Properties

Label 2667.2.a.q.1.14
Level $2667$
Weight $2$
Character 2667.1
Self dual yes
Analytic conductor $21.296$
Analytic rank $0$
Dimension $19$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2667,2,Mod(1,2667)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2667, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2667.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2667 = 3 \cdot 7 \cdot 127 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2667.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [19,4,19,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.2961022191\)
Analytic rank: \(0\)
Dimension: \(19\)
Coefficient field: \(\mathbb{Q}[x]/(x^{19} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{19} - 4 x^{18} - 22 x^{17} + 101 x^{16} + 178 x^{15} - 1035 x^{14} - 583 x^{13} + 5572 x^{12} + \cdots + 210 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(1.49024\) of defining polynomial
Character \(\chi\) \(=\) 2667.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.49024 q^{2} +1.00000 q^{3} +0.220813 q^{4} +2.04744 q^{5} +1.49024 q^{6} +1.00000 q^{7} -2.65141 q^{8} +1.00000 q^{9} +3.05118 q^{10} -1.77527 q^{11} +0.220813 q^{12} -4.05756 q^{13} +1.49024 q^{14} +2.04744 q^{15} -4.39287 q^{16} +7.64794 q^{17} +1.49024 q^{18} +3.24885 q^{19} +0.452102 q^{20} +1.00000 q^{21} -2.64557 q^{22} +6.77465 q^{23} -2.65141 q^{24} -0.807977 q^{25} -6.04673 q^{26} +1.00000 q^{27} +0.220813 q^{28} +6.90210 q^{29} +3.05118 q^{30} -1.66081 q^{31} -1.24359 q^{32} -1.77527 q^{33} +11.3973 q^{34} +2.04744 q^{35} +0.220813 q^{36} +9.03684 q^{37} +4.84157 q^{38} -4.05756 q^{39} -5.42862 q^{40} +9.40281 q^{41} +1.49024 q^{42} +2.27572 q^{43} -0.392001 q^{44} +2.04744 q^{45} +10.0958 q^{46} -1.14335 q^{47} -4.39287 q^{48} +1.00000 q^{49} -1.20408 q^{50} +7.64794 q^{51} -0.895961 q^{52} +0.909120 q^{53} +1.49024 q^{54} -3.63476 q^{55} -2.65141 q^{56} +3.24885 q^{57} +10.2858 q^{58} -0.510997 q^{59} +0.452102 q^{60} -14.6668 q^{61} -2.47501 q^{62} +1.00000 q^{63} +6.93248 q^{64} -8.30762 q^{65} -2.64557 q^{66} -0.730117 q^{67} +1.68876 q^{68} +6.77465 q^{69} +3.05118 q^{70} -2.37985 q^{71} -2.65141 q^{72} +3.42990 q^{73} +13.4671 q^{74} -0.807977 q^{75} +0.717389 q^{76} -1.77527 q^{77} -6.04673 q^{78} -7.04927 q^{79} -8.99415 q^{80} +1.00000 q^{81} +14.0124 q^{82} +1.32633 q^{83} +0.220813 q^{84} +15.6587 q^{85} +3.39137 q^{86} +6.90210 q^{87} +4.70696 q^{88} -3.63475 q^{89} +3.05118 q^{90} -4.05756 q^{91} +1.49593 q^{92} -1.66081 q^{93} -1.70387 q^{94} +6.65185 q^{95} -1.24359 q^{96} -9.35645 q^{97} +1.49024 q^{98} -1.77527 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 19 q + 4 q^{2} + 19 q^{3} + 22 q^{4} + 5 q^{5} + 4 q^{6} + 19 q^{7} + 9 q^{8} + 19 q^{9} - 9 q^{11} + 22 q^{12} + 24 q^{13} + 4 q^{14} + 5 q^{15} + 20 q^{16} + 17 q^{17} + 4 q^{18} + 23 q^{19} + 5 q^{20}+ \cdots - 9 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.49024 1.05376 0.526879 0.849940i \(-0.323362\pi\)
0.526879 + 0.849940i \(0.323362\pi\)
\(3\) 1.00000 0.577350
\(4\) 0.220813 0.110406
\(5\) 2.04744 0.915644 0.457822 0.889044i \(-0.348630\pi\)
0.457822 + 0.889044i \(0.348630\pi\)
\(6\) 1.49024 0.608388
\(7\) 1.00000 0.377964
\(8\) −2.65141 −0.937417
\(9\) 1.00000 0.333333
\(10\) 3.05118 0.964868
\(11\) −1.77527 −0.535263 −0.267631 0.963521i \(-0.586241\pi\)
−0.267631 + 0.963521i \(0.586241\pi\)
\(12\) 0.220813 0.0637431
\(13\) −4.05756 −1.12536 −0.562682 0.826673i \(-0.690231\pi\)
−0.562682 + 0.826673i \(0.690231\pi\)
\(14\) 1.49024 0.398283
\(15\) 2.04744 0.528648
\(16\) −4.39287 −1.09822
\(17\) 7.64794 1.85490 0.927449 0.373949i \(-0.121996\pi\)
0.927449 + 0.373949i \(0.121996\pi\)
\(18\) 1.49024 0.351253
\(19\) 3.24885 0.745338 0.372669 0.927964i \(-0.378443\pi\)
0.372669 + 0.927964i \(0.378443\pi\)
\(20\) 0.452102 0.101093
\(21\) 1.00000 0.218218
\(22\) −2.64557 −0.564037
\(23\) 6.77465 1.41261 0.706306 0.707906i \(-0.250360\pi\)
0.706306 + 0.707906i \(0.250360\pi\)
\(24\) −2.65141 −0.541218
\(25\) −0.807977 −0.161595
\(26\) −6.04673 −1.18586
\(27\) 1.00000 0.192450
\(28\) 0.220813 0.0417297
\(29\) 6.90210 1.28169 0.640844 0.767671i \(-0.278585\pi\)
0.640844 + 0.767671i \(0.278585\pi\)
\(30\) 3.05118 0.557067
\(31\) −1.66081 −0.298291 −0.149145 0.988815i \(-0.547652\pi\)
−0.149145 + 0.988815i \(0.547652\pi\)
\(32\) −1.24359 −0.219838
\(33\) −1.77527 −0.309034
\(34\) 11.3973 1.95461
\(35\) 2.04744 0.346081
\(36\) 0.220813 0.0368021
\(37\) 9.03684 1.48565 0.742824 0.669487i \(-0.233486\pi\)
0.742824 + 0.669487i \(0.233486\pi\)
\(38\) 4.84157 0.785406
\(39\) −4.05756 −0.649729
\(40\) −5.42862 −0.858340
\(41\) 9.40281 1.46847 0.734236 0.678894i \(-0.237540\pi\)
0.734236 + 0.678894i \(0.237540\pi\)
\(42\) 1.49024 0.229949
\(43\) 2.27572 0.347045 0.173522 0.984830i \(-0.444485\pi\)
0.173522 + 0.984830i \(0.444485\pi\)
\(44\) −0.392001 −0.0590964
\(45\) 2.04744 0.305215
\(46\) 10.0958 1.48855
\(47\) −1.14335 −0.166775 −0.0833875 0.996517i \(-0.526574\pi\)
−0.0833875 + 0.996517i \(0.526574\pi\)
\(48\) −4.39287 −0.634056
\(49\) 1.00000 0.142857
\(50\) −1.20408 −0.170282
\(51\) 7.64794 1.07093
\(52\) −0.895961 −0.124247
\(53\) 0.909120 0.124877 0.0624386 0.998049i \(-0.480112\pi\)
