Properties

Label 2667.2.a.q.1.5
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $19$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [19,4,19,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(19\)
Coefficient field: \(\mathbb{Q}[x]/(x^{19} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{19} - 4 x^{18} - 22 x^{17} + 101 x^{16} + 178 x^{15} - 1035 x^{14} - 583 x^{13} + 5572 x^{12} + \cdots + 210 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.48888\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.48888 q^{2} +1.00000 q^{3} +0.216778 q^{4} -2.91159 q^{5} -1.48888 q^{6} +1.00000 q^{7} +2.65501 q^{8} +1.00000 q^{9} +4.33502 q^{10} +4.14635 q^{11} +0.216778 q^{12} +3.36668 q^{13} -1.48888 q^{14} -2.91159 q^{15} -4.38656 q^{16} +4.79573 q^{17} -1.48888 q^{18} +0.147823 q^{19} -0.631168 q^{20} +1.00000 q^{21} -6.17343 q^{22} -5.23645 q^{23} +2.65501 q^{24} +3.47735 q^{25} -5.01260 q^{26} +1.00000 q^{27} +0.216778 q^{28} -1.23094 q^{29} +4.33502 q^{30} +6.14440 q^{31} +1.22106 q^{32} +4.14635 q^{33} -7.14029 q^{34} -2.91159 q^{35} +0.216778 q^{36} +7.83605 q^{37} -0.220092 q^{38} +3.36668 q^{39} -7.73031 q^{40} +0.0490986 q^{41} -1.48888 q^{42} -8.18235 q^{43} +0.898836 q^{44} -2.91159 q^{45} +7.79646 q^{46} -3.35398 q^{47} -4.38656 q^{48} +1.00000 q^{49} -5.17738 q^{50} +4.79573 q^{51} +0.729822 q^{52} +4.90402 q^{53} -1.48888 q^{54} -12.0725 q^{55} +2.65501 q^{56} +0.147823 q^{57} +1.83273 q^{58} -12.0362 q^{59} -0.631168 q^{60} +10.8592 q^{61} -9.14831 q^{62} +1.00000 q^{63} +6.95510 q^{64} -9.80239 q^{65} -6.17343 q^{66} -1.83840 q^{67} +1.03961 q^{68} -5.23645 q^{69} +4.33502 q^{70} -9.72828 q^{71} +2.65501 q^{72} +7.33222 q^{73} -11.6670 q^{74} +3.47735 q^{75} +0.0320448 q^{76} +4.14635 q^{77} -5.01260 q^{78} +6.96474 q^{79} +12.7719 q^{80} +1.00000 q^{81} -0.0731022 q^{82} -13.2685 q^{83} +0.216778 q^{84} -13.9632 q^{85} +12.1826 q^{86} -1.23094 q^{87} +11.0086 q^{88} -11.1337 q^{89} +4.33502 q^{90} +3.36668 q^{91} -1.13515 q^{92} +6.14440 q^{93} +4.99369 q^{94} -0.430400 q^{95} +1.22106 q^{96} -0.471210 q^{97} -1.48888 q^{98} +4.14635 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 19 q + 4 q^{2} + 19 q^{3} + 22 q^{4} + 5 q^{5} + 4 q^{6} + 19 q^{7} + 9 q^{8} + 19 q^{9} - 9 q^{11} + 22 q^{12} + 24 q^{13} + 4 q^{14} + 5 q^{15} + 20 q^{16} + 17 q^{17} + 4 q^{18} + 23 q^{19} + 5 q^{20}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.48888 −1.05280 −0.526400 0.850237i \(-0.676459\pi\)
−0.526400 + 0.850237i \(0.676459\pi\)
\(3\) 1.00000 0.577350
\(4\) 0.216778 0.108389
\(5\) −2.91159 −1.30210 −0.651051 0.759034i \(-0.725672\pi\)
−0.651051 + 0.759034i \(0.725672\pi\)
\(6\) −1.48888 −0.607835
\(7\) 1.00000 0.377964
\(8\) 2.65501 0.938689
\(9\) 1.00000 0.333333
\(10\) 4.33502 1.37085
\(11\) 4.14635 1.25017 0.625085 0.780556i \(-0.285064\pi\)
0.625085 + 0.780556i \(0.285064\pi\)
\(12\) 0.216778 0.0625784
\(13\) 3.36668 0.933749 0.466874 0.884324i \(-0.345380\pi\)
0.466874 + 0.884324i \(0.345380\pi\)
\(14\) −1.48888 −0.397921
\(15\) −2.91159 −0.751769
\(16\) −4.38656 −1.09664
\(17\) 4.79573 1.16314 0.581568 0.813498i \(-0.302440\pi\)
0.581568 + 0.813498i \(0.302440\pi\)
\(18\) −1.48888 −0.350934
\(19\) 0.147823 0.0339130 0.0169565 0.999856i \(-0.494602\pi\)
0.0169565 + 0.999856i \(0.494602\pi\)
\(20\) −0.631168 −0.141134
\(21\) 1.00000 0.218218
\(22\) −6.17343 −1.31618
\(23\) −5.23645 −1.09187 −0.545937 0.837826i \(-0.683826\pi\)
−0.545937 + 0.837826i \(0.683826\pi\)
\(24\) 2.65501 0.541952
\(25\) 3.47735 0.695471
\(26\) −5.01260 −0.983051
\(27\) 1.00000 0.192450
\(28\) 0.216778 0.0409672
\(29\) −1.23094 −0.228580 −0.114290 0.993447i \(-0.536459\pi\)
−0.114290 + 0.993447i \(0.536459\pi\)
\(30\) 4.33502 0.791463
\(31\) 6.14440 1.10357 0.551784 0.833987i \(-0.313947\pi\)
0.551784 + 0.833987i \(0.313947\pi\)
\(32\) 1.22106 0.215855
\(33\) 4.14635 0.721786
\(34\) −7.14029 −1.22455
\(35\) −2.91159 −0.492148
\(36\) 0.216778 0.0361296
\(37\) 7.83605 1.28824 0.644120 0.764925i \(-0.277224\pi\)
0.644120 + 0.764925i \(0.277224\pi\)
\(38\) −0.220092 −0.0357036
\(39\) 3.36668 0.539100
\(40\) −7.73031 −1.22227
\(41\) 0.0490986 0.00766792 0.00383396 0.999993i \(-0.498780\pi\)
0.00383396 + 0.999993i \(0.498780\pi\)
\(42\) −1.48888 −0.229740
\(43\) −8.18235 −1.24780 −0.623899 0.781505i \(-0.714452\pi\)
−0.623899 + 0.781505i \(0.714452\pi\)
\(44\) 0.898836 0.135505
\(45\) −2.91159 −0.434034
\(46\) 7.79646 1.14953
\(47\) −3.35398 −0.489229 −0.244614 0.969620i \(-0.578661\pi\)
−0.244614 + 0.969620i \(0.578661\pi\)
\(48\) −4.38656 −0.633146
\(49\) 1.00000 0.142857
\(50\) −5.17738 −0.732192
\(51\) 4.79573 0.671536
\(52\) 0.729822 0.101208
\(53\) 4.90402 0.673619 0.336809 0.941573i \(-0.390652\pi\)
0.336809 + 0.941573i \(0.390652\pi\)
\(54\) −1.48888 −0.202612
\(55\) −12.0725 −1.62785
\(56\) 2.65501 0.354791
\(57\) 0.147823 0.0195797
\(58\) 1.83273 0.240649
\(59\) −12.0362 −1.56698 −0.783492 0.621402i \(-0.786564\pi\)
−0.783492 + 0.621402i \(0.786564\pi\)
\(60\) −0.631168 −0.0814835
\(61\) 10.8592 1.39037 0.695186 0.718830i \(-0.255322\pi\)
0.695186 + 0.718830i \(0.255322\pi\)
\(62\) −9.14831 −1.16184
