 0.117272
\(853\) 8.81553 0.301838 0.150919 0.988546i \(-0.451777\pi\)
0.150919 + 0.988546i \(0.451777\pi\)
\(854\) −16.5350 −0.565816
\(855\) 8.73693 0.298797
\(856\) −38.6318 −1.32041
\(857\) −20.5103 −0.700617 −0.350309 0.936634i \(-0.613923\pi\)
−0.350309 + 0.936634i \(0.613923\pi\)
\(858\) 21.0362 0.718165
\(859\) −31.8746 −1.08755 −0.543774 0.839232i \(-0.683005\pi\)
−0.543774 + 0.839232i \(0.683005\pi\)
\(860\) 8.15917 0.278225
\(861\) 4.17542 0.142298
\(862\) 24.5799 0.837194
\(863\) 11.0761 0.377036 0.188518 0.982070i \(-0.439632\pi\)
0.188518 + 0.982070i \(0.439632\pi\)
\(864\) −1.73281 −0.0589512
\(865\) 22.8035 0.775341
\(866\) 33.9407 1.15335
\(867\) −12.0846 −0.410414
\(868\) 2.21040 0.0750259
\(869\) −7.22811 −0.245197
\(870\) 20.9555 0.710458
\(871\) 5.74402 0.194629
\(872\) 2.09968 0.0711043
\(873\) −2.27268 −0.0769187
\(874\) −20.3014 −0.686705
\(875\) 20.1243 0.680326
\(876\) 3.68412 0.124475
\(877\) −11.3099 −0.381907 −0.190954 0.981599i \(-0.561158\pi\)
−0.190954 + 0.981599i \(0.561158\pi\)
\(878\) 42.0633 1.41957
\(879\) 7.11385 0.239944
\(880\) 30.6652 1.03372
\(881\) 18.9516 0.638497 0.319249 0.947671i \(-0.396570\pi\)
0.319249 + 0.947671i \(0.396570\pi\)
\(882\) −1.30029 −0.0437830
\(883\) −3.33386 −0.112193 −0.0560967 0.998425i \(-0.517866\pi\)
−0.0560967 + 0.998425i \(0.517866\pi\)
\(884\) −4.62889 −0.155686
\(885\) 3.13514 0.105387
\(886\) −51.6077 −1.73379
\(887\) 29.6371 0.995117 0.497558 0.867431i \(-0.334230\pi\)
0.497558 + 0.867431i \(0.334230\pi\)
\(888\) −17.9743 −0.603179
\(889\) 1.00000 0.0335389
\(890\) −11.3516 −0.380506
\(891\) −2.39630 −0.0802790
\(892\) 1.30908 0.0438311
\(893\) 19.8615 0.664641
\(894\) 15.3396 0.513031
\(895\) 23.0559 0.770673
\(896\) −8.00928 −0.267571
\(897\) 46.9861 1.56882
\(898\) 45.8263 1.52924
\(899\) 29.5778 0.986475
\(900\) −3.14424 −0.104808
\(901\) −2.75569 −0.0918054
\(902\) 13.0101 0.433190
\(903\) −6.77459 −0.225444
\(904\) −43.1462 −1.43502
\(905\) 56.1253 1.86567
\(906\) −20.6698 −0.686707
\(907\) −46.4626 −1.54276 −0.771382 0.636372i \(-0.780434\pi\)
−0.771382 + 0.636372i \(0.780434\pi\)
\(908\) −3.47141 −0.115203
\(909\) −12.4450 −0.412775
\(910\) −34.1886 −1.13334
\(911\) −47.3404 −1.56846 −0.784230 0.620471i \(-0.786942\pi\)
−0.784230 + 0.620471i \(0.786942\pi\)
\(912\) −7.37147 −0.244094
\(913\) 23.2896 0.770774
\(914\) −42.9548 −1.42082
\(915\) 49.5244 1.63723
\(916\) −8.34293 −0.275658
\(917\) −20.2823 −0.669780
\(918\) −2.88284 −0.0951479
\(919\) 56.6974 1.87028 0.935138 0.354285i \(-0.115276\pi\)
0.935138 + 0.354285i \(0.115276\pi\)
\(920\) 81.3855 2.68320
\(921\) 9.70536 0.319802
\(922\) 44.7322 1.47318
\(923\) −74.7299 −2.45976
\(924\) 0.741053 0.0243789
\(925\) −60.8624 −2.00114
\(926\) 15.4519 0.507781
\(927\) −5.58562 −0.183456
\(928\) 7.17056 0.235385
\(929\) −2.96293 −0.0972105 −0.0486053 0.998818i \(-0.515478\pi\)