0.0624386 + 0.998049i \(0.480112\pi\)
\(54\) 1.49024 0.202796
\(55\) −3.63476 −0.490110
\(56\) −2.65141 −0.354310
\(57\) 3.24885 0.430321
\(58\) 10.2858 1.35059
\(59\) −0.510997 −0.0665261 −0.0332631 0.999447i \(-0.510590\pi\)
−0.0332631 + 0.999447i \(0.510590\pi\)
\(60\) 0.452102 0.0583661
\(61\) −14.6668 −1.87789 −0.938943 0.344074i \(-0.888193\pi\)
−0.938943 + 0.344074i \(0.888193\pi\)
\(62\) −2.47501 −0.314326
\(63\) 1.00000 0.125988
\(64\) 6.93248 0.866560
\(65\) −8.30762 −1.03043
\(66\) −2.64557 −0.325647
\(67\) −0.730117 −0.0891980 −0.0445990 0.999005i \(-0.514201\pi\)
−0.0445990 + 0.999005i \(0.514201\pi\)
\(68\) 1.68876 0.204793
\(69\) 6.77465 0.815572
\(70\) 3.05118 0.364686
\(71\) −2.37985 −0.282437 −0.141218 0.989978i \(-0.545102\pi\)
−0.141218 + 0.989978i \(0.545102\pi\)
\(72\) −2.65141 −0.312472
\(73\) 3.42990 0.401439 0.200720 0.979649i \(-0.435672\pi\)
0.200720 + 0.979649i \(0.435672\pi\)
\(74\) 13.4671 1.56551
\(75\) −0.807977 −0.0932971
\(76\) 0.717389 0.0822901
\(77\) −1.77527 −0.202310
\(78\) −6.04673 −0.684658
\(79\) −7.04927 −0.793104 −0.396552 0.918012i \(-0.629793\pi\)
−0.396552 + 0.918012i \(0.629793\pi\)
\(80\) −8.99415 −1.00558
\(81\) 1.00000 0.111111
\(82\) 14.0124 1.54741
\(83\) 1.32633 0.145584 0.0727920 0.997347i \(-0.476809\pi\)
0.0727920 + 0.997347i \(0.476809\pi\)
\(84\) 0.220813 0.0240926
\(85\) 15.6587 1.69843
\(86\) 3.39137 0.365701
\(87\) 6.90210 0.739982
\(88\) 4.70696 0.501764
\(89\) −3.63475 −0.385283 −0.192641 0.981269i \(-0.561705\pi\)
−0.192641 + 0.981269i \(0.561705\pi\)
\(90\) 3.05118 0.321623
\(91\) −4.05756 −0.425348
\(92\) 1.49593 0.155961
\(93\) −1.66081 −0.172218
\(94\) −1.70387 −0.175741
\(95\) 6.65185 0.682465
\(96\) −1.24359 −0.126924
\(97\) −9.35645 −0.950004 −0.475002 0.879985i \(-0.657553\pi\)
−0.475002 + 0.879985i \(0.657553\pi\)
\(98\) 1.49024 0.150537
\(99\) −1.77527 −0.178421
\(100\) −0.178412 −0.0178412
\(101\) 1.21116 0.120515 0.0602573 0.998183i \(-0.480808\pi\)
0.0602573 + 0.998183i \(0.480808\pi\)
\(102\) 11.3973 1.12850
\(103\) −8.69531 −0.856774 −0.428387 0.903595i \(-0.640918\pi\)
−0.428387 + 0.903595i \(0.640918\pi\)
\(104\) 10.7583 1.05494
\(105\) 2.04744 0.199810
\(106\) 1.35481 0.131590
\(107\) −17.3884 −1.68100 −0.840499 0.541813i \(-0.817738\pi\)
−0.840499 + 0.541813i \(0.817738\pi\)
\(108\) 0.220813 0.0212477
\(109\) 13.0624 1.25115 0.625576 0.780164i \(-0.284864\pi\)
0.625576 + 0.780164i \(0.284864\pi\)
\(110\) −5.41665 −0.516458
\(111\) 9.03684 0.857739
\(112\) −4.39287 −0.415087
\(113\) −12.6936 −1.19411 −0.597057 0.802199i \(-0.703663\pi\)
−0.597057 + 0.802199i \(0.703663\pi\)
\(114\) 4.84157 0.453455
\(115\) 13.8707 1.29345
\(116\) 1.52407 0.141506
\(117\) −4.05756 −0.375121
\(118\) −0.761508 −0.0701025
\(119\) 7.64794 0.701086
\(120\) −5.42862 −0.495563
\(121\) −7.84843 −0.713494
\(122\) −21.8570 −1.97884
\(123\) 9.40281 0.847823
\(124\) −0.366729 −0.0329332
\(125\) −11.8915 −1.06361
\(126\) 1.49024 0.132761
\(127\) 1.00000 0.0887357
\(128\) 12.8182 1.13298
\(129\) 2.27572 0.200366
\(130\) −12.3803 −1.08583
\(131\) −10.1857 −0.889928 −0.444964 0.895548i \(-0.646784\pi\)
−0.444964 + 0.895548i \(0.646784\pi\)
\(132\) −0.392001 −0.0341193
\(133\) 3.24885 0.281711
\(134\) −1.08805 −0.0939931
\(135\) 2.04744 0.176216
\(136\) −20.2779 −1.73881
\(137\) 5.48349 0.468486 0.234243 0.972178i \(-0.424739\pi\)
0.234243 + 0.972178i \(0.424739\pi\)
\(138\) 10.0958 0.859416
\(139\) −9.95792 −0.844620 −0.422310 0.906451i \(-0.638781\pi\)
−0.422310 + 0.906451i \(0.638781\pi\)
\(140\) 0.452102 0.0382096
\(141\) −1.14335 −0.0962876
\(142\) −3.54655 −0.297620
\(143\) 7.20324 0.602366
\(144\) −4.39287 −0.366072
\(145\) 14.1317 1.17357
\(146\) 5.11137 0.423020
\(147\) 1.00000 0.0824786
\(148\) 1.99545 0.164025
\(149\) −4.47456 −0.366571 −0.183285 0.983060i \(-0.558673\pi\)
−0.183285 + 0.983060i \(0.558673\pi\)
\(150\) −1.20408 −0.0983126
\(151\) −14.0817 −1.14595 −0.572977 0.819571i \(-0.694212\pi\)
−0.572977 + 0.819571i \(0.694212\pi\)
\(152\) −8.61406 −0.698693
\(153\) 7.64794 0.618300
\(154\) −2.64557 −0.213186
\(155\) −3.40042 −0.273128
\(156\) −0.895961 −0.0717343
\(157\) −5.58675 −0.445871 −0.222936 0.974833i \(-0.571564\pi\)
−0.222936 + 0.974833i \(0.571564\pi\)
\(158\) −10.5051 −0.835740
\(159\) 0.909120 0.0720979
\(160\) −2.54619 −0.201294
\(161\) 6.77465 0.533917
\(162\) 1.49024 0.117084
\(163\) −12.1815 −0.954127 −0.477064 0.878869i \(-0.658299\pi\)
−0.477064 + 0.878869i \(0.658299\pi\)
\(164\) 2.07626 0.162129
\(165\) −3.63476 −0.282965
\(166\) 1.97655 0.153410
\(167\) 6.23754 0.482676 0.241338 0.970441i \(-0.422414\pi\)
0.241338 + 0.970441i \(0.422414\pi\)
\(168\) −2.65141 −0.204561
\(169\) 3.46378 0.266445
\(170\) 23.3353 1.78973
\(171\) 3.24885 0.248446
\(172\) 0.502509 0.0383159
\(173\) −13.5405 −1.02946 −0.514731 0.857352i \(-0.672108\pi\)
−0.514731 + 0.857352i \(0.672108\pi\)
\(174\) 10.2858 0.779763
\(175\) −0.807977 −0.0610773
\(176\) 7.79851 0.587834
\(177\) −0.510997 −0.0384089
\(178\) −5.41664 −0.405995
\(179\) 10.0729 0.752887 0.376443 0.926440i \(-0.377147\pi\)
0.376443 + 0.926440i \(0.377147\pi\)
\(180\) 0.452102 0.0336977
\(181\) 15.0581 1.11926 0.559630 0.828742i \(-0.310943\pi\)