\(63\) 1.00000 0.125988
\(64\) 6.95510 0.869388
\(65\) −9.80239 −1.21584
\(66\) −6.17343 −0.759897
\(67\) −1.83840 −0.224596 −0.112298 0.993675i \(-0.535821\pi\)
−0.112298 + 0.993675i \(0.535821\pi\)
\(68\) 1.03961 0.126071
\(69\) −5.23645 −0.630394
\(70\) 4.33502 0.518134
\(71\) −9.72828 −1.15453 −0.577267 0.816555i \(-0.695881\pi\)
−0.577267 + 0.816555i \(0.695881\pi\)
\(72\) 2.65501 0.312896
\(73\) 7.33222 0.858171 0.429086 0.903264i \(-0.358836\pi\)
0.429086 + 0.903264i \(0.358836\pi\)
\(74\) −11.6670 −1.35626
\(75\) 3.47735 0.401530
\(76\) 0.0320448 0.00367579
\(77\) 4.14635 0.472520
\(78\) −5.01260 −0.567565
\(79\) 6.96474 0.783595 0.391797 0.920052i \(-0.371853\pi\)
0.391797 + 0.920052i \(0.371853\pi\)
\(80\) 12.7719 1.42794
\(81\) 1.00000 0.111111
\(82\) −0.0731022 −0.00807279
\(83\) −13.2685 −1.45641 −0.728204 0.685360i \(-0.759645\pi\)
−0.728204 + 0.685360i \(0.759645\pi\)
\(84\) 0.216778 0.0236524
\(85\) −13.9632 −1.51452
\(86\) 12.1826 1.31368
\(87\) −1.23094 −0.131971
\(88\) 11.0086 1.17352
\(89\) −11.1337 −1.18017 −0.590086 0.807340i \(-0.700906\pi\)
−0.590086 + 0.807340i \(0.700906\pi\)
\(90\) 4.33502 0.456951
\(91\) 3.36668 0.352924
\(92\) −1.13515 −0.118347
\(93\) 6.14440 0.637145
\(94\) 4.99369 0.515060
\(95\) −0.430400 −0.0441581
\(96\) 1.22106 0.124624
\(97\) −0.471210 −0.0478441 −0.0239220 0.999714i \(-0.507615\pi\)
−0.0239220 + 0.999714i \(0.507615\pi\)
\(98\) −1.48888 −0.150400
\(99\) 4.14635 0.416724
\(100\) 0.753813 0.0753813
\(101\) −5.16598 −0.514034 −0.257017 0.966407i \(-0.582740\pi\)
−0.257017 + 0.966407i \(0.582740\pi\)
\(102\) −7.14029 −0.706994
\(103\) −2.38399 −0.234901 −0.117451 0.993079i \(-0.537472\pi\)
−0.117451 + 0.993079i \(0.537472\pi\)
\(104\) 8.93857 0.876499
\(105\) −2.91159 −0.284142
\(106\) −7.30152 −0.709186
\(107\) 16.9004 1.63382 0.816909 0.576766i \(-0.195686\pi\)
0.816909 + 0.576766i \(0.195686\pi\)
\(108\) 0.216778 0.0208595
\(109\) 11.0708 1.06039 0.530193 0.847877i \(-0.322119\pi\)
0.530193 + 0.847877i \(0.322119\pi\)
\(110\) 17.9745 1.71380
\(111\) 7.83605 0.743765
\(112\) −4.38656 −0.414491
\(113\) 14.9881 1.40996 0.704982 0.709225i \(-0.250955\pi\)
0.704982 + 0.709225i \(0.250955\pi\)
\(114\) −0.220092 −0.0206135
\(115\) 15.2464 1.42173
\(116\) −0.266840 −0.0247755
\(117\) 3.36668 0.311250
\(118\) 17.9206 1.64972
\(119\) 4.79573 0.439624
\(120\) −7.73031 −0.705677
\(121\) 6.19220 0.562927
\(122\) −16.1680 −1.46378
\(123\) 0.0490986 0.00442708
\(124\) 1.33197 0.119615
\(125\) 4.43332 0.396528
\(126\) −1.48888 −0.132640
\(127\) 1.00000 0.0887357
\(128\) −12.7975 −1.13115
\(129\) −8.18235 −0.720416
\(130\) 14.5946 1.28003
\(131\) −5.79631 −0.506426 −0.253213 0.967411i \(-0.581487\pi\)
−0.253213 + 0.967411i \(0.581487\pi\)
\(132\) 0.898836 0.0782337
\(133\) 0.147823 0.0128179
\(134\) 2.73716 0.236455
\(135\) −2.91159 −0.250590
\(136\) 12.7327 1.09182
\(137\) 22.1491 1.89233 0.946164 0.323688i \(-0.104923\pi\)
0.946164 + 0.323688i \(0.104923\pi\)
\(138\) 7.79646 0.663679
\(139\) 16.1472 1.36959 0.684794 0.728737i \(-0.259892\pi\)
0.684794 + 0.728737i \(0.259892\pi\)
\(140\) −0.631168 −0.0533434
\(141\) −3.35398 −0.282456
\(142\) 14.4843 1.21549
\(143\) 13.9594 1.16735
\(144\) −4.38656 −0.365547
\(145\) 3.58399 0.297634
\(146\) −10.9168 −0.903483
\(147\) 1.00000 0.0824786
\(148\) 1.69868 0.139631
\(149\) 11.4146 0.935123 0.467562 0.883961i \(-0.345133\pi\)
0.467562 + 0.883961i \(0.345133\pi\)
\(150\) −5.17738 −0.422731
\(151\) 21.7197 1.76752 0.883761 0.467939i \(-0.155003\pi\)
0.883761 + 0.467939i \(0.155003\pi\)
\(152\) 0.392472 0.0318337
\(153\) 4.79573 0.387712
\(154\) −6.17343 −0.497469
\(155\) −17.8900 −1.43696
\(156\) 0.729822 0.0584325
\(157\) −13.6447 −1.08897 −0.544484 0.838771i \(-0.683275\pi\)
−0.544484 + 0.838771i \(0.683275\pi\)
\(158\) −10.3697 −0.824969
\(159\) 4.90402 0.388914
\(160\) −3.55523 −0.281066
\(161\) −5.23645 −0.412690
\(162\) −1.48888 −0.116978
\(163\) −0.934160 −0.0731690 −0.0365845 0.999331i \(-0.511648\pi\)
−0.0365845 + 0.999331i \(0.511648\pi\)
\(164\) 0.0106435 0.000831118 0
\(165\) −12.0725 −0.939840
\(166\) 19.7553 1.53331
\(167\) 14.1430 1.09442 0.547209 0.836996i \(-0.315690\pi\)
0.547209 + 0.836996i \(0.315690\pi\)
\(168\) 2.65501 0.204839
\(169\) −1.66547 −0.128113
\(170\) 20.7896 1.59449
\(171\) 0.147823 0.0113043
\(172\) −1.77375 −0.135247
\(173\) −4.53586 −0.344855 −0.172428 0.985022i \(-0.555161\pi\)
−0.172428 + 0.985022i \(0.555161\pi\)
\(174\) 1.83273 0.138939
\(175\) 3.47735 0.262863
\(176\) −18.1882 −1.37099
\(177\) −12.0362 −0.904699
\(178\) 16.5768 1.24249
\(179\) −0.416214 −0.0311093 −0.0155546 0.999879i \(-0.504951\pi\)
−0.0155546 + 0.999879i \(0.504951\pi\)
\(180\) −0.631168 −0.0470445
\(181\) 24.2415 1.80186 0.900928 0.433969i \(-0.142887\pi\)
0.900928 + 0.433969i \(0.142887\pi\)
\(182\) −5.01260 −0.371558
\(183\) 10.8592 0.802732
\(184\) −13.9028 −1.02493
\(185\) −22.8154 −1.67742
\(186\) −9.14831 −0.670787
\(187\) 19.8848 1.45412
\(188\) −0.727069 −0.0530270
\(189\) 1.00000 0.0727393
\(190\) 0.640816 0.0464897
\(191\) −26.6373 −1.92741 −0.963704 0.266975i \(-0.913976\pi\)
−0.963704 + 0.266975i \(0.913976\pi\)