−0.0486053 + 0.998818i \(0.515478\pi\)
\(930\) 36.1957 1.18690
\(931\) 2.24339 0.0735240
\(932\) 0.155716 0.00510066
\(933\) −13.6173 −0.445811
\(934\) 48.6780 1.59279
\(935\) −20.6908 −0.676660
\(936\) 20.2721 0.662613
\(937\) 34.0156 1.11124 0.555621 0.831436i \(-0.312481\pi\)
0.555621 + 0.831436i \(0.312481\pi\)
\(938\) −1.10629 −0.0361216
\(939\) 10.9421 0.357082
\(940\) −10.6628 −0.347783
\(941\) −2.00963 −0.0655120 −0.0327560 0.999463i \(-0.510428\pi\)
−0.0327560 + 0.999463i \(0.510428\pi\)
\(942\) 9.80057 0.319320
\(943\) 29.0591 0.946295
\(944\) −2.64517 −0.0860928
\(945\) 3.89453 0.126689
\(946\) −21.1088 −0.686307
\(947\) −46.6335 −1.51538 −0.757692 0.652612i \(-0.773673\pi\)
−0.757692 + 0.652612i \(0.773673\pi\)
\(948\) −0.932808 −0.0302962
\(949\) −80.4289 −2.61083
\(950\) −29.6586 −0.962253
\(951\) −4.23874 −0.137450
\(952\) 6.65720 0.215761
\(953\) −22.7758 −0.737780 −0.368890 0.929473i \(-0.620262\pi\)
−0.368890 + 0.929473i \(0.620262\pi\)
\(954\) 1.61618 0.0523258
\(955\) 58.2144 1.88377
\(956\) 7.71664 0.249574
\(957\) 9.91618 0.320545
\(958\) 27.3020 0.882086
\(959\) 3.96873 0.128157
\(960\) 34.3687 1.10925
\(961\) 20.0887 0.648023
\(962\) 52.5495 1.69427
\(963\) −12.8657 −0.414592
\(964\) 2.93117 0.0944065
\(965\) 47.1816 1.51883
\(966\) −9.04944 −0.291161
\(967\) 29.5952 0.951718 0.475859 0.879521i \(-0.342137\pi\)
0.475859 + 0.879521i \(0.342137\pi\)
\(968\) −15.7874 −0.507426
\(969\) 4.97376 0.159780
\(970\) 11.5089 0.369528
\(971\) −2.54430 −0.0816504 −0.0408252 0.999166i \(-0.512999\pi\)
−0.0408252 + 0.999166i \(0.512999\pi\)
\(972\) −0.309249 −0.00991917
\(973\) 14.6292 0.468992
\(974\) −56.9480 −1.82473
\(975\) 68.6427 2.19833
\(976\) −41.7844 −1.33749
\(977\) −18.9346 −0.605772 −0.302886 0.953027i \(-0.597950\pi\)
−0.302886 + 0.953027i \(0.597950\pi\)
\(978\) 6.55424 0.209582
\(979\) −5.37159 −0.171677
\(980\) −1.20438 −0.0384725
\(981\) 0.699267 0.0223259
\(982\) 45.4612 1.45072
\(983\) −22.7616 −0.725984 −0.362992 0.931792i \(-0.618245\pi\)
−0.362992 + 0.931792i \(0.618245\pi\)
\(984\) 12.5375 0.399681
\(985\) 77.0610 2.45537
\(986\) 11.9295 0.379914
\(987\) 8.85337 0.281806
\(988\) −4.68382 −0.149012
\(989\) −47.1482 −1.49922
\(990\) 12.1349 0.385672
\(991\) −25.0866 −0.796902 −0.398451 0.917190i \(-0.630452\pi\)
−0.398451 + 0.917190i \(0.630452\pi\)
\(992\) 12.3855 0.393239
\(993\) 15.8239 0.502156
\(994\) 14.3928 0.456513
\(995\) −18.8453 −0.597437
\(996\) 3.00559 0.0952358
\(997\) 7.30016 0.231198 0.115599 0.993296i \(-0.463121\pi\)
0.115599 + 0.993296i \(0.463121\pi\)
\(998\) −33.7575 −1.06858
\(999\) −5.98607 −0.189391
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.q.1.6 19
3.2 odd 2 8001.2.a.v.1.14 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.q.1.6 19 1.1 even 1 trivial
8001.2.a.v.1.14 19 3.2 odd 2