0.559630 + 0.828742i \(0.310943\pi\)
\(182\) −6.04673 −0.448214
\(183\) −14.6668 −1.08420
\(184\) −17.9624 −1.32421
\(185\) 18.5024 1.36032
\(186\) −2.47501 −0.181476
\(187\) −13.5771 −0.992858
\(188\) −0.252467 −0.0184130
\(189\) 1.00000 0.0727393
\(190\) 9.91284 0.719153
\(191\) 4.76684 0.344916 0.172458 0.985017i \(-0.444829\pi\)
0.172458 + 0.985017i \(0.444829\pi\)
\(192\) 6.93248 0.500309
\(193\) −7.71655 −0.555449 −0.277725 0.960661i \(-0.589580\pi\)
−0.277725 + 0.960661i \(0.589580\pi\)
\(194\) −13.9434 −1.00107
\(195\) −8.30762 −0.594921
\(196\) 0.220813 0.0157723
\(197\) −2.00654 −0.142960 −0.0714799 0.997442i \(-0.522772\pi\)
−0.0714799 + 0.997442i \(0.522772\pi\)
\(198\) −2.64557 −0.188012
\(199\) 11.5326 0.817525 0.408762 0.912641i \(-0.365960\pi\)
0.408762 + 0.912641i \(0.365960\pi\)
\(200\) 2.14228 0.151482
\(201\) −0.730117 −0.0514985
\(202\) 1.80491 0.126993
\(203\) 6.90210 0.484432
\(204\) 1.68876 0.118237
\(205\) 19.2517 1.34460
\(206\) −12.9581 −0.902833
\(207\) 6.77465 0.470871
\(208\) 17.8243 1.23589
\(209\) −5.76758 −0.398952
\(210\) 3.05118 0.210551
\(211\) 20.5078 1.41181 0.705906 0.708306i \(-0.250540\pi\)
0.705906 + 0.708306i \(0.250540\pi\)
\(212\) 0.200745 0.0137872
\(213\) −2.37985 −0.163065
\(214\) −25.9129 −1.77137
\(215\) 4.65942 0.317769
\(216\) −2.65141 −0.180406
\(217\) −1.66081 −0.112743
\(218\) 19.4661 1.31841
\(219\) 3.42990 0.231771
\(220\) −0.802600 −0.0541113
\(221\) −31.0320 −2.08744
\(222\) 13.4671 0.903849
\(223\) −1.44549 −0.0967969 −0.0483985 0.998828i \(-0.515412\pi\)
−0.0483985 + 0.998828i \(0.515412\pi\)
\(224\) −1.24359 −0.0830911
\(225\) −0.807977 −0.0538651
\(226\) −18.9165 −1.25831
\(227\) 23.4362 1.55551 0.777757 0.628565i \(-0.216357\pi\)
0.777757 + 0.628565i \(0.216357\pi\)
\(228\) 0.717389 0.0475102
\(229\) 17.5045 1.15673 0.578364 0.815779i \(-0.303691\pi\)
0.578364 + 0.815779i \(0.303691\pi\)
\(230\) 20.6707 1.36298
\(231\) −1.77527 −0.116804
\(232\) −18.3003 −1.20147
\(233\) 24.5272 1.60683 0.803415 0.595419i \(-0.203014\pi\)
0.803415 + 0.595419i \(0.203014\pi\)
\(234\) −6.04673 −0.395287
\(235\) −2.34095 −0.152707
\(236\) −0.112835 −0.00734491
\(237\) −7.04927 −0.457899
\(238\) 11.3973 0.738775
\(239\) 12.9074 0.834908 0.417454 0.908698i \(-0.362923\pi\)
0.417454 + 0.908698i \(0.362923\pi\)
\(240\) −8.99415 −0.580570
\(241\) −17.5870 −1.13288 −0.566440 0.824103i \(-0.691680\pi\)
−0.566440 + 0.824103i \(0.691680\pi\)
\(242\) −11.6960 −0.751850
\(243\) 1.00000 0.0641500
\(244\) −3.23861 −0.207330
\(245\) 2.04744 0.130806
\(246\) 14.0124 0.893400
\(247\) −13.1824 −0.838777
\(248\) 4.40350 0.279623
\(249\) 1.32633 0.0840530
\(250\) −17.7212 −1.12079
\(251\) 10.2258 0.645445 0.322722 0.946494i \(-0.395402\pi\)
0.322722 + 0.946494i \(0.395402\pi\)
\(252\) 0.220813 0.0139099
\(253\) −12.0268 −0.756119
\(254\) 1.49024 0.0935059
\(255\) 15.6587 0.980588
\(256\) 5.23728 0.327330
\(257\) 13.1251 0.818723 0.409361 0.912372i \(-0.365752\pi\)
0.409361 + 0.912372i \(0.365752\pi\)
\(258\) 3.39137 0.211138
\(259\) 9.03684 0.561522
\(260\) −1.83443 −0.113766
\(261\) 6.90210 0.427229
\(262\) −15.1791 −0.937769
\(263\) −6.65987 −0.410665 −0.205333 0.978692i \(-0.565828\pi\)
−0.205333 + 0.978692i \(0.565828\pi\)
\(264\) 4.70696 0.289694
\(265\) 1.86137 0.114343
\(266\) 4.84157 0.296856
\(267\) −3.63475 −0.222443
\(268\) −0.161219 −0.00984802
\(269\) 7.74043 0.471942 0.235971 0.971760i \(-0.424173\pi\)
0.235971 + 0.971760i \(0.424173\pi\)
\(270\) 3.05118 0.185689
\(271\) 6.03897 0.366842 0.183421 0.983034i \(-0.441283\pi\)
0.183421 + 0.983034i \(0.441283\pi\)
\(272\) −33.5964 −2.03708
\(273\) −4.05756 −0.245575
\(274\) 8.17171 0.493671
\(275\) 1.43437 0.0864959
\(276\) 1.49593 0.0900444
\(277\) −22.9334 −1.37794 −0.688968 0.724792i \(-0.741936\pi\)
−0.688968 + 0.724792i \(0.741936\pi\)
\(278\) −14.8397 −0.890025
\(279\) −1.66081 −0.0994302
\(280\) −5.42862 −0.324422
\(281\) −25.2804 −1.50810 −0.754052 0.656814i \(-0.771904\pi\)
−0.754052 + 0.656814i \(0.771904\pi\)
\(282\) −1.70387 −0.101464
\(283\) −13.0595 −0.776308 −0.388154 0.921594i \(-0.626887\pi\)
−0.388154 + 0.921594i \(0.626887\pi\)
\(284\) −0.525502 −0.0311828
\(285\) 6.65185 0.394021
\(286\) 10.7346 0.634748
\(287\) 9.40281 0.555030
\(288\) −1.24359 −0.0732795
\(289\) 41.4910 2.44065
\(290\) 21.0595 1.23666
\(291\) −9.35645 −0.548485
\(292\) 0.757366 0.0443215
\(293\) −3.00348 −0.175465 −0.0877327 0.996144i \(-0.527962\pi\)
−0.0877327 + 0.996144i \(0.527962\pi\)
\(294\) 1.49024 0.0869125
\(295\) −1.04624 −0.0609143
\(296\) −23.9604 −1.39267
\(297\) −1.77527 −0.103011
\(298\) −6.66817 −0.386277
\(299\) −27.4885 −1.58970
\(300\) −0.178412 −0.0103006
\(301\) 2.27572 0.131171
\(302\) −20.9851 −1.20756
\(303\) 1.21116 0.0695791
\(304\) −14.2718 −0.818543
\(305\) −30.0293 −1.71947
\(306\) 11.3973 0.651538
\(307\) 2.33304 0.133153 0.0665767 0.997781i \(-0.478792\pi\)
0.0665767 + 0.997781i \(0.478792\pi\)
\(308\) −0.392001 −0.0223363
\(309\) −8.69531 −0.494659
\(310\) −5.06744 −0.287811
\(311\) −0.675512 −0.0383047 −0.0191524 0.999817i \(-0.506097\pi\)
−0.0191524 + 0.999817i \(0.506097\pi\)
\(312\) 10.7583 0.609067
\(313\) −6.63228 −0.374879 −0.187439 0.982276i \(-0.560019\pi\)