\(192\) 6.95510 0.501941
\(193\) −19.0498 −1.37123 −0.685616 0.727964i \(-0.740467\pi\)
−0.685616 + 0.727964i \(0.740467\pi\)
\(194\) 0.701577 0.0503703
\(195\) −9.80239 −0.701963
\(196\) 0.216778 0.0154841
\(197\) −5.83599 −0.415797 −0.207898 0.978150i \(-0.566662\pi\)
−0.207898 + 0.978150i \(0.566662\pi\)
\(198\) −6.17343 −0.438727
\(199\) 22.8300 1.61837 0.809187 0.587551i \(-0.199908\pi\)
0.809187 + 0.587551i \(0.199908\pi\)
\(200\) 9.23241 0.652830
\(201\) −1.83840 −0.129670
\(202\) 7.69154 0.541175
\(203\) −1.23094 −0.0863950
\(204\) 1.03961 0.0727871
\(205\) −0.142955 −0.00998442
\(206\) 3.54948 0.247304
\(207\) −5.23645 −0.363958
\(208\) −14.7681 −1.02399
\(209\) 0.612926 0.0423970
\(210\) 4.33502 0.299145
\(211\) −25.8008 −1.77620 −0.888099 0.459652i \(-0.847974\pi\)
−0.888099 + 0.459652i \(0.847974\pi\)
\(212\) 1.06308 0.0730128
\(213\) −9.72828 −0.666571
\(214\) −25.1627 −1.72009
\(215\) 23.8237 1.62476
\(216\) 2.65501 0.180651
\(217\) 6.14440 0.417109
\(218\) −16.4831 −1.11638
\(219\) 7.33222 0.495466
\(220\) −2.61704 −0.176441
\(221\) 16.1457 1.08608
\(222\) −11.6670 −0.783036
\(223\) −8.47086 −0.567251 −0.283625 0.958935i \(-0.591537\pi\)
−0.283625 + 0.958935i \(0.591537\pi\)
\(224\) 1.22106 0.0815857
\(225\) 3.47735 0.231824
\(226\) −22.3156 −1.48441
\(227\) −8.01720 −0.532120 −0.266060 0.963956i \(-0.585722\pi\)
−0.266060 + 0.963956i \(0.585722\pi\)
\(228\) 0.0320448 0.00212222
\(229\) 20.2786 1.34005 0.670023 0.742340i \(-0.266284\pi\)
0.670023 + 0.742340i \(0.266284\pi\)
\(230\) −22.7001 −1.49680
\(231\) 4.14635 0.272810
\(232\) −3.26816 −0.214565
\(233\) −6.73232 −0.441049 −0.220524 0.975381i \(-0.570777\pi\)
−0.220524 + 0.975381i \(0.570777\pi\)
\(234\) −5.01260 −0.327684
\(235\) 9.76542 0.637026
\(236\) −2.60919 −0.169844
\(237\) 6.96474 0.452409
\(238\) −7.14029 −0.462836
\(239\) 13.7010 0.886247 0.443123 0.896461i \(-0.353870\pi\)
0.443123 + 0.896461i \(0.353870\pi\)
\(240\) 12.7719 0.824421
\(241\) 6.48260 0.417581 0.208791 0.977960i \(-0.433047\pi\)
0.208791 + 0.977960i \(0.433047\pi\)
\(242\) −9.21947 −0.592650
\(243\) 1.00000 0.0641500
\(244\) 2.35402 0.150701
\(245\) −2.91159 −0.186015
\(246\) −0.0731022 −0.00466083
\(247\) 0.497673 0.0316662
\(248\) 16.3135 1.03591
\(249\) −13.2685 −0.840858
\(250\) −6.60071 −0.417465
\(251\) 21.9241 1.38384 0.691920 0.721975i \(-0.256765\pi\)
0.691920 + 0.721975i \(0.256765\pi\)
\(252\) 0.216778 0.0136557
\(253\) −21.7121 −1.36503
\(254\) −1.48888 −0.0934209
\(255\) −13.9632 −0.874409
\(256\) 5.14376 0.321485
\(257\) 25.1781 1.57056 0.785282 0.619138i \(-0.212518\pi\)
0.785282 + 0.619138i \(0.212518\pi\)
\(258\) 12.1826 0.758454
\(259\) 7.83605 0.486909
\(260\) −2.12494 −0.131783
\(261\) −1.23094 −0.0761932
\(262\) 8.63004 0.533166
\(263\) 2.57791 0.158961 0.0794804 0.996836i \(-0.474674\pi\)
0.0794804 + 0.996836i \(0.474674\pi\)
\(264\) 11.0086 0.677533
\(265\) −14.2785 −0.877121
\(266\) −0.220092 −0.0134947
\(267\) −11.1337 −0.681373
\(268\) −0.398523 −0.0243437
\(269\) 15.9217 0.970760 0.485380 0.874303i \(-0.338681\pi\)
0.485380 + 0.874303i \(0.338681\pi\)
\(270\) 4.33502 0.263821
\(271\) 2.87200 0.174462 0.0872308 0.996188i \(-0.472198\pi\)
0.0872308 + 0.996188i \(0.472198\pi\)
\(272\) −21.0368 −1.27554
\(273\) 3.36668 0.203761
\(274\) −32.9775 −1.99224
\(275\) 14.4183 0.869457
\(276\) −1.13515 −0.0683277
\(277\) −5.15941 −0.309999 −0.154999 0.987915i \(-0.549538\pi\)
−0.154999 + 0.987915i \(0.549538\pi\)
\(278\) −24.0413 −1.44190
\(279\) 6.14440 0.367856
\(280\) −7.73031 −0.461974
\(281\) 8.81624 0.525933 0.262966 0.964805i \(-0.415299\pi\)
0.262966 + 0.964805i \(0.415299\pi\)
\(282\) 4.99369 0.297370
\(283\) −8.37512 −0.497849 −0.248925 0.968523i \(-0.580077\pi\)
−0.248925 + 0.968523i \(0.580077\pi\)
\(284\) −2.10888 −0.125139
\(285\) −0.430400 −0.0254947
\(286\) −20.7840 −1.22898
\(287\) 0.0490986 0.00289820
\(288\) 1.22106 0.0719518
\(289\) 5.99902 0.352884
\(290\) −5.33615 −0.313349
\(291\) −0.471210 −0.0276228
\(292\) 1.58946 0.0930163
\(293\) −14.4763 −0.845717 −0.422858 0.906196i \(-0.638973\pi\)
−0.422858 + 0.906196i \(0.638973\pi\)
\(294\) −1.48888 −0.0868335
\(295\) 35.0446 2.04037
\(296\) 20.8048 1.20926
\(297\) 4.14635 0.240595
\(298\) −16.9951 −0.984498
\(299\) −17.6294 −1.01954
\(300\) 0.753813 0.0435214
\(301\) −8.18235 −0.471623
\(302\) −32.3381 −1.86085
\(303\) −5.16598 −0.296778
\(304\) −0.648436 −0.0371903
\(305\) −31.6174 −1.81041
\(306\) −7.14029 −0.408183
\(307\) 3.23887 0.184852 0.0924260 0.995720i \(-0.470538\pi\)
0.0924260 + 0.995720i \(0.470538\pi\)
\(308\) 0.898836 0.0512160
\(309\) −2.38399 −0.135620
\(310\) 26.6361 1.51283
\(311\) −16.0805 −0.911840 −0.455920 0.890021i \(-0.650690\pi\)
−0.455920 + 0.890021i \(0.650690\pi\)
\(312\) 8.93857 0.506047
\(313\) −21.3203 −1.20510 −0.602548 0.798083i \(-0.705848\pi\)
−0.602548 + 0.798083i \(0.705848\pi\)
\(314\) 20.3154 1.14647
\(315\) −2.91159 −0.164049
\(316\) 1.50980 0.0849330
\(317\) 4.98067 0.279742 0.139871 0.990170i \(-0.455331\pi\)
0.139871 + 0.990170i \(0.455331\pi\)
\(318\) −7.30152 −0.409449
\(319\) −5.10390 −0.285764
\(320\) −20.2504 −1.13203
\(321\) 16.9004 0.943286