−0.187439 + 0.982276i \(0.560019\pi\)
\(314\) −8.32560 −0.469841
\(315\) 2.04744 0.115360
\(316\) −1.55657 −0.0875638
\(317\) −4.68652 −0.263221 −0.131611 0.991301i \(-0.542015\pi\)
−0.131611 + 0.991301i \(0.542015\pi\)
\(318\) 1.35481 0.0759737
\(319\) −12.2531 −0.686039
\(320\) 14.1939 0.793461
\(321\) −17.3884 −0.970525
\(322\) 10.0958 0.562620
\(323\) 24.8471 1.38253
\(324\) 0.220813 0.0122674
\(325\) 3.27841 0.181854
\(326\) −18.1533 −1.00542
\(327\) 13.0624 0.722352
\(328\) −24.9308 −1.37657
\(329\) −1.14335 −0.0630350
\(330\) −5.41665 −0.298177
\(331\) −6.07509 −0.333917 −0.166959 0.985964i \(-0.553395\pi\)
−0.166959 + 0.985964i \(0.553395\pi\)
\(332\) 0.292871 0.0160734
\(333\) 9.03684 0.495216
\(334\) 9.29543 0.508623
\(335\) −1.49487 −0.0816736
\(336\) −4.39287 −0.239651
\(337\) 5.31829 0.289706 0.144853 0.989453i \(-0.453729\pi\)
0.144853 + 0.989453i \(0.453729\pi\)
\(338\) 5.16187 0.280769
\(339\) −12.6936 −0.689422
\(340\) 3.45765 0.187517
\(341\) 2.94838 0.159664
\(342\) 4.84157 0.261802
\(343\) 1.00000 0.0539949
\(344\) −6.03389 −0.325325
\(345\) 13.8707 0.746774
\(346\) −20.1785 −1.08480
\(347\) −14.5110 −0.778993 −0.389496 0.921028i \(-0.627351\pi\)
−0.389496 + 0.921028i \(0.627351\pi\)
\(348\) 1.52407 0.0816988
\(349\) 19.6940 1.05419 0.527097 0.849805i \(-0.323281\pi\)
0.527097 + 0.849805i \(0.323281\pi\)
\(350\) −1.20408 −0.0643607
\(351\) −4.05756 −0.216576
\(352\) 2.20771 0.117671
\(353\) 17.7743 0.946033 0.473016 0.881054i \(-0.343165\pi\)
0.473016 + 0.881054i \(0.343165\pi\)
\(354\) −0.761508 −0.0404737
\(355\) −4.87262 −0.258612
\(356\) −0.802599 −0.0425376
\(357\) 7.64794 0.404772
\(358\) 15.0111 0.793360
\(359\) −14.7077 −0.776245 −0.388123 0.921608i \(-0.626876\pi\)
−0.388123 + 0.921608i \(0.626876\pi\)
\(360\) −5.42862 −0.286113
\(361\) −8.44494 −0.444471
\(362\) 22.4402 1.17943
\(363\) −7.84843 −0.411936
\(364\) −0.895961 −0.0469611
\(365\) 7.02252 0.367576
\(366\) −21.8570 −1.14248
\(367\) −13.9272 −0.726995 −0.363498 0.931595i \(-0.618417\pi\)
−0.363498 + 0.931595i \(0.618417\pi\)
\(368\) −29.7601 −1.55135
\(369\) 9.40281 0.489491
\(370\) 27.5730 1.43345
\(371\) 0.909120 0.0471991
\(372\) −0.366729 −0.0190140
\(373\) 29.6120 1.53325 0.766627 0.642093i \(-0.221934\pi\)
0.766627 + 0.642093i \(0.221934\pi\)
\(374\) −20.2332 −1.04623
\(375\) −11.8915 −0.614075
\(376\) 3.03150 0.156338
\(377\) −28.0057 −1.44237
\(378\) 1.49024 0.0766496
\(379\) −16.3108 −0.837829 −0.418914 0.908026i \(-0.637589\pi\)
−0.418914 + 0.908026i \(0.637589\pi\)
\(380\) 1.46881 0.0753485
\(381\) 1.00000 0.0512316
\(382\) 7.10373 0.363458
\(383\) −30.7897 −1.57328 −0.786640 0.617412i \(-0.788181\pi\)
−0.786640 + 0.617412i \(0.788181\pi\)
\(384\) 12.8182 0.654128
\(385\) −3.63476 −0.185244
\(386\) −11.4995 −0.585309
\(387\) 2.27572 0.115682
\(388\) −2.06602 −0.104886
\(389\) 3.20667 0.162585 0.0812923 0.996690i \(-0.474095\pi\)
0.0812923 + 0.996690i \(0.474095\pi\)
\(390\) −12.3803 −0.626903
\(391\) 51.8121 2.62025
\(392\) −2.65141 −0.133917
\(393\) −10.1857 −0.513800
\(394\) −2.99022 −0.150645
\(395\) −14.4330 −0.726202
\(396\) −0.392001 −0.0196988
\(397\) 34.4082 1.72690 0.863449 0.504435i \(-0.168299\pi\)
0.863449 + 0.504435i \(0.168299\pi\)
\(398\) 17.1863 0.861474
\(399\) 3.24885 0.162646
\(400\) 3.54933 0.177467
\(401\) −6.69898 −0.334531 −0.167266 0.985912i \(-0.553494\pi\)
−0.167266 + 0.985912i \(0.553494\pi\)
\(402\) −1.08805 −0.0542669
\(403\) 6.73884 0.335686
\(404\) 0.267439 0.0133056
\(405\) 2.04744 0.101738
\(406\) 10.2858 0.510474
\(407\) −16.0428 −0.795212
\(408\) −20.2779 −1.00390
\(409\) −28.8318 −1.42564 −0.712820 0.701347i \(-0.752582\pi\)
−0.712820 + 0.701347i \(0.752582\pi\)
\(410\) 28.6897 1.41688
\(411\) 5.48349 0.270481
\(412\) −1.92003 −0.0945933
\(413\) −0.510997 −0.0251445
\(414\) 10.0958 0.496184
\(415\) 2.71559 0.133303
\(416\) 5.04595 0.247398
\(417\) −9.95792 −0.487642
\(418\) −8.59507 −0.420399
\(419\) 26.8706 1.31272 0.656358 0.754450i \(-0.272096\pi\)
0.656358 + 0.754450i \(0.272096\pi\)
\(420\) 0.452102 0.0220603
\(421\) 35.8612 1.74777 0.873884 0.486135i \(-0.161594\pi\)
0.873884 + 0.486135i \(0.161594\pi\)
\(422\) 30.5615 1.48771
\(423\) −1.14335 −0.0555917
\(424\) −2.41045 −0.117062
\(425\) −6.17936 −0.299743
\(426\) −3.54655 −0.171831
\(427\) −14.6668 −0.709774
\(428\) −3.83958 −0.185593
\(429\) 7.20324 0.347776
\(430\) 6.94364 0.334852
\(431\) −25.9119 −1.24813 −0.624066 0.781372i \(-0.714520\pi\)
−0.624066 + 0.781372i \(0.714520\pi\)
\(432\) −4.39287 −0.211352
\(433\) 17.2601 0.829468 0.414734 0.909943i \(-0.363875\pi\)
0.414734 + 0.909943i \(0.363875\pi\)
\(434\) −2.47501 −0.118804
\(435\) 14.1317 0.677561
\(436\) 2.88434 0.138135
\(437\) 22.0099 1.05287
\(438\) 5.11137 0.244231
\(439\) 32.7590 1.56350 0.781752 0.623590i \(-0.214327\pi\)
0.781752 + 0.623590i \(0.214327\pi\)
\(440\) 9.63724 0.459438
\(441\) 1.00000 0.0476190
\(442\) −46.2451 −2.19965
\(443\) −25.1899 −1.19681 −0.598404 0.801195i \(-0.704198\pi\)
−0.598404 + 0.801195i \(0.704198\pi\)
\(444\) 1.99545 0.0946998
\(445\) −7.44194 −0.352782
\(446\) −2.15412 −0.102001
\(447\) −4.47456 −0.211640
\(448\) 6.93248 0.327529
\(449\) −38.5015 −1.81700 −0.908500 0.417885i \(-0.862771\pi\)