\(322\) 7.79646 0.434480
\(323\) 0.708920 0.0394454
\(324\) 0.216778 0.0120432
\(325\) 11.7071 0.649395
\(326\) 1.39086 0.0770324
\(327\) 11.0708 0.612215
\(328\) 0.130357 0.00719779
\(329\) −3.35398 −0.184911
\(330\) 17.9745 0.989464
\(331\) −4.19417 −0.230532 −0.115266 0.993335i \(-0.536772\pi\)
−0.115266 + 0.993335i \(0.536772\pi\)
\(332\) −2.87632 −0.157859
\(333\) 7.83605 0.429413
\(334\) −21.0573 −1.15220
\(335\) 5.35265 0.292447
\(336\) −4.38656 −0.239307
\(337\) 10.8184 0.589314 0.294657 0.955603i \(-0.404795\pi\)
0.294657 + 0.955603i \(0.404795\pi\)
\(338\) 2.47970 0.134878
\(339\) 14.9881 0.814043
\(340\) −3.02691 −0.164157
\(341\) 25.4768 1.37965
\(342\) −0.220092 −0.0119012
\(343\) 1.00000 0.0539949
\(344\) −21.7243 −1.17129
\(345\) 15.2464 0.820837
\(346\) 6.75338 0.363064
\(347\) 17.1092 0.918471 0.459236 0.888315i \(-0.348123\pi\)
0.459236 + 0.888315i \(0.348123\pi\)
\(348\) −0.266840 −0.0143042
\(349\) 9.72106 0.520356 0.260178 0.965561i \(-0.416219\pi\)
0.260178 + 0.965561i \(0.416219\pi\)
\(350\) −5.17738 −0.276742
\(351\) 3.36668 0.179700
\(352\) 5.06295 0.269856
\(353\) 12.6247 0.671946 0.335973 0.941872i \(-0.390935\pi\)
0.335973 + 0.941872i \(0.390935\pi\)
\(354\) 17.9206 0.952468
\(355\) 28.3247 1.50332
\(356\) −2.41354 −0.127918
\(357\) 4.79573 0.253817
\(358\) 0.619694 0.0327519
\(359\) −9.48768 −0.500741 −0.250370 0.968150i \(-0.580552\pi\)
−0.250370 + 0.968150i \(0.580552\pi\)
\(360\) −7.73031 −0.407423
\(361\) −18.9781 −0.998850
\(362\) −36.0928 −1.89699
\(363\) 6.19220 0.325006
\(364\) 0.729822 0.0382530
\(365\) −21.3484 −1.11743
\(366\) −16.1680 −0.845117
\(367\) 9.78894 0.510978 0.255489 0.966812i \(-0.417763\pi\)
0.255489 + 0.966812i \(0.417763\pi\)
\(368\) 22.9700 1.19739
\(369\) 0.0490986 0.00255597
\(370\) 33.9695 1.76599
\(371\) 4.90402 0.254604
\(372\) 1.33197 0.0690595
\(373\) −29.8399 −1.54505 −0.772525 0.634984i \(-0.781006\pi\)
−0.772525 + 0.634984i \(0.781006\pi\)
\(374\) −29.6061 −1.53090
\(375\) 4.43332 0.228936
\(376\) −8.90486 −0.459233
\(377\) −4.14418 −0.213436
\(378\) −1.48888 −0.0765800
\(379\) −19.1294 −0.982610 −0.491305 0.870988i \(-0.663480\pi\)
−0.491305 + 0.870988i \(0.663480\pi\)
\(380\) −0.0933013 −0.00478625
\(381\) 1.00000 0.0512316
\(382\) 39.6599 2.02918
\(383\) 9.49745 0.485297 0.242648 0.970114i \(-0.421984\pi\)
0.242648 + 0.970114i \(0.421984\pi\)
\(384\) −12.7975 −0.653068
\(385\) −12.0725 −0.615270
\(386\) 28.3629 1.44363
\(387\) −8.18235 −0.415932
\(388\) −0.102148 −0.00518577
\(389\) 27.4189 1.39020 0.695098 0.718915i \(-0.255361\pi\)
0.695098 + 0.718915i \(0.255361\pi\)
\(390\) 14.5946 0.739028
\(391\) −25.1126 −1.27000
\(392\) 2.65501 0.134098
\(393\) −5.79631 −0.292385
\(394\) 8.68911 0.437751
\(395\) −20.2785 −1.02032
\(396\) 0.898836 0.0451682
\(397\) 13.5805 0.681585 0.340792 0.940139i \(-0.389305\pi\)
0.340792 + 0.940139i \(0.389305\pi\)
\(398\) −33.9912 −1.70383
\(399\) 0.147823 0.00740041
\(400\) −15.2536 −0.762681
\(401\) 12.6146 0.629941 0.314970 0.949101i \(-0.398005\pi\)
0.314970 + 0.949101i \(0.398005\pi\)
\(402\) 2.73716 0.136517
\(403\) 20.6862 1.03045
\(404\) −1.11987 −0.0557156
\(405\) −2.91159 −0.144678
\(406\) 1.83273 0.0909567
\(407\) 32.4910 1.61052
\(408\) 12.7327 0.630364
\(409\) −0.129840 −0.00642020 −0.00321010 0.999995i \(-0.501022\pi\)
−0.00321010 + 0.999995i \(0.501022\pi\)
\(410\) 0.212844 0.0105116
\(411\) 22.1491 1.09254
\(412\) −0.516795 −0.0254607
\(413\) −12.0362 −0.592264
\(414\) 7.79646 0.383175
\(415\) 38.6324 1.89639
\(416\) 4.11093 0.201555
\(417\) 16.1472 0.790731
\(418\) −0.912576 −0.0446356
\(419\) 14.5425 0.710449 0.355224 0.934781i \(-0.384404\pi\)
0.355224 + 0.934781i \(0.384404\pi\)
\(420\) −0.631168 −0.0307979
\(421\) 12.9591 0.631586 0.315793 0.948828i \(-0.397730\pi\)
0.315793 + 0.948828i \(0.397730\pi\)
\(422\) 38.4144 1.86998
\(423\) −3.35398 −0.163076
\(424\) 13.0202 0.632318
\(425\) 16.6764 0.808926
\(426\) 14.4843 0.701766
\(427\) 10.8592 0.525511
\(428\) 3.66362 0.177088
\(429\) 13.9594 0.673967
\(430\) −35.4707 −1.71055
\(431\) −26.1264 −1.25846 −0.629232 0.777218i \(-0.716630\pi\)
−0.629232 + 0.777218i \(0.716630\pi\)
\(432\) −4.38656 −0.211049
\(433\) 27.6129 1.32699 0.663496 0.748180i \(-0.269072\pi\)
0.663496 + 0.748180i \(0.269072\pi\)
\(434\) −9.14831 −0.439133
\(435\) 3.58399 0.171839
\(436\) 2.39990 0.114934
\(437\) −0.774068 −0.0370287
\(438\) −10.9168 −0.521626
\(439\) 4.55135 0.217224 0.108612 0.994084i \(-0.465359\pi\)
0.108612 + 0.994084i \(0.465359\pi\)
\(440\) −32.0525 −1.52804
\(441\) 1.00000 0.0476190
\(442\) −24.0391 −1.14342
\(443\) 2.30191 0.109367 0.0546836 0.998504i \(-0.482585\pi\)
0.0546836 + 0.998504i \(0.482585\pi\)
\(444\) 1.69868 0.0806159
\(445\) 32.4168 1.53670
\(446\) 12.6121 0.597202
\(447\) 11.4146 0.539894
\(448\) 6.95510 0.328598
\(449\) −25.9591 −1.22509 −0.612544 0.790437i \(-0.709854\pi\)
−0.612544 + 0.790437i \(0.709854\pi\)
\(450\) −5.17738 −0.244064
\(451\) 0.203580 0.00958621
\(452\) 3.24910 0.152825
\(453\) 21.7197 1.02048
\(454\) 11.9367 0.560216
\(455\) −9.80239 −0.459543
\(456\) 0.392472 0.0183792
\(457\) −11.9556 −0.559258 −0.279629 0.960108i \(-0.590211\pi\)
−0.279629 + 0.960108i \(0.590211\pi\)
\(458\) −30.1925 −1.41080
\(459\) 4.79573 0.223845
\(460\) 3.30508 0.154100
\(461\) −7.55639 −0.351936 −0.175968 0.984396i \(-0.556306\pi\)
−0.175968 + 0.984396i \(0.556306\pi\)
\(462\) −6.17343 −0.287214
\(463\) −1.92100 −0.0892762 −0.0446381 0.999003i \(-0.514213\pi\)
−0.0446381 + 0.999003i \(0.514213\pi\)
\(464\) 5.39959 0.250670
\(465\) −17.8900 −0.829628
\(466\) 10.0236 0.464336
\(467\) −1.55517 −0.0719648 −0.0359824 0.999352i \(-0.511456\pi\)
−0.0359824 + 0.999352i \(0.511456\pi\)
\(468\) 0.729822 0.0337360
\(469\) −1.83840 −0.0848892
\(470\) −14.5396 −0.670661
\(471\) −13.6447 −0.628716
\(472\) −31.9564 −1.47091
\(473\) −33.9269 −1.55996
\(474\) −10.3697 −0.476296
\(475\) 0.514033 0.0235855
\(476\) 1.03961 0.0476504
\(477\) 4.90402 0.224540
\(478\) −20.3993 −0.933041
\(479\) 3.79672 0.173477 0.0867384 0.996231i \(-0.472356\pi\)
0.0867384 + 0.996231i \(0.472356\pi\)
\(480\) −3.55523 −0.162273
\(481\) 26.3815 1.20289
\(482\) −9.65185 −0.439630
\(483\) −5.23645 −0.238267
\(484\) 1.34233 0.0610151
\(485\) 1.37197 0.0622979
\(486\) −1.48888 −0.0675372
\(487\) 42.8719 1.94271 0.971357 0.237626i \(-0.0763694\pi\)
0.971357 + 0.237626i \(0.0763694\pi\)
\(488\) 28.8312 1.30513
\(489\) −0.934160 −0.0422442
\(490\) 4.33502 0.195836
\(491\) −22.3751 −1.00977 −0.504887 0.863185i \(-0.668466\pi\)
−0.504887 + 0.863185i \(0.668466\pi\)
\(492\) 0.0106435 0.000479846 0
\(493\) −5.90325 −0.265869
\(494\) −0.740978 −0.0333382
\(495\) −12.0725 −0.542617
\(496\) −26.9528 −1.21022
\(497\) −9.72828 −0.436373
\(498\) 19.7553 0.885255
\(499\) −5.93137 −0.265525 −0.132762 0.991148i \(-0.542385\pi\)
−0.132762 + 0.991148i \(0.542385\pi\)
\(500\) 0.961046 0.0429793
\(501\) 14.1430 0.631862
\(502\) −32.6425 −1.45691
\(503\) 7.56282 0.337210 0.168605 0.985684i \(-0.446074\pi\)
0.168605 + 0.985684i \(0.446074\pi\)
\(504\) 2.65501 0.118264
\(505\) 15.0412 0.669325
\(506\) 32.3268 1.43710
\(507\) −1.66547 −0.0739663
\(508\) 0.216778 0.00961796
\(509\) −3.13987 −0.139172 −0.0695861 0.997576i \(-0.522168\pi\)
−0.0695861 + 0.997576i \(0.522168\pi\)
\(510\) 20.7896 0.920578
\(511\) 7.33222 0.324358
\(512\) 17.9365 0.792688
\(513\) 0.147823 0.00652655
\(514\) −37.4872 −1.65349
\(515\) 6.94119 0.305865
\(516\) −1.77375 −0.0780851
\(517\) −13.9068 −0.611619
\(518\) −11.6670 −0.512618
\(519\) −4.53586 −0.199102
\(520\) −26.0255 −1.14129
\(521\) 17.8111 0.780321 0.390160 0.920747i \(-0.372420\pi\)
0.390160 + 0.920747i \(0.372420\pi\)
\(522\) 1.83273 0.0802163
\(523\) 33.8549 1.48037 0.740185 0.672403i \(-0.234738\pi\)
0.740185 + 0.672403i \(0.234738\pi\)
\(524\) −1.25651 −0.0548910
\(525\) 3.47735 0.151764
\(526\) −3.83821 −0.167354
\(527\) 29.4669 1.28360
\(528\) −18.1882 −0.791540
\(529\) 4.42036 0.192189
\(530\) 21.2590 0.923433
\(531\) −12.0362 −0.522328
\(532\) 0.0320448 0.00138932
\(533\) 0.165299 0.00715991
\(534\) 16.5768 0.717349
\(535\) −49.2069 −2.12740
\(536\) −4.88096 −0.210825
\(537\) −0.416214 −0.0179609
\(538\) −23.7055 −1.02202
\(539\) 4.14635 0.178596
\(540\) −0.631168 −0.0271612
\(541\) 3.35902 0.144415 0.0722077 0.997390i \(-0.476996\pi\)
0.0722077 + 0.997390i \(0.476996\pi\)
\(542\) −4.27608 −0.183673
\(543\) 24.2415 1.04030
\(544\) 5.85589 0.251069
\(545\) −32.2335 −1.38073
\(546\) −5.01260 −0.214519
\(547\) −10.8941 −0.465798 −0.232899 0.972501i \(-0.574821\pi\)
−0.232899 + 0.972501i \(0.574821\pi\)
\(548\) 4.80144 0.205107
\(549\) 10.8592 0.463457
\(550\) −21.4672 −0.915365
\(551\) −0.181961 −0.00775181
\(552\) −13.9028 −0.591744
\(553\) 6.96474 0.296171
\(554\) 7.68177 0.326367
\(555\) −22.8154 −0.968459
\(556\) 3.50035 0.148448
\(557\) −24.0627 −1.01957 −0.509784 0.860302i \(-0.670275\pi\)
−0.509784 + 0.860302i \(0.670275\pi\)
\(558\) −9.14831 −0.387279
\(559\) −27.5474 −1.16513
\(560\) 12.7719 0.539710
\(561\) 19.8848 0.839535
\(562\) −13.1264 −0.553702
\(563\) −27.1050 −1.14234 −0.571169 0.820832i \(-0.693510\pi\)
−0.571169 + 0.820832i \(0.693510\pi\)
\(564\) −0.727069 −0.0306151
\(565\) −43.6393 −1.83592
\(566\) 12.4696 0.524136
\(567\) 1.00000 0.0419961
\(568\) −25.8287 −1.08375
\(569\) −42.7501 −1.79218 −0.896089 0.443875i \(-0.853603\pi\)
−0.896089 + 0.443875i \(0.853603\pi\)
\(570\) 0.640816 0.0268408
\(571\) 18.7978 0.786665 0.393333 0.919396i \(-0.371322\pi\)
0.393333 + 0.919396i \(0.371322\pi\)
\(572\) 3.02609 0.126527
\(573\) −26.6373 −1.11279
\(574\) −0.0731022 −0.00305123
\(575\) −18.2090 −0.759366
\(576\) 6.95510 0.289796
\(577\) −1.84444 −0.0767849 −0.0383925 0.999263i \(-0.512224\pi\)
−0.0383925 + 0.999263i \(0.512224\pi\)
\(578\) −8.93185 −0.371516
\(579\) −19.0498 −0.791681
\(580\) 0.776930 0.0322603
\(581\) −13.2685 −0.550470
\(582\) 0.701577 0.0290813
\(583\) 20.3338 0.842139
\(584\) 19.4671 0.805556
\(585\) −9.80239 −0.405279
\(586\) 21.5536 0.890371
\(587\) 0.0278962 0.00115140 0.000575700 1.00000i \(-0.499817\pi\)
0.000575700 1.00000i \(0.499817\pi\)
\(588\) 0.216778 0.00893977
\(589\) 0.908285 0.0374252
\(590\) −52.1773 −2.14811
\(591\) −5.83599 −0.240060
\(592\) −34.3733 −1.41274
\(593\) −4.26821 −0.175274 −0.0876371 0.996152i \(-0.527932\pi\)