−0.908500 + 0.417885i \(0.862771\pi\)
\(450\) −1.20408 −0.0567608
\(451\) −16.6925 −0.786018
\(452\) −2.80291 −0.131838
\(453\) −14.0817 −0.661617
\(454\) 34.9255 1.63914
\(455\) −8.30762 −0.389467
\(456\) −8.61406 −0.403390
\(457\) −23.8848 −1.11729 −0.558643 0.829408i \(-0.688678\pi\)
−0.558643 + 0.829408i \(0.688678\pi\)
\(458\) 26.0859 1.21891
\(459\) 7.64794 0.356975
\(460\) 3.06283 0.142805
\(461\) −22.5033 −1.04808 −0.524041 0.851693i \(-0.675576\pi\)
−0.524041 + 0.851693i \(0.675576\pi\)
\(462\) −2.64557 −0.123083
\(463\) −7.25600 −0.337215 −0.168607 0.985683i \(-0.553927\pi\)
−0.168607 + 0.985683i \(0.553927\pi\)
\(464\) −30.3200 −1.40757
\(465\) −3.40042 −0.157691
\(466\) 36.5514 1.69321
\(467\) −3.02312 −0.139893 −0.0699465 0.997551i \(-0.522283\pi\)
−0.0699465 + 0.997551i \(0.522283\pi\)
\(468\) −0.895961 −0.0414158
\(469\) −0.730117 −0.0337137
\(470\) −3.48857 −0.160916
\(471\) −5.58675 −0.257424
\(472\) 1.35486 0.0623627
\(473\) −4.04001 −0.185760
\(474\) −10.5051 −0.482515
\(475\) −2.62500 −0.120443
\(476\) 1.68876 0.0774043
\(477\) 0.909120 0.0416257
\(478\) 19.2351 0.879791
\(479\) 12.8660 0.587862 0.293931 0.955827i \(-0.405036\pi\)
0.293931 + 0.955827i \(0.405036\pi\)
\(480\) −2.54619 −0.116217
\(481\) −36.6675 −1.67189
\(482\) −26.2089 −1.19378
\(483\) 6.77465 0.308257
\(484\) −1.73303 −0.0787743
\(485\) −19.1568 −0.869866
\(486\) 1.49024 0.0675986
\(487\) −38.6527 −1.75152 −0.875761 0.482745i \(-0.839640\pi\)
−0.875761 + 0.482745i \(0.839640\pi\)
\(488\) 38.8876 1.76036
\(489\) −12.1815 −0.550866
\(490\) 3.05118 0.137838
\(491\) −17.5142 −0.790404 −0.395202 0.918594i \(-0.629325\pi\)
−0.395202 + 0.918594i \(0.629325\pi\)
\(492\) 2.07626 0.0936051
\(493\) 52.7869 2.37740
\(494\) −19.6450 −0.883868
\(495\) −3.63476 −0.163370
\(496\) 7.29573 0.327588
\(497\) −2.37985 −0.106751
\(498\) 1.97655 0.0885715
\(499\) 8.34272 0.373471 0.186736 0.982410i \(-0.440209\pi\)
0.186736 + 0.982410i \(0.440209\pi\)
\(500\) −2.62580 −0.117429
\(501\) 6.23754 0.278673
\(502\) 15.2388 0.680143
\(503\) −20.6604 −0.921203 −0.460602 0.887607i \(-0.652366\pi\)
−0.460602 + 0.887607i \(0.652366\pi\)
\(504\) −2.65141 −0.118103
\(505\) 2.47977 0.110349
\(506\) −17.9228 −0.796766
\(507\) 3.46378 0.153832
\(508\) 0.220813 0.00979698
\(509\) −23.3833 −1.03644 −0.518222 0.855246i \(-0.673406\pi\)
−0.518222 + 0.855246i \(0.673406\pi\)
\(510\) 23.3353 1.03330
\(511\) 3.42990 0.151730
\(512\) −17.8317 −0.788056
\(513\) 3.24885 0.143440
\(514\) 19.5596 0.862736
\(515\) −17.8031 −0.784500
\(516\) 0.502509 0.0221217
\(517\) 2.02975 0.0892684
\(518\) 13.4671 0.591708
\(519\) −13.5405 −0.594360
\(520\) 22.0269 0.965946
\(521\) 17.6114 0.771568 0.385784 0.922589i \(-0.373931\pi\)
0.385784 + 0.922589i \(0.373931\pi\)
\(522\) 10.2858 0.450196
\(523\) −26.6248 −1.16422 −0.582110 0.813110i \(-0.697773\pi\)
−0.582110 + 0.813110i \(0.697773\pi\)
\(524\) −2.24913 −0.0982538
\(525\) −0.807977 −0.0352630
\(526\) −9.92481 −0.432742
\(527\) −12.7018 −0.553299
\(528\) 7.79851 0.339386
\(529\) 22.8959 0.995474
\(530\) 2.77389 0.120490
\(531\) −0.510997 −0.0221754
\(532\) 0.717389 0.0311027
\(533\) −38.1525 −1.65257
\(534\) −5.41664 −0.234401
\(535\) −35.6017 −1.53920
\(536\) 1.93584 0.0836157
\(537\) 10.0729 0.434679
\(538\) 11.5351 0.497313
\(539\) −1.77527 −0.0764661
\(540\) 0.452102 0.0194554
\(541\) 27.4985 1.18225 0.591126 0.806579i \(-0.298684\pi\)
0.591126 + 0.806579i \(0.298684\pi\)
\(542\) 8.99952 0.386562
\(543\) 15.0581 0.646206
\(544\) −9.51094 −0.407778
\(545\) 26.7445 1.14561
\(546\) −6.04673 −0.258776
\(547\) 10.0299 0.428846 0.214423 0.976741i \(-0.431213\pi\)
0.214423 + 0.976741i \(0.431213\pi\)
\(548\) 1.21082 0.0517239
\(549\) −14.6668 −0.625962
\(550\) 2.13756 0.0911458
\(551\) 22.4239 0.955291
\(552\) −17.9624 −0.764531
\(553\) −7.04927 −0.299765
\(554\) −34.1763 −1.45201
\(555\) 18.5024 0.785384
\(556\) −2.19884 −0.0932514
\(557\) −32.2636 −1.36705 −0.683527 0.729925i \(-0.739555\pi\)
−0.683527 + 0.729925i \(0.739555\pi\)
\(558\) −2.47501 −0.104775
\(559\) −9.23388 −0.390552
\(560\) −8.99415 −0.380072
\(561\) −13.5771 −0.573227
\(562\) −37.6739 −1.58918
\(563\) 5.87677 0.247676 0.123838 0.992302i \(-0.460480\pi\)
0.123838 + 0.992302i \(0.460480\pi\)
\(564\) −0.252467 −0.0106308
\(565\) −25.9894 −1.09338
\(566\) −19.4618 −0.818041
\(567\) 1.00000 0.0419961
\(568\) 6.30998 0.264761
\(569\) −33.2432 −1.39363 −0.696813 0.717253i \(-0.745399\pi\)
−0.696813 + 0.717253i \(0.745399\pi\)
\(570\) 9.91284 0.415203
\(571\) 43.6479 1.82661 0.913305 0.407277i \(-0.133522\pi\)
0.913305 + 0.407277i \(0.133522\pi\)
\(572\) 1.59057 0.0665050
\(573\) 4.76684 0.199138
\(574\) 14.0124 0.584868
\(575\) −5.47376 −0.228272
\(576\) 6.93248 0.288853
\(577\) −11.2681 −0.469099 −0.234549 0.972104i \(-0.575361\pi\)
−0.234549 + 0.972104i \(0.575361\pi\)
\(578\) 61.8316 2.57185
\(579\) −7.71655 −0.320689
\(580\) 3.12045 0.129570
\(581\) 1.32633 0.0550256
\(582\) −13.9434 −0.577971
\(583\) −1.61393 −0.0668421
\(584\) −9.09409 −0.376316
\(585\) −8.30762 −0.343478
\(586\) −4.47591 −0.184898
\(587\) −11.3396 −0.468037 −0.234018 0.972232i \(-0.575188\pi\)
−0.234018 + 0.972232i \(0.575188\pi\)
\(588\) 0.220813 0.00910616