−0.0876371 + 0.996152i \(0.527932\pi\)
\(594\) −6.17343 −0.253299
\(595\) −13.9632 −0.572435
\(596\) 2.47444 0.101357
\(597\) 22.8300 0.934369
\(598\) 26.2482 1.07337
\(599\) −28.3223 −1.15722 −0.578610 0.815605i \(-0.696404\pi\)
−0.578610 + 0.815605i \(0.696404\pi\)
\(600\) 9.23241 0.376912
\(601\) −5.52773 −0.225481 −0.112740 0.993624i \(-0.535963\pi\)
−0.112740 + 0.993624i \(0.535963\pi\)
\(602\) 12.1826 0.496525
\(603\) −1.83840 −0.0748652
\(604\) 4.70834 0.191580
\(605\) −18.0291 −0.732989
\(606\) 7.69154 0.312448
\(607\) −0.370522 −0.0150390 −0.00751951 0.999972i \(-0.502394\pi\)
−0.00751951 + 0.999972i \(0.502394\pi\)
\(608\) 0.180501 0.00732029
\(609\) −1.23094 −0.0498802
\(610\) 47.0747 1.90600
\(611\) −11.2918 −0.456817
\(612\) 1.03961 0.0420237
\(613\) 15.5785 0.629211 0.314605 0.949223i \(-0.398128\pi\)
0.314605 + 0.949223i \(0.398128\pi\)
\(614\) −4.82230 −0.194612
\(615\) −0.142955 −0.00576451
\(616\) 11.0086 0.443549
\(617\) −3.80748 −0.153283 −0.0766417 0.997059i \(-0.524420\pi\)
−0.0766417 + 0.997059i \(0.524420\pi\)
\(618\) 3.54948 0.142781
\(619\) −2.32509 −0.0934531 −0.0467265 0.998908i \(-0.514879\pi\)
−0.0467265 + 0.998908i \(0.514879\pi\)
\(620\) −3.87815 −0.155750
\(621\) −5.23645 −0.210131
\(622\) 23.9420 0.959986
\(623\) −11.1337 −0.446063
\(624\) −14.7681 −0.591199
\(625\) −30.2948 −1.21179
\(626\) 31.7435 1.26872
\(627\) 0.612926 0.0244779
\(628\) −2.95788 −0.118032
\(629\) 37.5796 1.49840
\(630\) 4.33502 0.172711
\(631\) −36.8091 −1.46535 −0.732673 0.680581i \(-0.761728\pi\)
−0.732673 + 0.680581i \(0.761728\pi\)
\(632\) 18.4915 0.735551
\(633\) −25.8008 −1.02549
\(634\) −7.41564 −0.294513
\(635\) −2.91159 −0.115543
\(636\) 1.06308 0.0421540
\(637\) 3.36668 0.133393
\(638\) 7.59912 0.300852
\(639\) −9.72828 −0.384845
\(640\) 37.2610 1.47287
\(641\) −44.7785 −1.76864 −0.884322 0.466878i \(-0.845379\pi\)
−0.884322 + 0.466878i \(0.845379\pi\)
\(642\) −25.1627 −0.993092
\(643\) −13.7232 −0.541191 −0.270595 0.962693i \(-0.587221\pi\)
−0.270595 + 0.962693i \(0.587221\pi\)
\(644\) −1.13515 −0.0447310
\(645\) 23.8237 0.938056
\(646\) −1.05550 −0.0415281
\(647\) 38.4468 1.51150 0.755750 0.654861i \(-0.227273\pi\)
0.755750 + 0.654861i \(0.227273\pi\)
\(648\) 2.65501 0.104299
\(649\) −49.9064 −1.95900
\(650\) −17.4306 −0.683683
\(651\) 6.14440 0.240818
\(652\) −0.202505 −0.00793072
\(653\) −8.68324 −0.339801 −0.169901 0.985461i \(-0.554345\pi\)
−0.169901 + 0.985461i \(0.554345\pi\)
\(654\) −16.4831 −0.644540
\(655\) 16.8765 0.659419
\(656\) −0.215374 −0.00840895
\(657\) 7.33222 0.286057
\(658\) 4.99369 0.194674
\(659\) −19.4390 −0.757237 −0.378619 0.925553i \(-0.623601\pi\)
−0.378619 + 0.925553i \(0.623601\pi\)
\(660\) −2.61704 −0.101868
\(661\) 15.8557 0.616715 0.308358 0.951270i \(-0.400221\pi\)
0.308358 + 0.951270i \(0.400221\pi\)
\(662\) 6.24464 0.242705
\(663\) 16.1457 0.627046
\(664\) −35.2281 −1.36711
\(665\) −0.430400 −0.0166902
\(666\) −11.6670 −0.452086
\(667\) 6.44575 0.249580
\(668\) 3.06589 0.118623
\(669\) −8.47086 −0.327502
\(670\) −7.96948 −0.307888
\(671\) 45.0258 1.73820
\(672\) 1.22106 0.0471035
\(673\) −46.4164 −1.78922 −0.894611 0.446846i \(-0.852547\pi\)
−0.894611 + 0.446846i \(0.852547\pi\)
\(674\) −16.1073 −0.620430
\(675\) 3.47735 0.133843
\(676\) −0.361038 −0.0138861
\(677\) 29.2402 1.12379 0.561896 0.827208i \(-0.310072\pi\)
0.561896 + 0.827208i \(0.310072\pi\)
\(678\) −22.3156 −0.857025
\(679\) −0.471210 −0.0180834
\(680\) −37.0725 −1.42166
\(681\) −8.01720 −0.307220
\(682\) −37.9321 −1.45249
\(683\) 47.5983 1.82130 0.910649 0.413182i \(-0.135583\pi\)
0.910649 + 0.413182i \(0.135583\pi\)
\(684\) 0.0320448 0.00122526
\(685\) −64.4892 −2.46400
\(686\) −1.48888 −0.0568459
\(687\) 20.2786 0.773676
\(688\) 35.8924 1.36839
\(689\) 16.5103 0.628991
\(690\) −22.7001 −0.864178
\(691\) 42.7666 1.62692 0.813459 0.581622i \(-0.197582\pi\)
0.813459 + 0.581622i \(0.197582\pi\)
\(692\) −0.983274 −0.0373785
\(693\) 4.14635 0.157507
\(694\) −25.4737 −0.966967
\(695\) −47.0140 −1.78334
\(696\) −3.26816 −0.123879
\(697\) 0.235464 0.00891883
\(698\) −14.4735 −0.547831
\(699\) −6.73232 −0.254640
\(700\) 0.753813 0.0284915
\(701\) 35.1099 1.32608 0.663042 0.748582i \(-0.269265\pi\)
0.663042 + 0.748582i \(0.269265\pi\)
\(702\) −5.01260 −0.189188
\(703\) 1.15835 0.0436880
\(704\) 28.8383 1.08688
\(705\) 9.76542 0.367787
\(706\) −18.7967 −0.707425
\(707\) −5.16598 −0.194287
\(708\) −2.60919 −0.0980594
\(709\) 12.5880 0.472754 0.236377 0.971661i \(-0.424040\pi\)
0.236377 + 0.971661i \(0.424040\pi\)
\(710\) −42.1723 −1.58270
\(711\) 6.96474 0.261198
\(712\) −29.5602 −1.10781
\(713\) −32.1748 −1.20496
\(714\) −7.14029 −0.267219
\(715\) −40.6441 −1.52000
\(716\) −0.0902259 −0.00337190
\(717\) 13.7010 0.511675
\(718\) 14.1261 0.527180
\(719\) −0.862145 −0.0321526 −0.0160763 0.999871i \(-0.505117\pi\)
−0.0160763 + 0.999871i \(0.505117\pi\)
\(720\) 12.7719 0.475980
\(721\) −2.38399 −0.0887843
\(722\) 28.2563 1.05159
\(723\) 6.48260 0.241091
\(724\) 5.25502 0.195301
\(725\) −4.28041 −0.158970
\(726\) −9.21947 −0.342167
\(727\) 33.1990 1.23128 0.615641 0.788027i \(-0.288897\pi\)