\(589\) −5.39574 −0.222328
\(590\) −1.55914 −0.0641889
\(591\) −2.00654 −0.0825379
\(592\) −39.6976 −1.63156
\(593\) 12.6697 0.520283 0.260141 0.965571i \(-0.416231\pi\)
0.260141 + 0.965571i \(0.416231\pi\)
\(594\) −2.64557 −0.108549
\(595\) 15.6587 0.641945
\(596\) −0.988041 −0.0404717
\(597\) 11.5326 0.471998
\(598\) −40.9645 −1.67516
\(599\) 11.1486 0.455520 0.227760 0.973717i \(-0.426860\pi\)
0.227760 + 0.973717i \(0.426860\pi\)
\(600\) 2.14228 0.0874583
\(601\) 35.8081 1.46064 0.730322 0.683104i \(-0.239370\pi\)
0.730322 + 0.683104i \(0.239370\pi\)
\(602\) 3.39137 0.138222
\(603\) −0.730117 −0.0297327
\(604\) −3.10942 −0.126521
\(605\) −16.0692 −0.653307
\(606\) 1.80491 0.0733196
\(607\) −5.95533 −0.241719 −0.120860 0.992670i \(-0.538565\pi\)
−0.120860 + 0.992670i \(0.538565\pi\)
\(608\) −4.04026 −0.163854
\(609\) 6.90210 0.279687
\(610\) −44.7509 −1.81191
\(611\) 4.63922 0.187683
\(612\) 1.68876 0.0682642
\(613\) 17.0813 0.689908 0.344954 0.938620i \(-0.387894\pi\)
0.344954 + 0.938620i \(0.387894\pi\)
\(614\) 3.47678 0.140311
\(615\) 19.2517 0.776304
\(616\) 4.70696 0.189649
\(617\) 23.2365 0.935465 0.467732 0.883870i \(-0.345071\pi\)
0.467732 + 0.883870i \(0.345071\pi\)
\(618\) −12.9581 −0.521251
\(619\) −48.1408 −1.93494 −0.967470 0.252984i \(-0.918588\pi\)
−0.967470 + 0.252984i \(0.918588\pi\)
\(620\) −0.750856 −0.0301551
\(621\) 6.77465 0.271857
\(622\) −1.00667 −0.0403639
\(623\) −3.63475 −0.145623
\(624\) 17.8243 0.713544
\(625\) −20.3073 −0.812292
\(626\) −9.88369 −0.395032
\(627\) −5.76758 −0.230335
\(628\) −1.23363 −0.0492270
\(629\) 69.1132 2.75573
\(630\) 3.05118 0.121562
\(631\) −18.0853 −0.719963 −0.359982 0.932959i \(-0.617217\pi\)
−0.359982 + 0.932959i \(0.617217\pi\)
\(632\) 18.6905 0.743469
\(633\) 20.5078 0.815110
\(634\) −6.98403 −0.277371
\(635\) 2.04744 0.0812503
\(636\) 0.200745 0.00796007
\(637\) −4.05756 −0.160766
\(638\) −18.2600 −0.722920
\(639\) −2.37985 −0.0941456
\(640\) 26.2446 1.03741
\(641\) −12.7420 −0.503280 −0.251640 0.967821i \(-0.580970\pi\)
−0.251640 + 0.967821i \(0.580970\pi\)
\(642\) −25.9129 −1.02270
\(643\) −4.19773 −0.165542 −0.0827712 0.996569i \(-0.526377\pi\)
−0.0827712 + 0.996569i \(0.526377\pi\)
\(644\) 1.49593 0.0589479
\(645\) 4.65942 0.183464
\(646\) 37.0281 1.45685
\(647\) −21.9409 −0.862587 −0.431293 0.902212i \(-0.641943\pi\)
−0.431293 + 0.902212i \(0.641943\pi\)
\(648\) −2.65141 −0.104157
\(649\) 0.907155 0.0356090
\(650\) 4.88562 0.191630
\(651\) −1.66081 −0.0650924
\(652\) −2.68983 −0.105342
\(653\) −1.77511 −0.0694654 −0.0347327 0.999397i \(-0.511058\pi\)
−0.0347327 + 0.999397i \(0.511058\pi\)
\(654\) 19.4661 0.761185
\(655\) −20.8546 −0.814858
\(656\) −41.3053 −1.61270
\(657\) 3.42990 0.133813
\(658\) −1.70387 −0.0664237
\(659\) −14.8065 −0.576780 −0.288390 0.957513i \(-0.593120\pi\)
−0.288390 + 0.957513i \(0.593120\pi\)
\(660\) −0.802600 −0.0312412
\(661\) −22.5004 −0.875164 −0.437582 0.899179i \(-0.644165\pi\)
−0.437582 + 0.899179i \(0.644165\pi\)
\(662\) −9.05334 −0.351868
\(663\) −31.0320 −1.20518
\(664\) −3.51666 −0.136473
\(665\) 6.65185 0.257947
\(666\) 13.4671 0.521838
\(667\) 46.7593 1.81053
\(668\) 1.37733 0.0532905
\(669\) −1.44549 −0.0558857
\(670\) −2.22772 −0.0860643
\(671\) 26.0374 1.00516
\(672\) −1.24359 −0.0479727
\(673\) 32.2028 1.24133 0.620663 0.784077i \(-0.286864\pi\)
0.620663 + 0.784077i \(0.286864\pi\)
\(674\) 7.92553 0.305280
\(675\) −0.807977 −0.0310990
\(676\) 0.764848 0.0294172
\(677\) 38.5853 1.48296 0.741478 0.670978i \(-0.234125\pi\)
0.741478 + 0.670978i \(0.234125\pi\)
\(678\) −18.9165 −0.726484
\(679\) −9.35645 −0.359068
\(680\) −41.5178 −1.59213
\(681\) 23.4362 0.898077
\(682\) 4.39380 0.168247
\(683\) 37.7291 1.44366 0.721831 0.692069i \(-0.243301\pi\)
0.721831 + 0.692069i \(0.243301\pi\)
\(684\) 0.717389 0.0274300
\(685\) 11.2271 0.428967
\(686\) 1.49024 0.0568976
\(687\) 17.5045 0.667837
\(688\) −9.99695 −0.381130
\(689\) −3.68881 −0.140532
\(690\) 20.6707 0.786919
\(691\) 40.9255 1.55688 0.778439 0.627720i \(-0.216012\pi\)
0.778439 + 0.627720i \(0.216012\pi\)
\(692\) −2.98991 −0.113659
\(693\) −1.77527 −0.0674368
\(694\) −21.6249 −0.820870
\(695\) −20.3883 −0.773372
\(696\) −18.3003 −0.693672
\(697\) 71.9122 2.72387
\(698\) 29.3487 1.11087
\(699\) 24.5272 0.927704
\(700\) −0.178412 −0.00674332
\(701\) 18.9250 0.714788 0.357394 0.933954i \(-0.383665\pi\)
0.357394 + 0.933954i \(0.383665\pi\)
\(702\) −6.04673 −0.228219
\(703\) 29.3594 1.10731
\(704\) −12.3070 −0.463837
\(705\) −2.34095 −0.0881652
\(706\) 26.4880 0.996890
\(707\) 1.21116 0.0455502
\(708\) −0.112835 −0.00424059
\(709\) −9.73734 −0.365693 −0.182847 0.983141i \(-0.558531\pi\)
−0.182847 + 0.983141i \(0.558531\pi\)
\(710\) −7.26136 −0.272514
\(711\) −7.04927 −0.264368
\(712\) 9.63722 0.361170
\(713\) −11.2514 −0.421369
\(714\) 11.3973 0.426532
\(715\) 14.7482 0.551553
\(716\) 2.22423 0.0831235
\(717\) 12.9074 0.482034
\(718\) −21.9181 −0.817975
\(719\) −33.4897 −1.24896 −0.624478 0.781042i \(-0.714688\pi\)
−0.624478 + 0.781042i \(0.714688\pi\)
\(720\) −8.99415 −0.335192
\(721\) −8.69531 −0.323830
\(722\) −12.5850 −0.468365
\(723\) −17.5870 −0.654069
\(724\) 3.32502 0.123574
\(725\) −5.57673 −0.207115
\(726\) −11.6960 −0.434081
\(727\) 7.63222 0.283063 0.141532 0.989934i \(-0.454797\pi\)
0.141532 + 0.989934i \(0.454797\pi\)
\(728\) 10.7583 0.398728
\(729\) 1.00000 0.0370370
\(730\) 10.4652 0.387336
\(731\) 17.4046 0.643733
\(732\) −3.23861 −0.119702
\(733\) 41.0907 1.51772 0.758859 0.651254i \(-0.225757\pi\)
0.758859 + 0.651254i \(0.225757\pi\)
\(734\) −20.7549 −0.766077
\(735\) 2.04744 0.0755211
\(736\) −8.42491 −0.310546
\(737\) 1.29615 0.0477443
\(738\) 14.0124 0.515805
\(739\) −40.6018 −1.49356 −0.746781 0.665070i \(-0.768402\pi\)
−0.746781 + 0.665070i \(0.768402\pi\)
\(740\) 4.08557 0.150189
\(741\) −13.1824 −0.484268
\(742\) 1.35481 0.0497365
\(743\) −18.3986 −0.674977 −0.337489 0.941330i \(-0.609577\pi\)
−0.337489 + 0.941330i \(0.609577\pi\)
\(744\) 4.40350 0.161440
\(745\) −9.16141 −0.335648
\(746\) 44.1290 1.61568
\(747\) 1.32633 0.0485280
\(748\) −2.99800 −0.109618
\(749\) −17.3884 −0.635358
\(750\) −17.7212 −0.647086
\(751\) 32.7553 1.19526 0.597630 0.801772i \(-0.296109\pi\)
0.597630 + 0.801772i \(0.296109\pi\)
\(752\) 5.02259 0.183155
\(753\) 10.2258 0.372648
\(754\) −41.7351 −1.51990
\(755\) −28.8315 −1.04929
\(756\) 0.220813 0.00803088
\(757\) −46.5385 −1.69147 −0.845735 0.533604i \(-0.820837\pi\)
−0.845735 + 0.533604i \(0.820837\pi\)
\(758\) −24.3070 −0.882869
\(759\) −12.0268 −0.436545
\(760\) −17.6368 −0.639754
\(761\) −11.4405 −0.414718 −0.207359 0.978265i \(-0.566487\pi\)
−0.207359 + 0.978265i \(0.566487\pi\)
\(762\) 1.49024 0.0539857
\(763\) 13.0624 0.472891
\(764\) 1.05258 0.0380810
\(765\) 15.6587 0.566143
\(766\) −45.8840 −1.65786
\(767\) 2.07340 0.0748662
\(768\) 5.23728 0.188984
\(769\) −1.29466 −0.0466867 −0.0233434 0.999728i \(-0.507431\pi\)
−0.0233434 + 0.999728i \(0.507431\pi\)
\(770\) −5.41665 −0.195203
\(771\) 13.1251 0.472690
\(772\) −1.70391 −0.0613251
\(773\) 34.0700 1.22541 0.612706 0.790311i \(-0.290081\pi\)
0.612706 + 0.790311i \(0.290081\pi\)
\(774\) 3.39137 0.121900
\(775\) 1.34190 0.0482024
\(776\) 24.8078 0.890549
\(777\) 9.03684 0.324195
\(778\) 4.77870 0.171325
\(779\) 30.5484 1.09451
\(780\) −1.83443 −0.0656831
\(781\) 4.22487 0.151178
\(782\) 77.2125 2.76111
\(783\) 6.90210 0.246661
\(784\) −4.39287 −0.156888
\(785\) −11.4386 −0.408260
\(786\) −15.1791 −0.541421
\(787\) 33.5028 1.19424 0.597122 0.802150i \(-0.296311\pi\)
0.597122 + 0.802150i \(0.296311\pi\)
\(788\) −0.443069 −0.0157837
\(789\) −6.65987 −0.237098
\(790\) −21.5086 −0.765241
\(791\) −12.6936 −0.451333
\(792\) 4.70696 0.167255
\(793\) 59.5112 2.11330
\(794\) 51.2765 1.81973
\(795\) 1.86137 0.0660160
\(796\) 2.54655 0.0902600
\(797\) 19.4492 0.688927 0.344464 0.938800i \(-0.388061\pi\)
0.344464 + 0.938800i \(0.388061\pi\)
\(798\) 4.84157 0.171390
\(799\) −8.74429 −0.309351
\(800\) 1.00479 0.0355249
\(801\) −3.63475 −0.128428
\(802\) −9.98309 −0.352515
\(803\) −6.08898 −0.214876
\(804\) −0.161219 −0.00568576
\(805\) 13.8707 0.488878
\(806\) 10.0425 0.353732
\(807\) 7.74043 0.272476
\(808\) −3.21128 −0.112972
\(809\) −16.3351 −0.574311 −0.287156 0.957884i \(-0.592710\pi\)
−0.287156 + 0.957884i \(0.592710\pi\)
\(810\) 3.05118 0.107208
\(811\) −32.0347 −1.12489 −0.562445 0.826835i \(-0.690139\pi\)
−0.562445 + 0.826835i \(0.690139\pi\)
\(812\) 1.52407 0.0534844
\(813\) 6.03897 0.211796
\(814\) −23.9076 −0.837961
\(815\) −24.9409 −0.873641
\(816\) −33.5964 −1.17611
\(817\) 7.39350 0.258666
\(818\) −42.9663 −1.50228
\(819\) −4.05756 −0.141783
\(820\) 4.25103 0.148452
\(821\) 21.7526 0.759171 0.379586 0.925157i \(-0.376067\pi\)
0.379586 + 0.925157i \(0.376067\pi\)
\(822\) 8.17171 0.285021
\(823\) −19.0673 −0.664643 −0.332322 0.943166i \(-0.607832\pi\)
−0.332322 + 0.943166i \(0.607832\pi\)
\(824\) 23.0549 0.803154
\(825\) 1.43437 0.0499385
\(826\) −0.761508 −0.0264962
\(827\) 16.0124 0.556807 0.278403 0.960464i \(-0.410195\pi\)
0.278403 + 0.960464i \(0.410195\pi\)
\(828\) 1.49593 0.0519871
\(829\) 8.10746 0.281584 0.140792 0.990039i \(-0.455035\pi\)
0.140792 + 0.990039i \(0.455035\pi\)
\(830\) 4.04688 0.140469
\(831\) −22.9334 −0.795552
\(832\) −28.1290 −0.975196
\(833\) 7.64794 0.264986
\(834\) −14.8397 −0.513856
\(835\) 12.7710 0.441959
\(836\) −1.27356 −0.0440468
\(837\) −1.66081 −0.0574061
\(838\) 40.0436 1.38328
\(839\) 13.7923 0.476161 0.238081 0.971245i \(-0.423482\pi\)
0.238081 + 0.971245i \(0.423482\pi\)
\(840\) −5.42862 −0.187305
\(841\) 18.6389 0.642722
\(842\) 53.4418 1.84172
\(843\) −25.2804 −0.870705
\(844\) 4.52837 0.155873
\(845\) 7.09190 0.243969
\(846\) −1.70387 −0.0585802
\(847\) −7.84843 −0.269675
\(848\) −3.99364 −0.137142
\(849\) −13.0595 −0.448202
\(850\) −9.20872 −0.315857
\(851\) 61.2214 2.09864
\(852\) −0.525502 −0.0180034
\(853\) 0.711300 0.0243545 0.0121772 0.999926i \(-0.496124\pi\)
0.0121772 + 0.999926i \(0.496124\pi\)
\(854\) −21.8570 −0.747930
\(855\) 6.65185 0.227488
\(856\) 46.1038 1.57580
\(857\) −7.40150 −0.252831 −0.126415 0.991977i \(-0.540347\pi\)
−0.126415 + 0.991977i \(0.540347\pi\)
\(858\) 10.7346 0.366472
\(859\) −17.0089 −0.580335 −0.290167 0.956976i \(-0.593711\pi\)
−0.290167 + 0.956976i \(0.593711\pi\)
\(860\) 1.02886 0.0350838
\(861\) 9.40281 0.320447
\(862\) −38.6149 −1.31523
\(863\) 18.4171 0.626927 0.313464 0.949600i \(-0.398511\pi\)