0.615641 + 0.788027i \(0.288897\pi\)
\(728\) 8.93857 0.331286
\(729\) 1.00000 0.0370370
\(730\) 31.7853 1.17643
\(731\) −39.2404 −1.45136
\(732\) 2.35402 0.0870073
\(733\) −40.4452 −1.49388 −0.746939 0.664893i \(-0.768477\pi\)
−0.746939 + 0.664893i \(0.768477\pi\)
\(734\) −14.5746 −0.537958
\(735\) −2.91159 −0.107396
\(736\) −6.39403 −0.235687
\(737\) −7.62263 −0.280783
\(738\) −0.0731022 −0.00269093
\(739\) 5.49746 0.202227 0.101114 0.994875i \(-0.467759\pi\)
0.101114 + 0.994875i \(0.467759\pi\)
\(740\) −4.94587 −0.181814
\(741\) 0.497673 0.0182825
\(742\) −7.30152 −0.268047
\(743\) 40.3053 1.47866 0.739329 0.673345i \(-0.235143\pi\)
0.739329 + 0.673345i \(0.235143\pi\)
\(744\) 16.3135 0.598081
\(745\) −33.2347 −1.21763
\(746\) 44.4281 1.62663
\(747\) −13.2685 −0.485469
\(748\) 4.31058 0.157610
\(749\) 16.9004 0.617525
\(750\) −6.60071 −0.241024
\(751\) 5.92678 0.216271 0.108136 0.994136i \(-0.465512\pi\)
0.108136 + 0.994136i \(0.465512\pi\)
\(752\) 14.7125 0.536508
\(753\) 21.9241 0.798960
\(754\) 6.17020 0.224706
\(755\) −63.2388 −2.30149
\(756\) 0.216778 0.00788414
\(757\) 12.4772 0.453493 0.226747 0.973954i \(-0.427191\pi\)
0.226747 + 0.973954i \(0.427191\pi\)
\(758\) 28.4814 1.03449
\(759\) −21.7121 −0.788100
\(760\) −1.14272 −0.0414507
\(761\) −31.7213 −1.14989 −0.574947 0.818190i \(-0.694978\pi\)
−0.574947 + 0.818190i \(0.694978\pi\)
\(762\) −1.48888 −0.0539366
\(763\) 11.0708 0.400789
\(764\) −5.77438 −0.208910
\(765\) −13.9632 −0.504840
\(766\) −14.1406 −0.510921
\(767\) −40.5221 −1.46317
\(768\) 5.14376 0.185609
\(769\) 22.6399 0.816415 0.408207 0.912889i \(-0.366154\pi\)
0.408207 + 0.912889i \(0.366154\pi\)
\(770\) 17.9745 0.647756
\(771\) 25.1781 0.906766
\(772\) −4.12957 −0.148626
\(773\) −35.4318 −1.27439 −0.637197 0.770701i \(-0.719906\pi\)
−0.637197 + 0.770701i \(0.719906\pi\)
\(774\) 12.1826 0.437894
\(775\) 21.3663 0.767499
\(776\) −1.25107 −0.0449107
\(777\) 7.83605 0.281117
\(778\) −40.8236 −1.46360
\(779\) 0.00725792 0.000260042 0
\(780\) −2.12494 −0.0760851
\(781\) −40.3368 −1.44336
\(782\) 37.3897 1.33705
\(783\) −1.23094 −0.0439902
\(784\) −4.38656 −0.156663
\(785\) 39.7279 1.41795
\(786\) 8.63004 0.307823
\(787\) −29.1953 −1.04070 −0.520349 0.853954i \(-0.674198\pi\)
−0.520349 + 0.853954i \(0.674198\pi\)
\(788\) −1.26511 −0.0450678
\(789\) 2.57791 0.0917761
\(790\) 30.1923 1.07419
\(791\) 14.9881 0.532917
\(792\) 11.0086 0.391174
\(793\) 36.5593 1.29826
\(794\) −20.2198 −0.717573
\(795\) −14.2785 −0.506406
\(796\) 4.94904 0.175414
\(797\) 23.7870 0.842579 0.421290 0.906926i \(-0.361578\pi\)
0.421290 + 0.906926i \(0.361578\pi\)
\(798\) −0.220092 −0.00779116
\(799\) −16.0848 −0.569039
\(800\) 4.24607 0.150121
\(801\) −11.1337 −0.393391
\(802\) −18.7816 −0.663202
\(803\) 30.4019 1.07286
\(804\) −0.398523 −0.0140548
\(805\) 15.2464 0.537364
\(806\) −30.7994 −1.08486
\(807\) 15.9217 0.560469
\(808\) −13.7157 −0.482518
\(809\) −41.1655 −1.44730 −0.723652 0.690165i \(-0.757538\pi\)
−0.723652 + 0.690165i \(0.757538\pi\)
\(810\) 4.33502 0.152317
\(811\) −16.1626 −0.567544 −0.283772 0.958892i \(-0.591586\pi\)
−0.283772 + 0.958892i \(0.591586\pi\)
\(812\) −0.266840 −0.00936427
\(813\) 2.87200 0.100725
\(814\) −48.3754 −1.69556
\(815\) 2.71989 0.0952736
\(816\) −21.0368 −0.736434
\(817\) −1.20954 −0.0423165
\(818\) 0.193318 0.00675919
\(819\) 3.36668 0.117641
\(820\) −0.0309895 −0.00108220
\(821\) 18.2548 0.637097 0.318548 0.947907i \(-0.396805\pi\)
0.318548 + 0.947907i \(0.396805\pi\)
\(822\) −32.9775 −1.15022
\(823\) 42.2479 1.47267 0.736334 0.676618i \(-0.236555\pi\)
0.736334 + 0.676618i \(0.236555\pi\)
\(824\) −6.32951 −0.220499
\(825\) 14.4183 0.501981
\(826\) 17.9206 0.623536
\(827\) −46.8151 −1.62792 −0.813961 0.580920i \(-0.802693\pi\)
−0.813961 + 0.580920i \(0.802693\pi\)
\(828\) −1.13515 −0.0394490
\(829\) −47.1289 −1.63685 −0.818426 0.574611i \(-0.805153\pi\)
−0.818426 + 0.574611i \(0.805153\pi\)
\(830\) −57.5193 −1.99652
\(831\) −5.15941 −0.178978
\(832\) 23.4156 0.811790
\(833\) 4.79573 0.166162
\(834\) −24.0413 −0.832483
\(835\) −41.1786 −1.42504
\(836\) 0.132869 0.00459536
\(837\) 6.14440 0.212382
\(838\) −21.6521 −0.747961
\(839\) 42.7882 1.47721 0.738606 0.674137i \(-0.235484\pi\)
0.738606 + 0.674137i \(0.235484\pi\)
\(840\) −7.73031 −0.266721
\(841\) −27.4848 −0.947751
\(842\) −19.2945 −0.664934
\(843\) 8.81624 0.303647
\(844\) −5.59304 −0.192520
\(845\) 4.84917 0.166817
\(846\) 4.99369 0.171687
\(847\) 6.19220 0.212766
\(848\) −21.5118 −0.738718
\(849\) −8.37512 −0.287433
\(850\) −24.8293 −0.851638
\(851\) −41.0331 −1.40660
\(852\) −2.10888 −0.0722489
\(853\) −26.0928 −0.893402 −0.446701 0.894683i \(-0.647401\pi\)
−0.446701 + 0.894683i \(0.647401\pi\)
\(854\) −16.1680 −0.553259
\(855\) −0.430400 −0.0147194
\(856\) 44.8706 1.53365
\(857\) −34.3896 −1.17473 −0.587363 0.809324i \(-0.699834\pi\)
−0.587363 + 0.809324i \(0.699834\pi\)
\(858\) −20.7840 −0.709553
\(859\) 1.52930 0.0521790 0.0260895 0.999660i \(-0.491695\pi\)
0.0260895 + 0.999660i \(0.491695\pi\)
\(860\) 5.16444 0.176106
\(861\) 0.0490986 0.00167328
\(862\) 38.8992 1.32491
\(863\) −37.4603 −1.27516 −0.637582 0.770383i \(-0.720065\pi\)
−0.637582 + 0.770383i \(0.720065\pi\)
\(864\) 1.22106 0.0415414
\(865\) 13.2066 0.449037
\(866\) −41.1125 −1.39706
\(867\) 5.99902 0.203737
\(868\) 1.33197 0.0452100
\(869\) 28.8782 0.979627
\(870\) −5.33615 −0.180912
\(871\) −6.18929 −0.209716
\(872\) 29.3930 0.995373
\(873\) −0.471210 −0.0159480
\(874\) 1.15250 0.0389838
\(875\) 4.43332 0.149874
\(876\) 1.58946 0.0537030
\(877\) −16.6275 −0.561470 −0.280735 0.959785i \(-0.590578\pi\)
−0.280735 + 0.959785i \(0.590578\pi\)
\(878\) −6.77643 −0.228694
\(879\) −14.4763 −0.488275
\(880\) 52.9566 1.78517
\(881\) 27.3896 0.922780 0.461390 0.887197i \(-0.347351\pi\)
0.461390 + 0.887197i \(0.347351\pi\)
\(882\) −1.48888 −0.0501334
\(883\) −10.6137 −0.357179 −0.178589 0.983924i \(-0.557153\pi\)
−0.178589 + 0.983924i \(0.557153\pi\)
\(884\) 3.50003 0.117719
\(885\) 35.0446 1.17801
\(886\) −3.42728 −0.115142
\(887\) 21.4033 0.718652 0.359326 0.933212i \(-0.383007\pi\)
0.359326 + 0.933212i \(0.383007\pi\)
\(888\) 20.8048 0.698164
\(889\) 1.00000 0.0335389
\(890\) −48.2649 −1.61784
\(891\) 4.14635 0.138908
\(892\) −1.83629 −0.0614837
\(893\) −0.495796 −0.0165912
\(894\) −16.9951 −0.568400
\(895\) 1.21184 0.0405075
\(896\) −12.7975 −0.427534
\(897\) −17.6294 −0.588630
\(898\) 38.6502 1.28977
\(899\) −7.56339 −0.252253
\(900\) 0.753813 0.0251271
\(901\) 23.5183 0.783510
\(902\) −0.303107 −0.0100924
\(903\) −8.18235 −0.272292
\(904\) 39.7937 1.32352
\(905\) −70.5812 −2.34620
\(906\) −32.3381 −1.07436
\(907\) 49.9246 1.65772 0.828859 0.559458i \(-0.188991\pi\)
0.828859 + 0.559458i \(0.188991\pi\)
\(908\) −1.73795 −0.0576759
\(909\) −5.16598 −0.171345
\(910\) 14.5946 0.483807
\(911\) −32.6343 −1.08122 −0.540611 0.841273i \(-0.681807\pi\)
−0.540611 + 0.841273i \(0.681807\pi\)
\(912\) −0.648436 −0.0214718
\(913\) −55.0158 −1.82076
\(914\) 17.8005 0.588787
\(915\) −31.6174 −1.04524
\(916\) 4.39595 0.145246
\(917\) −5.79631 −0.191411
\(918\) −7.14029 −0.235665
\(919\) −38.9648 −1.28533 −0.642666 0.766147i \(-0.722172\pi\)
−0.642666 + 0.766147i \(0.722172\pi\)
\(920\) 40.4793 1.33456
\(921\) 3.23887 0.106724
\(922\) 11.2506 0.370519
\(923\) −32.7520 −1.07804
\(924\) 0.898836 0.0295695
\(925\) 27.2487 0.895933
\(926\) 2.86014 0.0939901
\(927\) −2.38399 −0.0783004
\(928\) −1.50305 −0.0493402
\(929\) 33.5112 1.09947 0.549734 0.835340i \(-0.314729\pi\)
0.549734 + 0.835340i \(0.314729\pi\)
\(930\) 26.6361 0.873433
\(931\) 0.147823 0.00484471
\(932\) −1.45942 −0.0478048
\(933\) −16.0805 −0.526451
\(934\) 2.31547 0.0757646
\(935\) −57.8963 −1.89341
\(936\) 8.93857 0.292166
\(937\) 33.7304 1.10193 0.550963 0.834530i \(-0.314261\pi\)
0.550963 + 0.834530i \(0.314261\pi\)
\(938\) 2.73716 0.0893714
\(939\) −21.3203 −0.695762
\(940\) 2.11693 0.0690465
\(941\) 25.1685 0.820469 0.410235 0.911980i \(-0.365447\pi\)
0.410235 + 0.911980i \(0.365447\pi\)
\(942\) 20.3154 0.661913
\(943\) −0.257102 −0.00837240
\(944\) 52.7977 1.71842
\(945\) −2.91159 −0.0947140
\(946\) 50.5132 1.64233
\(947\) −3.93697 −0.127934 −0.0639672 0.997952i \(-0.520375\pi\)
−0.0639672 + 0.997952i \(0.520375\pi\)
\(948\) 1.50980 0.0490361
\(949\) 24.6852 0.801316
\(950\) −0.765336 −0.0248308
\(951\) 4.98067 0.161509
\(952\) 12.7327 0.412670
\(953\) 53.3391 1.72782 0.863911 0.503645i \(-0.168008\pi\)
0.863911 + 0.503645i \(0.168008\pi\)
\(954\) −7.30152 −0.236395
\(955\) 77.5569 2.50968
\(956\) 2.97008 0.0960593
\(957\) −5.10390 −0.164986
\(958\) −5.65288 −0.182636
\(959\) 22.1491 0.715233
\(960\) −20.2504 −0.653579
\(961\) 6.75371 0.217862
\(962\) −39.2790 −1.26641
\(963\) 16.9004 0.544606
\(964\) 1.40529 0.0452612
\(965\) 55.4651 1.78548
\(966\) 7.79646 0.250847
\(967\) −34.1465 −1.09808 −0.549038 0.835797i \(-0.685006\pi\)
−0.549038 + 0.835797i \(0.685006\pi\)
\(968\) 16.4404 0.528413
\(969\) 0.708920 0.0227738
\(970\) −2.04270 −0.0655873
\(971\) −30.5079 −0.979045 −0.489522 0.871991i \(-0.662829\pi\)
−0.489522 + 0.871991i \(0.662829\pi\)
\(972\) 0.216778 0.00695315
\(973\) 16.1472 0.517655
\(974\) −63.8314 −2.04529
\(975\) 11.7071 0.374928
\(976\) −47.6344 −1.52474
\(977\) −16.3516 −0.523135 −0.261568 0.965185i \(-0.584239\pi\)
−0.261568 + 0.965185i \(0.584239\pi\)
\(978\) 1.39086 0.0444747
\(979\) −46.1643 −1.47542
\(980\) −0.631168 −0.0201619
\(981\) 11.0708 0.353462
\(982\) 33.3140 1.06309
\(983\) 41.7219 1.33072 0.665360 0.746522i \(-0.268278\pi\)
0.665360 + 0.746522i \(0.268278\pi\)
\(984\) 0.130357 0.00415565
\(985\) 16.9920 0.541410
\(986\) 8.78926 0.279907
\(987\) −3.35398 −0.106758
\(988\) 0.107885 0.00343226
\(989\) 42.8464 1.36244
\(990\) 17.9745 0.571267
\(991\) −46.3370 −1.47194 −0.735972 0.677012i \(-0.763275\pi\)
−0.735972 + 0.677012i \(0.763275\pi\)
\(992\) 7.50270 0.238211
\(993\) −4.19417 −0.133098
\(994\) 14.4843 0.459414
\(995\) −66.4715 −2.10729
\(996\) −2.87632 −0.0911397
\(997\) 45.1748 1.43070 0.715350 0.698766i \(-0.246267\pi\)
0.715350 + 0.698766i \(0.246267\pi\)
\(998\) 8.83113 0.279545
\(999\) 7.83605 0.247922
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.q.1.5 19
3.2 odd 2 8001.2.a.v.1.15 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.q.1.5 19 1.1 even 1 trivial
8001.2.a.v.1.15 19 3.2 odd 2