0.313464 + 0.949600i \(0.398511\pi\)
\(864\) −1.24359 −0.0423079
\(865\) −27.7233 −0.942621
\(866\) 25.7217 0.874059
\(867\) 41.4910 1.40911
\(868\) −0.366729 −0.0124476
\(869\) 12.5143 0.424519
\(870\) 21.0595 0.713985
\(871\) 2.96249 0.100380
\(872\) −34.6338 −1.17285
\(873\) −9.35645 −0.316668
\(874\) 32.7999 1.10947
\(875\) −11.8915 −0.402006
\(876\) 0.757366 0.0255890
\(877\) 11.4975 0.388242 0.194121 0.980978i \(-0.437815\pi\)
0.194121 + 0.980978i \(0.437815\pi\)
\(878\) 48.8188 1.64755
\(879\) −3.00348 −0.101305
\(880\) 15.9670 0.538247
\(881\) 25.7078 0.866119 0.433060 0.901365i \(-0.357434\pi\)
0.433060 + 0.901365i \(0.357434\pi\)
\(882\) 1.49024 0.0501790
\(883\) −49.3302 −1.66009 −0.830047 0.557693i \(-0.811687\pi\)
−0.830047 + 0.557693i \(0.811687\pi\)
\(884\) −6.85226 −0.230466
\(885\) −1.04624 −0.0351689
\(886\) −37.5390 −1.26115
\(887\) −9.71012 −0.326034 −0.163017 0.986623i \(-0.552123\pi\)
−0.163017 + 0.986623i \(0.552123\pi\)
\(888\) −23.9604 −0.804059
\(889\) 1.00000 0.0335389
\(890\) −11.0903 −0.371747
\(891\) −1.77527 −0.0594736
\(892\) −0.319182 −0.0106870
\(893\) −3.71458 −0.124304
\(894\) −6.66817 −0.223017
\(895\) 20.6238 0.689376
\(896\) 12.8182 0.428227
\(897\) −27.4885 −0.917816
\(898\) −57.3765 −1.91468
\(899\) −11.4631 −0.382315
\(900\) −0.178412 −0.00594705
\(901\) 6.95290 0.231635
\(902\) −24.8758 −0.828273
\(903\) 2.27572 0.0757313
\(904\) 33.6560 1.11938
\(905\) 30.8306 1.02484
\(906\) −20.9851 −0.697184
\(907\) 8.87266 0.294612 0.147306 0.989091i \(-0.452940\pi\)
0.147306 + 0.989091i \(0.452940\pi\)
\(908\) 5.17501 0.171739
\(909\) 1.21116 0.0401715
\(910\) −12.3803 −0.410404
\(911\) −16.3270 −0.540938 −0.270469 0.962729i \(-0.587179\pi\)
−0.270469 + 0.962729i \(0.587179\pi\)
\(912\) −14.2718 −0.472586
\(913\) −2.35459 −0.0779257
\(914\) −35.5941 −1.17735
\(915\) −30.0293 −0.992739
\(916\) 3.86521 0.127710
\(917\) −10.1857 −0.336361
\(918\) 11.3973 0.376166
\(919\) −28.0448 −0.925111 −0.462556 0.886590i \(-0.653067\pi\)
−0.462556 + 0.886590i \(0.653067\pi\)
\(920\) −36.7770 −1.21250
\(921\) 2.33304 0.0768761
\(922\) −33.5353 −1.10442
\(923\) 9.65640 0.317844
\(924\) −0.392001 −0.0128959
\(925\) −7.30156 −0.240074
\(926\) −10.8132 −0.355343
\(927\) −8.69531 −0.285591
\(928\) −8.58340 −0.281764
\(929\) −50.8036 −1.66681 −0.833406 0.552662i \(-0.813612\pi\)
−0.833406 + 0.552662i \(0.813612\pi\)
\(930\) −5.06744 −0.166168
\(931\) 3.24885 0.106477
\(932\) 5.41592 0.177404
\(933\) −0.675512 −0.0221153
\(934\) −4.50516 −0.147413
\(935\) −27.7984 −0.909105
\(936\) 10.7583 0.351645
\(937\) 30.2345 0.987719 0.493860 0.869542i \(-0.335586\pi\)
0.493860 + 0.869542i \(0.335586\pi\)
\(938\) −1.08805 −0.0355261
\(939\) −6.63228 −0.216436
\(940\) −0.516911 −0.0168598
\(941\) 22.7086 0.740280 0.370140 0.928976i \(-0.379310\pi\)
0.370140 + 0.928976i \(0.379310\pi\)
\(942\) −8.32560 −0.271263
\(943\) 63.7008 2.07438
\(944\) 2.24474 0.0730601
\(945\) 2.04744 0.0666033
\(946\) −6.02059 −0.195746
\(947\) 48.8988 1.58900 0.794499 0.607265i \(-0.207733\pi\)
0.794499 + 0.607265i \(0.207733\pi\)
\(948\) −1.55657 −0.0505550
\(949\) −13.9170 −0.451766
\(950\) −3.91188 −0.126918
\(951\) −4.68652 −0.151971
\(952\) −20.2779 −0.657210
\(953\) −43.4704 −1.40814 −0.704072 0.710129i \(-0.748637\pi\)
−0.704072 + 0.710129i \(0.748637\pi\)
\(954\) 1.35481 0.0438635
\(955\) 9.75983 0.315821
\(956\) 2.85011 0.0921792
\(957\) −12.2531 −0.396085
\(958\) 19.1734 0.619464
\(959\) 5.48349 0.177071
\(960\) 14.1939 0.458105
\(961\) −28.2417 −0.911023
\(962\) −54.6434 −1.76177
\(963\) −17.3884 −0.560333
\(964\) −3.88344 −0.125077
\(965\) −15.7992 −0.508594
\(966\) 10.0958 0.324829
\(967\) 5.76371 0.185348 0.0926742 0.995696i \(-0.470458\pi\)
0.0926742 + 0.995696i \(0.470458\pi\)
\(968\) 20.8094 0.668841
\(969\) 24.8471 0.798203
\(970\) −28.5482 −0.916628
\(971\) 42.8223 1.37423 0.687117 0.726547i \(-0.258876\pi\)
0.687117 + 0.726547i \(0.258876\pi\)
\(972\) 0.220813 0.00708257
\(973\) −9.95792 −0.319236
\(974\) −57.6018 −1.84568
\(975\) 3.27841 0.104993
\(976\) 64.4291 2.06232
\(977\) −35.6861 −1.14170 −0.570850 0.821054i \(-0.693386\pi\)
−0.570850 + 0.821054i \(0.693386\pi\)
\(978\) −18.1533 −0.580479
\(979\) 6.45264 0.206227
\(980\) 0.452102 0.0144419
\(981\) 13.0624 0.417050
\(982\) −26.1003 −0.832895
\(983\) 15.2090 0.485092 0.242546 0.970140i \(-0.422017\pi\)
0.242546 + 0.970140i \(0.422017\pi\)
\(984\) −24.9308 −0.794763
\(985\) −4.10827 −0.130900
\(986\) 78.6650 2.50521
\(987\) −1.14335 −0.0363933
\(988\) −2.91085 −0.0926063
\(989\) 15.4172 0.490240
\(990\) −5.41665 −0.172153
\(991\) −12.7220 −0.404126 −0.202063 0.979373i \(-0.564765\pi\)
−0.202063 + 0.979373i \(0.564765\pi\)
\(992\) 2.06538 0.0655757
\(993\) −6.07509 −0.192787
\(994\) −3.54655 −0.112490
\(995\) 23.6124 0.748562
\(996\) 0.292871 0.00927999
\(997\) −15.9043 −0.503695 −0.251847 0.967767i \(-0.581038\pi\)
−0.251847 + 0.967767i \(0.581038\pi\)
\(998\) 12.4326 0.393549
\(999\) 9.03684 0.285913
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2667.2.a.q.1.14 19
3.2 odd 2 8001.2.a.v.1.6 19
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2667.2.a.q.1.14 19 1.1 even 1 trivial
8001.2.a.v.1.6 19 3.2 odd 2